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Abstract. Harmonic map theory is used to show that a convex
cocompact surface group action on a CAT(−1) metric space fixes
a convex copy of the hyperbolic plane if and only if the Hausdorff
dimension of the limit set of the action is equal to 1. This provides
another proof of a result of Bonk and Kleiner.

1 Introduction

The relationship between dynamical properties of discrete group actions on
metric spaces and rigidity theorems has a rich history: a prototypical result
due to Bowen [Bow] states that the Hausdorff dimension of the limit set of
a quasi-Fuchsian surface group Γ acting on hyperbolic 3-space is equal to 1
if and only if Γ restricts to an isometric action on hyperbolic 2-space (Γ is
Fuchsian).
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A generalization of this result to surface group actions on CAT(−1) metric
spaces was originally conjectured by Bourdon [Bou]. It was later verified by
Bonk and Kleiner [BK] where they prove a more general statement about
quasi-convex actions.

In the special case when the space is a smooth Riemannian manifold
with pinched negative sectional curvature, a different proof of this result was
found by one of the authors [San] utilizing equivariant harmonic maps and
an inequality which compared curvature quantities of the harmonic map with
the Hausdorff dimension of the limit set. Here, we extend these techniques
to the general CAT(−1) setting using the harmonic map theory which has
been developed by Koraveer-Schoen [KS1,KS2] and Mese [Mes] to give a new
proof of the original conjecture of Bourdon.

The main theorem of this paper is the following:

Theorem 1 Given a convex cocompact action ρ : π1(S) → Isom(X) on a
CAT(−1) metric space X by the fundamental group of a closed, connected
oriented surface S with genus > 1 such that dimH(Λ) = 1, there exists a
hyperbolic metric h on the universal cover S̃ of S such that the unique ρ-
equivariant harmonic map u : H2 = (S̃, h) → X is totally geodesic and an
isometric embedding. Here, Λ is the limit set of this action and the Hausdorff
dimension is computed using any of the Gromov metrics on ∂∞X.

In the Riemannian setting, the above theorem has been proved by one
of the authors [San] and also by Deroin-Tholozan [DT]. In the CAT(−1)
setting, the work of Mese [Mes] establishes the existence of a metric (of low
regularity) on S for which the associated equivariant harmonic map is con-
formal. Moreover, where it makes sense, this metric is the pullback metric
of the associated harmonic map. The main challenge overcome in this paper
is a comparison result (see Lemma 13) which allows us to trade this irreg-
ular metric for a smooth metric in the same conformal class to which the
arguments of [San] can be directly applied.

Theorem 1 immediately yields a new proof of the conjecture of Bourdon
[Bou]:

Corollary 2 A convex cocompact isometric action ρ : π1(S) → Isom(X)
on a CAT(−1) space X by the fundamental group of a closed, connected
oriented surface S with genus > 1 fixes a convex copy of H2 if and only if
dimH(ΛΓ) = 1.
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The paper is organized as follows. A brief preliminary section settles
notation and states the fundamental existence result for equivariant har-
monic maps of surfaces to CAT(−1) metric spaces. Section 3 establishes
the primary technical result eluded to in the introduction which replaces a
conformal metric of low regularity with a comparable smooth Riemannian
metric. Section 4 recapitulates the basic arguments of [San] establishing an
inequality relating the curvature of an equivariant conformal harmonic map
to the Hausdorff dimension of the limit set. Finally, section 5 completes the
proof of Theorem 1 from which Collorary 2 immediately follows.

2 Preliminaries

Throughout this paper, S denotes a closed, connected oriented surface of
genus > 1, S̃ ' H2 its universal cover, and T is the Teichmüller space of
S. Furthermore, X denotes a CAT(−1) space, Isom(X) is the group of
isometries of X and ρ : π1(S) → Isom(X) is a representation. We will
identify an element of π1(S) as a deck transformation of S̃ and an element
h ∈ T as an equivariant hyperbolic metric on S̃ (via uniformization).

Definition 3 Given a representation ρ : π1(S) → Isom(X), a map ũ : S̃ →
X is said to be ρ-equivariant if

ũ(γx) = ρ(γ)ũ(x), ∀x ∈ S̃, γ ∈ π1(S).

Definition 4 A discrete subgroup Γ of Isom(X) is said to be convex co-
compact if there exists a geodesically convex, Γ-invariant subset of X upon
which Γ acts cocompactly. A representation ρ : π1(S)→ Isom(X) is said to
be convex cocompact if Γ = ρ(π1(S)) is convex cocompact.

Given a convex cocompact representation as above, a ρ-equivariant map
ũ : S̃ → X descends to a map

u : S → X/Γ. (1)

Definition 5 Given a hyperbolic metric h ∈ T , the energy of a ρ-equivariant
map ũ : (S̃, h) = H2 → X is

Eũ
h =

∫
F

|∇ũ|2dh,
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where F ⊂ H2 is a fundamental of the action of π1(S), |∇ũ|2 is the energy
density function of ũ as defined in [KS1], and dh is the volume form associated
with the metric h. Furthermore, we will denote

Eũ
h [U ] =

∫
U

|∇ũ|2dh

for any measurable set U ⊂ H.

Definition 6 Given a hyperbolic metric h ∈ T , a finite energy map ũ :
(S̃, h) = H2 → X is said to be harmonic if Eũ

h [Ω] ≤ E ṽ
h[Ω] for any bounded

Lipschitz domain Ω ⊂ S̃ and any finite energy map ṽ : Ω → X with same
boundary values as ũ.

Theorem 7 (cf. [KS1], [KS2]) Given a convex cocompact representation
ρ : π1(S) → X and a hyperbolic metric h ∈ T , there exists a unique ρ-
equivariant harmonic map ũ : (S̃, h) = H2 → X. Furthermore, ũ is locally
Lipschitz continuous.

3 Conformal Harmonic Maps

Definition 8 Given a hyperbolic metric h ∈ T and a finite energy map
ũ : (S̃, h) = H2 → X, let π be the pullback inner product structure defined
in [KS1] Theorem 2.3.2. If z = x+iy is a local conformal coordinate on (S̃, h)
and { ∂

∂x
, ∂
∂y
} are the coordinate vector fields, we obtain the locally integrable

functions ∣∣∣∣∂ũ∂x
∣∣∣∣2 := π(

∂

∂x
,
∂

∂x
),

∣∣∣∣∂ũ∂y
∣∣∣∣2 := π(

∂

∂y
,
∂

∂y
)

and

<
∂ũ

∂x
,
∂ũ

∂y
>:= π(

∂

∂x
,
∂

∂y
).

Definition 9 Given a hyperbolic metric h ∈ T , a finite energy map ũ :
(S̃, h) = H2 → X is said to be conformal if∣∣∣∣∂ũ∂x

∣∣∣∣2 =

∣∣∣∣∂ũ∂y
∣∣∣∣2 and <

∂ũ

∂x
,
∂ũ

∂y
>= 0
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where (x, y) are local conformal coordinates of (S̃, h). The local conformal
factor of ũ is the locally integrable function

λ =

∣∣∣∣∂ũ∂x
∣∣∣∣2 .

The next result is well known. When the target space is a Riemannian
manifold it is due to Schoen-Yau (cf. [SY]), but the argument goes through
almost verbatim for the singular targets considered here. See for example
[GW].

Proposition 10 Given a convex cocompact representation ρ : π1(S) →
Isom(X), there exists h ∈ T and a ρ-equivariant conformal harmonic map
ũ : H2 = (S̃, h)→ X.

The following theorem is a summary of the results contained in [Mes].

Theorem 11 ( [Mes]) If h ∈ T is a hyperbolic metric and ũ : (S̃, h) =
H2 → X is a conformal harmonic map, then the local conformal factor λ with
respect to conformal coordinates of (x, y) ∈ U ⊂ R2 satisfies the following
properties:

(i) λ ∈ H1
loc(U),

(ii) log λ ∈ W 1,1
loc (U),

(iii) λ satisfies the weak differential inequality,∫
U

(4ϕ) log λ dxdy ≥ 2

∫
U

ϕλ dxdy, ∀ϕ ∈ C∞c (U), ϕ ≥ 0 (2)

where 4 is the Euclidean Laplacian in coordinates (x, y) and

(iv) The zero set of λ is of Hausdorff dimension zero; i.e.

dimH(D) = 0 where D = {z = (x, y) ∈ U : λ(z) = 0}.

In (iv), we let λ be the representative function in the L1-class defined every-
where by

λ(z0) = lim
r→0

1

πr2

∫
Dr(z0)

λ(z)dxdy.
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Definition 12 Given ρ : π1(S) → Isom(X), h ∈ T a hyperbolic metric
and a ρ-equivariant conformal harmonic map ũ : H2 = (S̃, h) → X, the
pullback metric of ũ is the equivariant (possibly degenerate) two-form G
defined locally by

G = λ(dx2 + dy2) (3)

where λ is the local conformal factor of ũ.

Lemma 13 Given ρ : π1(S) → Isom(X), h ∈ T a hyperbolic metric, a ρ-
equivariant conformal harmonic map ũ : H2 = (S̃, h)→ X and G defined by
(3), there exists a smooth equivariant conformally equivalent metric Gσ on
S̃ satisfying the following properties:

(i) The Gaussian curvature Kσ of Gσ satisfies Kσ ≤ −1.

(ii) If Gσ is the hyperbolic metric, then G is also the hyperbolic metric.

(iii) The metrics satisfy the inequality

G(V, V ) ≤ Gσ(V, V ), a.e. q ∈ S̃, ∀V ∈ TqS̃.

Proof. For κ > 0 to be chosen later, let g = κ−1h; thus g is a metric
on S̃ with constant Gaussian curvature −κ. Define the ρ-invariant locally
integrable function

f =
G

g
: S̃ → [0,∞). (4)

Let D = {(x, y) ∈ R2 : r =
√
x2 + y2 < 1} and consider the scaled

Poincare disk
(D,ω(r)(dx2 + dy2))

where D = {(x, y) ∈ R2 : r =
√
x2 + y2 < 1} and

ω(r) = κ−1 4

(1− r2)2
.

In particular,
4 logω = 2κω. (5)

Fix q ∈ S̃ and identify (S̃, g) to the scaled Poincare disk with q corre-
sponding to the origin. For clarity, we will refer to the coordinates (x, y) as
the Poincare coordinates centered at q. Fix σ > 0 and consider a smooth
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radially symmetric function ϕσ with support contained in Dσ(0) := {(x, y) :
r < σ} ⊂ D and the measure dνq = ϕσ(r)dxdy on D supported in Dσ(0).
Via the identification of S̃ to D, we can consider dνq as a measure defined on
S̃. Furthermore, by multiplying ϕσ by an appropriate constant if necessary,
we can assume that ∫

S̃

dνq(p) =

∫
Dσ(0)

ϕσ(r)dxdy = 1. (6)

If dg is the volume measure associated to the metric g, then we can write dg
in the Poincare coordinates (x, y) centered at q as

dg = ω(r)dxdy.

Since
dνq
dg

=
ϕσ(r)

ω(r)

and the hyperbolic distance (i.e. the distance with respect to metric h) of
a point (x, y) from (0, 0) is dependent only on r, the above quotient is a
function dependent only on the distance from q with respect to the metric
g = κ−1h. In other words,

dνq(p) = ησ(dg(q, p))dg(p). (7)

Furthermore, since g is a scalar multiple of the hyperbolic metric, the function
ησ(dg(q, p)) has the following property: if we denote the Laplacian in g with
respect to variables q and p by4q

g and4p
g respectively, then for any (p0, q0) ∈

S̃ × S̃,
4q
gησ(dg(q, p))|(p,q)=(p0,q0) = 4p

gησ(dg(q, p))|(p,q)=(p0,q0). (8)

Indeed, if I is an isometry of the hyperbolic plane switching the points p0

and q0, then

4q
gησ(dg(q, p))|(p,q)=(p0,q0) = 4q

gησ(dg(Iq, Ip))|(p,q)=(p0,q0)

= 4q
gησ(dg(q, p))|(p,q)=(Ip0,Iq0)

= 4q
gησ(dg(q, p))|(p,q)=(q0,p0)

= 4p
gησ(dg(p, q))|(p,q)=(p0,q0)

= 4p
gησ(dg(q, p))|(p,q)=(p0,q0).
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We define a smooth function fσ : S̃ → [0,∞) by setting

fσ(q) = exp

(∫
S̃

log f dνq

)
and a smooth metric Gσ by setting

Gσ := fσg.

Since the metric g, the function f and the measure dνq are all ρ-invariant,
so is Gσ. Jensen’s inequality implies

fσ(q) = exp

(∫
S̃

log f(p) dνq(p)

)
≤
∫
S̃

f(p) dνq(p). (9)

In the Poincare coordinates (x, y) centered at q ∈ S̃, we will write

G = λ(dx2 + dy2), λ = fω, (10)

Gσ = λσ(dx2 + dy2), λσ = fσω (11)

and the function p 7→ ησ(dg(p, q)) as η(r). With the above notation, we
compute in the Poincare coordinates (x, y) centered at q to obtain∫

S̃

log f(x, y) 4η(r)dxdy + 2κ

=

∫
S̃

log λ(x, y) 4η(r)dxdy −
∫
S̃

logω(r) 4η(r)dxdy + 2κ (by (10))

=

∫
S̃

log λ(x, y) 4η(r)dxdy − 2κ

∫
S̃

η(r)ω(r)dxdy + 2κ (by (5))

=

∫
S̃

log λ(x, y) 4η(r)dxdy (by (6) and (7))

≥ 2

∫
S̃

λ(x, y)η(r)dxdy (by Theorem 11)

= 2

∫
S̃

f(x, y)η(r)ω(r)dxdy (by (10)).

Since

4p
gησ(dg(q, p))dg(p) =

1

ω(r)
4ησ(r)ω(r)dxdy = 4ησ(r)dxdy,
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we conclude∫
S̃

log f(p) 4p
gησ(dg(q, p)) dg(p) + 2κ ≥ 2

∫
S̃

fησ(dg(q, p)) dg(p). (12)

To obtain the Gaussian curvature of Gσ, we compute

1

ω(0, 0)
4 log λσ

∣∣∣
(0,0)

=
1

ω
4 log fσ

∣∣∣
(0,0)

+
1

ω
4 logω

∣∣∣
(0,0)

= 4q
g

(∫
S̃

log f(p) dνq(p)

)
+ 2κ

=

∫
S̃

log f(p) 4q
gησ(dg(q, p))dg(p) + 2κ

=

∫
S̃

log f(p) 4p
gησ(dg(q, p))dg(p) + 2κ (by (8))

≥ 2

∫
S̃

f(p)ησ(dg(q, p)) dg(p) (by (12))

= 2

∫
S̃

f(p) dνq(p) (by (7))

≥ 2fσ(0, 0). (by (9)). (13)

In other words,

Kσ(q) = − 1

2λσ(0, 0)
4 log λσ

∣∣∣
(0,0)
≤ −1

which proves (i).
If Kσ ≡ −1, then we must have an equalities in (13). In particular, we

have an equality in Jensen’s inequality (9) which implies that log f must be
a constant, say c. Thus, λ = ecω. Furthermore,∫

S̃

log λ(x, y) 4η(r)dxdy = 2

∫
S̃

λ(x, y)η(x, y)dxdy

which then implies ec = κ and hence G = h. This proves (ii).
We are left to prove (iii). For a non-negative ϕ ∈ C∞c (R2),∫

S̃

(4ϕ) log f dxdy =

∫
S̃

(4ϕ) log λ dxdy −
∫
S̃

(4ϕ) logω dxdy

≥ 2

∫
S̃

ϕ (λ− κω) dxdy,
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where the last inequality follows from Theorem 11 and equation (5) after
integrating by parts.

For τ ∈ (0, σ], choose a test function ϕ which approximates the charac-
teristic function of Bτ (0). We thus obtain∫

∂Bτ (0)

∂

∂r
log fdΣ ≥ 2

∫
Bτ (0)

λ− κω dxdy.

Using polar coordinates (r, θ),

∂

∂r

(∫ 2π

0

log f(r, θ) dθ

)∣∣∣∣
r=τ

=

∫ 2π

0

∂

∂r
log f(r, θ)

∣∣∣∣
r=τ

dθ

=
1

τ

∫ 2π

0

∂

∂r
log f(r, θ)

∣∣∣∣
r=τ

τdθ

≥ 2

τ

∫ 2π

0

∫ τ

0

λ− κω rdrdθ.

Thus, for ρ, t ∈ (0, σ) and t < ρ,∫ 2π

0

log f(ρ, θ) dθ −
∫ 2π

0

log f(t, θ) dθ

=

∫ ρ

t

∂

∂r

(∫ 2π

0

log f(r, θ) dθ

)∣∣∣∣
r=τ

dτ

≥
∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ.

Multiply the above inequality by t and integrate with respect to t over interval
[0, s] where s < ρ to obtain

s2

2

∫ 2π

0

log f(ρ, θ) dθ −
∫
Bs(0)

log f(t, θ) dxdy

=

∫ s

0

t

∫ 2π

0

log f(r, θ) dθdt−
∫ s

0

∫ 2π

0

log f(t, θ) tdθdt

≥
∫ s

0

t

∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt.

Since we only need to prove the inequality of (iii) for a.e. q ∈ S̃, we can
assume without the loss of generality that q is a Lebesgue point for the
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integrable function log λ. Thus dividing the above inequality by πs2 and
letting s→ 0, we obtain

1

2π

∫ 2π

0

log f(r, θ) dθ − log f(q)

≥ lim
s→0

1

πs2

∫ s

0

t

∫ ρ

t

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

= lim
s→0

1

πs2

∫ s

0

t

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

− lim
s→0

1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt

=
1

2π

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ

− lim
s→0

1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt. (14)

Since |λ− κω| is a bounded function in Bσ(0), we conclude that given ε > 0,
there exists t0 > 0 sufficiently small such that

t ∈ (0, t0) ⇒
∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ < ε.

Thus

s ∈ (0, t0) ⇒ 1

πs2

∫ s

0

t

∫ t

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτdt ≤ ε

2π
.

We can now conclude that the limit that appears in (14) is equal to 0, and
therefore∫ 2π

0

log f(r, θ) dθ ≥ 2π log f(q) +

∫ ρ

0

2

τ

∫
Bτ (0)

(λ− κω) dxdydτ

By the definition of fσ, we have

fσ(q) = exp

∫ σ

0

(∫ 2π

0

log f(r, θ)dθ

)
η(r)ω(r)rdr.

Combining the above,

fσ(q) ≥ f(q) exp

∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

(λ− κω) dxdydτ

)
η(r)ω(r) rdr. (15)
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The function

ψ : S̃ → [0,∞), ψ(q) :=

∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

λ dxdydτ

)
η(r)ω(r) rdr

is continuous by Theorem 11 (i). Furthermore, ψ(q) > 0 for all q ∈ S̃ since
Theorem 11 (iv) implies∫

Bτ (0)

λ dxdy > 0, ∀τ > 0.

Since ψ is also equivariant, this implies a positive lower bound for ψ; i.e.
minq∈S̃ ψ(q) > 0. Moreover, the function

q 7→
∫ σ

0

(∫ ρ

0

1

τ

∫
Bτ (0)

ω dxdydτ

)
η(r)ω(r) rdr

is constant. Thus, we can choose κ > 0 sufficiently small such that∫ σ

0

(∫ ρ

0

∫
Bτ (0)

(λ− κω) dxdydτ

)
η(r)ω(r) rdr ≥ 0.

Thus, (15) implies (iii). q.e.d.

4 Relation with Entropy

The purpose of this section is to state an inequality connecting the Gaussian
curvature of the pullback metric of a ρ-equivariant conformal harmonic map
with the with the action of ρ at infinity. This relationship was explored
earlier by Sanders and the argument below is based on [San].

Definition 14 Let Γ be a subgroup of Isom(X). We define

δ(Γ) := lim
R→∞

logNΓ(R,P )

R

where
NΓ(R,P ) = |{γ ∈ Γ : d(P, γP ) < R}| .

The number δ(Γ) is independent of P ∈ X and is a measure of the dynamical
complexity of the group Γ.
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Definition 15 Let Γ be a subgroup of Isom(X). The limit set ΛΓ of Γ
is the set of accumulation point of Γ-orbits of a fixed point P ∈ X in the
visual boundary ∂∞X. Equivalently, ΛΓ is the smallest non-empty, closed
Γ-invariant subset of ∂∞X.

Theorem 16 ( [Co]) If Γ ⊂ Isom(X) is a discrete, convex cocompact sub-
group, then

δ(Γ) = dimH(ΛΓ).

The Hausdorff dimension is computed using any of the Gromov metrics on
∂∞X.

Definition 17 The volume entropy of a smooth Riemannian metric Gσ on
S̃ is

e(Gσ) = lim
R→∞

log VolGσ(BGσ

R (x))

R
.

where BGσ
R (x) is the geodesic ball of radius R centered at x. The existence

of the limit in Definition 17 is proven in [Man1] Section 2.

Remark 18 For s > 0 and x, y ∈ S̃, the critical exponent for the Poincaré
series

P s(x, y) =
∑

γ∈π1(S̃)

e−sdGσ (x,γy)

is (cf. [Co] Proposition 5.3)

δ(π1(S̃)) = lim
R→∞

logNGσ

π1(S)(R, x)

R
= lim

R→∞

log #{γ ∈ Γ : dGσ(γx, x) ≤ R}
R

.

On the other hand, for (S̃, Gσ) as in Lemma 13, [Kn] Theorem 5.1 and
Corollary 5.2 shows that the Poincaré series P s(x, y) converges for s > e(Gσ)
and diverges for s ≤ e(Gσ). In particular, we observe that

e(Gσ) = lim
R→∞

logNGσ

π1(S)(R, x)

R
. (16)

Theorem 19 ( [Man1]) For a smooth Riemannian metric Gσ on S̃,

htop

(
Gσ

V olGσ(S)

)
≤ e

(
Gσ

V olGσ(S)

)
13



where htop is the topological entropy of the geodesic flow with respect to the
Liouville measure. Moreover,

KGσ ≤ 0 ⇒ htop

(
Gσ

V olGσ(S)

)
= e

(
Gσ

V olGσ(S)

)
where KGσ is the Gauss curvature of the smooth metric Gσ.

Theorem 20 ( [Man2]) For a smooth Riemannian metric Gσ on S̃,

1√
V olGσ(S)

∫
S

√
−KGσdµGσ ≤ hLGσ

where hLGσ is the metric entropy of the geodesic flow with respect to Liouville
measure.

Lemma 21 If G is the pullback metric on S̃ associated to a ρ-equivariant
conformal harmonic map ũ : H2 → X and Gσ, KGσ are as in Lemma 13,
then

1

V olGσ(S)

∫
S

√
−KGσdµGσ ≤ dimH(ΛΓ).

Proof. Since Gσ is a smooth metric of negative Gaussian curvature on
S̃,

1√
V olGσ(S)

∫
S

√
−KGσdµGσ ≤ hLGσ (by Theorem 20, [Man2])

≤ htop

(
Gσ

V olGσ(S)

)
(by the variational principle)

= e

(
Gσ

V olGσ(S)

)
(by Theorem 19, [Man1])

=
√
V olGσ(S)e(Gσ).

Thus,
1

V olGσ(S)

∫
S

√
−KGσdµGσ ≤ e(Gσ). (17)

Fix x ∈ S̃. Recall that

NGσ

π1(S)(R, x) := {γ ∈ π1(S) : dGσ(x, γx) ≤ R}.
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Using the fact that G is the pullback metric of ũ together with Lemma 13
assertion (iii), we conclude

d(ũ(x), ρ(γ)ũ(x)) ≤ dG(x, γx) ≤ dGσ(x, γx), ∀x ∈ S̃.

Thus, letting Γ = ρ(π1(S)), we have

NGσ

π1(S)(R, x) ≤ Nρ(π1(S))(R, ũ(x)).

Take logarithm, divide by R and let R → ∞ in the above inequality. We
then obtain e(Gσ) on the left hand side by (16). On the right hand side,
apply Theorem 16 to obtain

lim
R→∞

Nρ(π1(S))(R, ũ(x))

R
= δ(Γ) = dimH(ΛΓ).

We thus obtain
e(Gσ) ≤ dimH(ΛΓ). (18)

Combining (17) and (18) yields

1

V olGσ(S)

∫
S

√
−KGσdµGσ ≤ dimH(ΛΓ).

q.e.d.

5 Proof of Theorem 1

Proof of Theorem 1. Let λ be the conformal factor of ũ, G = λ(dx2+dy2)
as in Definition 12 andGσ as in Lemma 21. By Lemma 21 and the assumption
that dimH(ΛΓ) = 1, we have∫

S

√
−KGσdµGσ ≤ V olGσ(S)

Since KGσ ≤ −1, we thus conclude KGσ ≡ −1. By Lemma 13 (ii), G is the
hyperbolic metric h.

For any p ∈ S̃, identify p = 0 via normal coordinates and let (r, θ) be
polar coordinates. For R > 0, define φ : BR(p)→ X by setting

φ(r, θ) = (1− r) ũ(p) + rũ(1, θ)

15



where, using a common notation in NPC geometry, the sum on the right hand
side denotes the geodesic interpolation. In other words, φ maps geodesics
emanating from p to geodesics emanating from ũ(p). Therefore,∣∣∣∣∂φ∂r

∣∣∣∣2 = d2(ũ(1, θ), ũ(p)) ≤ d2
G((1, θ), p). (19)

We next claim that∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ) = lim

ε→0

d2
G((r, θ), (r + ε, θ))

ε2
(20)

Indeed, since G is equal to the hyperbolic metric h and (r, θ) are polar coor-
dinates for h

lim
ε→0

d2
G((r, θ), (r + ε, θ))

ε2
= lim

ε→0

(
1

ε

∫ r+ε

r

√
λ(s, θ)ds

)2

= λ(r, θ) =

∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ)

the last equality being because ũ is conformal. On the other hand, again
since (r, θ) are polar coordinates for h = G

lim
ε→0

d2
G((r, θ), (r + ε, θ))

ε2
= d2

G((1, θ), p). (21)

Combining equalities (19), (20) and (21) we obtain∣∣∣∣∂φ∂r
∣∣∣∣2 (r, θ) ≤

∣∣∣∣∂ũ∂r
∣∣∣∣2 (r, θ). (22)

Furthermore,

d(φ(1, θ1), φ(1, θ2)) = d(u(1, θ1), u(1, θ2)) ≤ dG((1, θ1), (1, θ2)).

Since we have shown that G is the hyperbolic metic, the CAT(-1) condition
implies that

d(φ(r, θ1), φ(r, θ2)) ≤ dG((r, θ1), (r, θ2)).

Thus, ∣∣∣∣∂φ∂θ
∣∣∣∣2 (r, θ) = lim

ε→0

d2(φ(r, θ), φ(r, θ + ε))

ε2

≤ lim
ε→0

d2
G((r, θ), (r, θ + ε))

ε2
=

∣∣∣∣∂ũ∂θ
∣∣∣∣2 (r, θ). (23)

16



Notice that the derivation of the last equality is similar to that of (20). Thus
(22) and (23) imply that Eφ ≤ Eũ, but since ũ is energy minimizing φ = ũ.
Therefore, ũ maps radial lines emanating from p to geodesics. Since p is an
arbitrary point in S̃, this proves ũ is totally geodesic. q.e.d.
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