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1 Introduction

In this article, we present results about harmonic maps into general NPC
spaces. The theory of harmonic maps to singular spaces originate with the
work of Gromov-Schoen [GS] and was subsequently extended in [KS1], [KS2]
and [Jo]. The main regularity result in [GS] and [KS1] is to show that har-
monic maps are Lipschitz continuous. In [GS], this is achieved by proving
the existence of an order function (sometimes also called the frequency func-
tion) associated with a harmonic map. For example, for a harmonic function
u : Ω→ R, the value of the order function Ordu(x) is the order with which
u attains its value u(x) at x. In [KS1], a different proof of the Lipschitz
continuity is given that is independent of the order function.

In Section 2, we take on the approach of [GS] and sketch the monotonic-
ity of the order and the Lipschitz continuity property for harmonic maps
maps into arbitrary NPC spaces (cf. Theorem 2 and Theorem 3). Moreover,
by following [KS1] and [KS2], we discuss blow-up maps and tangent maps
(cf. Theorem 8 and Definition 9).

In Section 3, we discuss several quantities associated with harmonic maps
into NPC spaces and prove that they satisfy certain monotonicity formulas
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(cf. Lemma 11). In the case when the target space is a tree, these formulas are
due to Caffarelli-Lin [CL]. We also give a characterization of homogeneous
maps in terms of these quantities (cf. Lemma 12).

In Section 4, we introduce the notion of Alexandrov tangent maps, which
is the main contribution of this article. Given an arbitrary NPC space Y
and a point P0 ∈ Y , there is the well known notion of Alexandrov tangent
cone TP0Y . For a harmonic map u : Ω → Y with u(x0) = P0 the tangent
map u∗ : Rn → Y∗ maps into a space Y∗ that may be different from TP0Y . In
this section we show that the Alexandrov tangent map v∗ is a homogeneous
map of degree α = Ordu(x0) and furthermore it induces the same metric
as u∗ (cf. Proposition 14 and Theorem 15). We also give a criterion for
when the notions of tangent map and Alexandrov tangent map agree (cf.
Proposition 17).

Finally in Section 5, we describe results of Caffarelli and Lin on unique-
ness of tangent maps (cf. [L]). We prove these results for Alexandrov tangent
maps into arbitrary NPC spaces whose tangent cones are locally compact
rather than trees, which is the case of the original work of Caffarelli and Lin.
The main results are Proposition 20 where it is shown that condition (17) is
sufficient for uniqueness of tangent maps and Example 22 where it is shown
that uniqueness is equivalent to condition (17) for the case of trees. We also
discuss special cases where condition (17) is satisfied.

Aknowledgement. The authors would like to thank F-H. Lin for com-
municating the results [CL] and [L] to us.

2 Definitions

Recall that a metric space (Y, d) is called NPC (non-positively curved) space
if:

(i) The space (Y, d) is a length space. That is, for any two points P and
Q in Y , there exists a rectifiable curve c so that the length of c is equal to
d(P,Q). We call such distance realizing curve a geodesic.

(ii) For any three points P,R,Q ∈ Y , let c : [0, l] → Y be the arclength
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parameterized geodesic from Q to R and let Qt = c(tl) for t ∈ [0, 1]. Then

d2(P,Qt) ≤ (1− t)d2(P,Q) + td2(P,R)− t(1− t)d2(Q,R).

Let Y be an NPC space, Q,R ∈ Y and t ∈ [0, 1]. In the sequel, we use
the notation

(1− t)Q+ tR (1)

to denote the point that is of distance td(Q,R) from Q and of distance
(1− t)d(Q,R) from R. Since (ii) implies the uniqueness of geodesic between
Q and R, this point is well-defined.

We next define the notion of energy of a map to a metric space (Y, d).
Let Ω be a smooth bounded n-dimensional Riemannian domain. A map
f : Ω → Y is said to be an L2-map (or that f ∈ L2(Ω, Y )) if for some (and
hence all) P ∈ Y , we have ∫

Ω
d2(f(x), P )dµ <∞.

For f ∈ L2(Ω, Y ), define efε : Ω→ R by

efε (x) =


∫
y∈∂Bε(x)

d2(f(x), f(y))

ε2
dΣ for x ∈ Ω−Nε(∂Ω)

0 for x ∈ Nε(∂Ω)

where Nε(∂Ω) = {x ∈ Ω : d(x, ∂Ω) < ε}. Define a family of functionals

Ef
ε : Cc(Ω)→ R

by setting

Ef
ε (ϕ) =

∫
Ω
ϕefε dµ.

We say f has finite energy (or that f ∈ W 1,2(Ω, Y )) if

Ef := sup
ϕ∈Cc(Ω),0≤ϕ≤1

lim sup
ε→0

Ef
ε (ϕ) <∞.

It can be shown (cf. [KS1]) that if f has finite energy, then the measures
efε (x)dµ converge to a measure absolutely continuous with respect to the
Lebesgue measure. Therefore, there exists a function ef (x), called the energy

3



density, such that efε (x)dµ ⇀ ef (x)dµ. In analogy to the case of real valued
functions, we write |∇f |2(x) in place of ef (x). In particular,

Ef =
∫

Ω
|∇f |2dµ.

If f ∈ W 1,2(Ω, Y ), then there exists a well-defined notion of a trace of
f , denoted Tr(f), which is an element of L2(∂Ω, Y ). Two maps f, g ∈
W 1,2(Ω, Y ) have the same trace (i.e. Tr(f) = Tr(g)) if and only if d(f, g) ∈
W 1,2

0 (Ω). For details we refer to [KS1].
In the sequel, given x ∈ Ω and a finite energy map f : Ω → Y , we will

use the following notation

Ef
x (r) :=

∫
Br(x)

|∇f |2dµ and Ifx (r) :=
∫
∂Br(x)

d2(f, f(x))dΣ.

Sometimes we may omit the subscripts x or (and) f from the above notation
if they are clear from the context.

Definition 1 A W 1,2-map u : Ω → Y to an NPC space (Y, d) is said to be
harmonic or an energy minimizer if for any x ∈ Ω and any geodesic ball
Br(x) ⊂ Ω, the restriction f |Br(x) is energy minimizing among all W 1,2-maps
with the same trace.

The following regularity theorem is due to Gromov and Schoen [GS] and
Korevaar and Schoen [KS1].

Theorem 2 A harmonic map u : Ω → Y to an NPC space (Y, d) is locally
Lipschitz continuous with the local Lipschitz constant dependent only on the
energy of u, the dimension of Ω, the domain metric g and the distance to the
boundary of Ω.

The key to proving Theorem 2 is the existence of an order function also
called a frequency function (cf. [GS] Part I, Section 2).

Theorem 3 Let u : Ω → Y be a harmonic map to an NPC space (Y, d).
There exists a constant c > 0 depending only on the domain metric g (in
particular, c = 0 when Ω is Euclidean) such that

r 7→ Ordu(x, r) := ecr
2 r Eu

x(r)

Iux (r)

is non-decreasing for any x ∈ Ω.
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As a non-increasing limit of continuous functions,

Ordu(x) := lim
r→0

Ordu(x, r)

is an upper semicontinuous function. By following the proof of Theorem 2.3
in [GS], we have that Ordu(x) ≥ 1. The value Ordu(x) is called the order of
u at x. Note that for a harmonic function u : Ω → R, Ordu(x) is the order
with which u attains its value u(x) at x. Alternatively, it is the degree of the
dominant homogeneous harmonic polynomial which approximates u − u(x)
near x.

The proof of Theorem 3 is based on the following two lemmas which are
related to the first variation formulae for target and domain variations of
classical harmonic maps between Riemannian manifolds.

Lemma 4 (cf. [GS]) If u : (B2(0), g) → Y is a harmonic map into an
NPC space (Y, d), then

2 Eu(r) ≤
∫
∂Br(0)

∂

∂r
d2(u, P0)dµ

for any P0 ∈ Y .

Proof. This is proven by using the fact that Eu(r) ≤ Euη(r) where
η ∈ Cc(Br(0)) and

uη(x) = (1− η)u(x) + ηP0.

For details, follow the proof in [GS] where this lemma is proven for the special
case when Y is a NPC Riemannian simplicial complex. We can use [KS1]
Theorem 2.3.2 to justify various steps for the general case when Y is simply
an NPC space. q.e.d.

Lemma 5 (cf. [GS]) If u : (B2(0), g) → Y is a harmonic map into an
NPC space (Y, d), then

d

dr
Eu(r) =

n− 2 +O(r2)

r
Eu(r) + 2

∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ

where |O(r2)| ≤ Cr2 with C dependent only on the domain metric g. In
particular, if the domain metric is Euclidean, then we can set O(r2) = 0.
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Proof. This is proved by a standard computation using the fact that
d
dt
Eut(r)|r=0 = 0 where ut = u ◦Ft. Here, Ft is a smooth one-parameter fam-

ily of diffeomorphism of the domain with F0 the identity map and Ft = F0

in a neighborhood of ∂Br(0) By using [KS1] Theorem 2.3.2 to justify various
steps, we can follow the argments in [GS]. q.e.d.

Proof of Theorem 3. Recall the standard identity (cf. [GS] p.193)

d

dr
Iu(r) =

∫
∂Br(x0)

∂

∂r
d2(v, u(0))dΣ +

n− 1

r
Iu(r) +O(r2)Iu(r) (2)

where O(r2) is as in Lemma 5. Combining this with Lemma 5, we obtain

d
dr
Eu(r)

Eu(r)
−

d
dr
Iu(r)

Iu(r)
+

1

r

= (Eu(r)Iu(r))−1

Iu(r) ∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ

−Eu(r)
∫
∂Br(0)

∂

∂r
d2(u, u(0))dΣ

)
+O(r).

Thus, Lemma 4 and Hölder inequality imply the monotonicity formula

d

dr

(
ecr

2 rEu(r)

Iu(r)

)

≥

Iu(r) ∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

−
(∫

∂Br(0)

∂

∂r
d2(u, u(0))dΣ

)2


Eu(r)Iu(r)
)nonumber (3)

≥

∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ−
∫
∂Br(0)

∣∣∣∣∣ ∂∂rd(u, u(0))

∣∣∣∣∣
2

dΣ


Eu(r)

≥ 0 (4)

for some constant c dependent only on the second derivative estimates of the
domain metric g. Here, we are also using the triangle inequality

d(u(x+ ε∂r), u(x)) ≥ d(u(x+ ε∂r), u(0))− d(u(x), u(0)) (5)
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where ∂r is the radial coordinate vector (of the normal coordinates centered
at x = 0) and x+ ε∂r denotes the point obtained by flowing for time ε along
∂r starting at x. This implies∣∣∣∣∣∂u∂r

∣∣∣∣∣
2

≥
∣∣∣∣∣ ∂∂rd(u, u(0))

∣∣∣∣∣
2

. (6)

q.e.d.

For any finite energy map u : Ω→ Y to an NPC space (Y, d), x ∈ Ω and
α > 0, we set

Iux (r) :=
Iux (r)

rn−1+2α
and Eux (r) :=

Eu
x(r)

rn−2+2α
. (7)

Analogously with Eu
x(r) and Iux (r), we may omit the subscripts x or (and) u

from the above notation.
The following Corollary, also due to Gromov-Schoen (cf. [GS] Part I,

Section 2), gives the monotonicity properties of the functions Iux (r) and Eux (r)
which plays a central role in this paper.

Corollary 6 Let u : Ω→ Y be a harmonic map to an NPC space (Y, d) and
x ∈ Ω. There exists a constant c > 0 depending only on the domain metric
g (in particular c = 0 when Ω is Euclidean) such that

d

dr

(
ecr

2I(r)
)
≥ 0 and

d

dr

(
ecr

2E(r)
)
≥ 0.

We now describe homogeneous approximations for harmonic maps into
NPC spaces. We begin with defining a notion of homogeneity in this setting.

Definition 7 A map v : B1(0) ⊂ Rn → T into an NPC space (T, δ) is said
to be homogeneous of order α if, for every x ∈ B1(0), v(x) is contained in a
geodesic between v(0) and v( x

|x|) and

δ(v(x), v(0)) = |x|αδ(v(
x

|x|
), v(0)).
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Let u : Ω → (Y, d) be a harmonic map from a Riemannian domain into
an NPC space and x ∈ Ω. First, identify x = 0 via normal coordinates. By
rescaling the domain if necessary, we can assume that B2(0) ⊂ Ω. Set

µ(σ) =

√
Iu(σ)

σn−1
.

By Corollary 6, we have

lim
σ→0

µ(σ) = σ−α
√
Iu(r) = 0. (8)

For σ > 0, the metric space (Y, µ−1(σ)d) is still an NPC space. Since we
are in normal coordinates, g0 := g(0) is the Euclidean metric given by δij in
local coordinates. We will denote the volume form of Br(0) and of ∂Br(0)
with respect to g0 by µ0 and Σ0 respectively. Define the metric gσ by setting
gσ(x) = g(σx) and let

uσ : (B1(0), gσ)→ (Y, µ−1(σ)d =: dσ)

by setting
uσ(x) = u(σx).

The one parameter family of harmonic maps {uσ} is called the blow up maps
of u. The normalization by µ(σ) gives the property that

Iuσ(1) = 1 (9)

and

lim
σ→0

Euσ(1)

Iuσ(1)
=
σEu(σ)

Iu(σ)
= α. (10)

Furthermore, the monotonicity formula in Theorem 3 implies

Euσ(1) ≤ 2α for σ > 0 sufficiently small.

In particular, by Theorem 2, the family {uσ} is uniformly Lipschitz in Bσ(0)
for any σ ∈ (0, 1). By [KS1] Proposition 3.7 and [GS] Lemma 3.2, we obtain
the following
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Theorem 8 Let u : (B2(0), g) → (Y, d) be a harmonic map into an NPC
space (Y, d) and {uσ} be the blow up maps of u. Given any sequence σi → 0
there exists a subsequence (denoted again by σi by a slight abuse of notation)
such that uσi converges locally uniformly in the pull back sense (cf. [KS2]
Definition 3.3) to map u∗ : B1(0)→ Y∗ into an NPC space (Y∗, d∗). The map
u∗ is harmonic and homogeneous of order α.

Definition 9 The map u∗ defined in Theorem 8 is called a tangent map of
u at x = 0.

In general, the geometry of the space (Y∗, d∗) may be very different from the
local geometry of (Y, d).

3 Deviation from Homogeneity

In this section, we introduce and study quantities that indicate the deviation
of a map from being a homogeneous map. For the special case when Y is
a tree, these formulas were first studied by Caffarelli-Lin [CL]. Throughout
this section, we denote by C a generic constant depending on the domain
metric g.

Definition 10 Assume u : (B1(0), g)→ Y is a harmonic map and the order
of u at 0 equal to α. Define

F u(r) := Eu(r)− α

r
Iu(r),

∆u(r) :=
∫
∂Br(0)

∂

∂r
d2(u, u(0))dΣ− 2Eu(r).

and

Ru(r) :=
∫
∂Br(0)

(
r
∂

∂r
d(u, u(0))− αd(u, u(0))

)2

dΣ

Furthermore, we define

Fu(r) :=
F u(r)

rn−2+2α
= Eu(r)− α

r
Iu(r),

Du(r) :=
α∆u(r)

rn−2+2α
and Ru(r) :=

2Ru(u)

rn−1+2α
.
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Remark. We note the following positivity properties of the quantities in
Definition 10. First, clearly we have

Ru(r), Ru(r) ≥ 0.

Additionally, by Lemma 4

∆u(r), Du(r) ≥ 0.

Finally, if g is the Euclidean metric g0, then by Theorem 3

F u(r), Fu(r) ≥ 0.

We now record the following relationship between F u(r), ∆u(r), Ru(r) and
Iu(r).

Lemma 11 If u : (B2(0), g) → Y is a harmonic map into an NPC space
(Y, d) with Ordu(0) = α, then

2Fu(r)
r

+
Du(r)
r

=
d

dr
Iu(r) +O(r)Iu(r) (11)

and

0 ≤ R
u(r)

r
+
Du(r)
r
≤ d

dr
Fu(r) +O(r)(Eu(r) + Iu(r)). (12)

Here, we have that |O(r)| ≤ Cr. If g is the Euclidean metric g0, then we can
set O(r) = 0.

Proof. By (2), we have

d

dr

(
Iu(r)

rn−1+2α

)
=

1

rn−1+2α

∫
∂Br(0)

∂

∂r
d2(u, u(0))dΣ− 2α +O(r2)

r

Iu(r)

rn−1+2α

=
1

rn−1+2α
(2Eu(r) +Du(r))− 2α +O(r2)

r

Iu(r)

rn−1+2α

=
2

r

(
Eu(r)

rn−2+2α
− α Iu(r)

rn−1+2α

)
+

1

r

(
Du(r)

rn−2+2α

)
−O(r)

Iu(r)

rn−1+2α
.
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This proves (11). To prove (12), we use Lemma 5 to compute

d

dr

(
Eu(r)

rn−2+2α

)
=

d
dr
Eu(r)

rn−2+2α
− (n− 2 + 2α)Eu(r)

rn−1+2α

=
2

rn+2α

r2
∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ− rαEu(r)

−O(r)
Eu(r)

rn−2+2α
.

By combining with (2),

d

dr

(
F u(r)

rn−2+2α

)

=
d

dr

(
Eu(r)

rn−2+2α
− α Iu(r)

rn−1+2α

)

=
2

rn+2α

r2
∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ− rαEu(r)− rα

2

∫
∂Br(0)

∂

∂r
d2(u, u(0))dΣ + α2Iu(r)


−O(r)

(
Eu(r)

rn−2+2α
+

Iu(r)

rn−1+2α

)

=
2

rn+2α

r2
∫
∂Br(0)

∣∣∣∣∣∂u∂r
∣∣∣∣∣
2

dΣ− rα
∫
∂Br(0)

∂

∂r
d2(u, u(0))dΣ + α2Iu(r)


+
α∆u(r)

rn−1+2α
−O(r)

(
Eu(r)

rn−2+2α
+

Iu(r)

rn−1+2α

)

≥ 2

rn+2α

∫
∂Br(0)

r2

(
∂

∂r
d(u, u(0))

)2

− 2rαd(u, u(0))
∂

∂r
d(u, u(0)) + α2d2(u, u(0))dΣ


+
α∆u(r)

rn−1+2α
− Cr

(
Eu(r)

rn−2+2α
+

Iu(r)

rn−1+2α

)
by (6)

=
2

rn+2α

∫
∂Br(0)

(
r
∂

∂r
d(u, u(0))− αd(u, u(0))

)2

dΣ +
α∆u(r)

rn−1+2α

−Cr
(
Eu(r)

rn−2+2α
+

Iu(r)

rn−1+2α

)
.

The fact that the first two terms on the right hand side are both positive
proves (12). The assertion of the lemma regarding dependence of the con-
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stant C on the domain metric follows immediately from Lemma 5. q.e.d.

Lemma 12 Assume u : (B1(0), g0)→ (Y, d) is a harmonic map with Ordu(0) =
α. The following statements are equivalent:

(i) u is homogeneous.
(ii) F u(r) = 0, ∀r ∈ (0, 1)
(iii) Ru(r) = 0 and ∆u(r) = 0, ∀r ∈ (0, 1).

Proof. The direction (ii) ⇒ (i), follows as in [GS] Lemma 3.2 by
replacing the NPC Riemannian simplicial complex with an arbitrary NPC
space Y and justifying the various steps using [KS1]. To show (i) ⇒ (ii),
note that r ∂

∂r
d(u, u(0)) = αd(u, u(0)) by definition of homogeneity. Thus,

d

dr
Iu(r)

=
d

dr

(
Iu(r)

rn−1+2α

)

=
2

rn+2α

(
r
∫
∂Br(0)

d(u, u(0))
∂

∂r
d(u, u(0))dΣ− α

∫
∂Br(0)

d2(u, u(0))dΣ

)
= 0.

The positivity properties (cf. Remark following Definition 10) and Lemma 11
(11) (noting that O(r) = 0 since the domain metric is Euclidean) implies
that F u(r) = 0. Thus, we have shown (i) is equivalent to (ii). The im-
plication (ii) ⇒ (iii) follows immediately from Lemma 11 (12). To show
(iii) ⇒ (ii), note that ∆u(r) = 0 implies an equality in the first inequal-
ity of (3) (where Lemma 4 is applied). Furthermore, Ru(r) = 0 implies
∂
∂r
d(u, u(0)) = α

r
d(u, u(0)) which in turn implies an equality in the second

(i.e. where the Hölder inequality is applied). Here, note that c = 0 and that
there is no O(r) term in (3) since the domain metric g0 is Euclidean. Thus,
d
dr
Ordu(r) = 0 which implies Ordu(r) = α which in turn implies F u(r) = 0.

Thus, we have shown (ii) is equivalent to (iii). q.e.d.
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4 Alexandrov tangent maps

We now recall the notion of the Alexandrov tangent cone of an NPC metric
space (Y, d). Let ΓP0Y be the set of all arclength parameterized geodesic
rays γ : [0,∞)→ Y emanating from the point P0 = γ(0). For γ1, γ2 ∈ ΓP0Y ,
define θ(γ1, γ2) to be the angle between the two geodesics at P0; i.e.

θ(γ1, γ2) = lim
t,s→0

arccos

(
t2 + s2 − d2(γ1(t), γ2(s))

2ts

)
.

Define an equivalence class in ΓP0Y by letting

γ1 ∼ γ2 if and only if θ(γ1, γ2) = 0.

Let SP0Y be the metric completion of the space of equivalence classes [γ] of
ΓP0Y with respect to the distance function Θ(·, ·) defined by

Θ([γ1], [γ2]) = θ(γ1, γ2).

The tangent cone of Y at P0 is the space

TP0Y = [0,∞)× SP0Y/ ∼′

where ∼′ identifies all points of the form (0, [γ]) as the vertex P0. We define
a distance function δ(·, ·) on TP0Y by

δ((ρ1, [γ1]), (ρ2, [γ2])) = ρ2
1 + ρ2

2 − 2ρ1ρ2 cos Θ([γ1], [γ2]).

There is a natural projection map logP0
: Y → TP0Y defined by setting

logP0
(P ) = (d(P, P0), [γP ])

where γP is a geodesic ray emanating from P0 and that goes through P .
Let uσi be a sequence of blow-up maps converging locally uniformly in

the pullback sense to u∗. Since logP0
is distance non-increasing, log ◦uσi is

a sequence of maps with a uniform Lipschitz bound. Thus, there exists a
subsequence of log ◦uσi converging locally uniformly in the pullback sense to
a map v∗ : Rn → (T∗, δ∗) into an NPC space (cf. [KS1] Proposition 3.7).

Definition 13 The map v∗ : Rn → (T∗, δ∗) as above is said to be an Alexan-
drov tangent map of u at 0.
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Proposition 14 Let u : B2(0)→ Y be a harmonic map into an NPC space
(Y, d) with Ordu(0) = α. Then any Alexandrov tangent map v∗ : Rn →
(T∗, δ∗) of u at 0 is homogeneous of degree α.

Proof. Let σi → 0 such that uσi and logP0
◦uσi converge locally uni-

formly in the pullback sense to a tangent map u∗ and v∗ respectively. Since
logP0

preserves radial directions, we have that δ∗(logP0
◦uσi ,P0) = d∗(uσi , P0)

which then implies δ∗(v∗, v∗(0)) = d∗(u∗, u∗(0)). Thus, the homogeneity of
u∗ implies that for x ∈ ∂B1(0) and t ∈ [0, 1]

δ∗(v∗(tx), v∗(0)) = d∗(u∗(tx), u∗(0))

= tαd∗(u∗(x), u∗(0))

= tαδ∗(v∗(x), v∗(0)). (13)

Furthermore,

δ∗(v∗(tx), v∗(x)) = lim
i→∞

δσi(vσi(tx), vσi(x))

≤ lim
i→∞

dσi(uσi(tx), uσi(x))

= d∗(u∗(tx), u∗(x))

= (1− tα)d∗(u∗(x), u∗(0))

= (1− tα)d∗(v∗(x), v∗(0)). (14)

Equations (13) and (14) imply that v∗(tx) is the point on the geodesic from
v∗(0) to v∗(x) at distance tαd∗(v∗(x), v∗(0)) from v∗(0). In turn, this implies
the homogeneity of v∗. q.e.d.

Remark. It is an important and difficult open question whether Alexandrov
tangent maps are energy minimizers in general.

Let u : B2(0) → Y be a finite energy map into an NPC space (Y, d).
Recall the construction in [KS1] of a continuous, symmetric, bilinear, non-
negative tensorial operator

π : Γ(TB2(0))× Γ(TB2(0))→ L1(B2(0))

where Γ(TB2(0)) is the space of Lipschitz vector fields on B2(0) defined by

π(Z,W ) :=
1

4
|u∗(Z +W )|2 − 1

4
|u∗(Z −W )|2
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where |u∗(Z)|2 is the directional energy density function (cf. [KS1] Section
1.8). This generalizes the notion of the pullback metric for maps into a
Riemannian manifold, and hence we shall refer to π also as the pullback
metric for u.

Theorem 15 Let u : B2(0) → Y be a harmonic map into an NPC space
(Y, d) and σi → 0 such that uσi converges locally uniformly in the pullback
sense to a tangent map u∗ and logP0

◦uσi converges locally uniformly in the
pullback sense to an Alexandrov tangent map v∗. Then the pullback metric
for u∗ and the pullback metric for v∗ agree (in L1).

Proof. By Lemma 12 and Proposition 14, we have that 4u∗(r) = 0 =
4v∗(r). Therefore, using the fact that δ∗(v∗, v∗(0)) = d∗(u∗, u∗(0)), we obtain

2Ev∗(r) =
∫
∂Br(0)

∂

∂r
δ∗

2(v∗, v∗(0))dΣ0

=
∫
∂Br(0)

∂

∂r
d∗

2(u∗, u∗(0))dΣ0

= 2Eu∗(r).

By the distance non-increasing property of logP0
, we have that

δ∗(v∗(x), v∗(ξ)) ≤ d∗(u∗(x), u∗(ξ)), ∀x, ξ ∈ B1(0)

which in turn implies that |v∗∗(Z)|2 ≤ |u∗∗(Z)|2 for any Z ∈ Γ(B1(0)). Com-
bined with the equality Ev∗(r) = Eu∗(r) and formula (1.10v) of [KS1], we
conclude that the directional energy density functions of v∗ and u∗ agree.
The assertion now follows from the definition of the pullback metric. q.e.d.

Note that Theorem 15 does not necessarily imply that the pullback pseudo-
distance functions of the maps u∗, v∗ agree. In general, the pullback pseudo-
distance function of two maps may not agree even if their pullback metrics
agree. To illustrate this, we consider the following example.

Example 16 A 4-pod is a tree with one vertex and 4 edges. Let K be a
4-pod embedded (not isometrically) as the x- and y- axis in the Euclidean
plane R2 and u : B1(0) ⊂ R2 → K ⊂ R2 be the projection map associated to
the vertical foliation of the holomorphic quadratic differential z2|dz|2. Define
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a “folding” f : K → R by setting f(x, 0) = x if x ≥ 0, f(0, y) = y if y ≥ 0,
f(x, 0) = −x if x < 0 and f(0, y) = −y if y < 0. The maps u and v = f ◦ u
have the same pullback metric but not the same pullback pseudodistance.

The following lemma gives a criterion when a tangent map and an Alexan-
drov tangent map have the same pullback pseudodistance.

Proposition 17 Let u : B2(0)→ Y be a harmonic map into an NPC space
(Y, d) and σi → 0 such that uσi converges in the pullback sense to u∗ and
logP0

◦uσi converges uniformly to v∗ on compact sets. If logP0
: Y → TP0Y

has an inverse map expP0
: TP0Y → Y such that its Lipschitz constant on

the restriction to Br(P0) ⊂ TP0Y is bounded by 1 + o(1) where o(1) → 0 as
r → 0, then the pullback pseudo-distance under u∗ is equal to that of the v∗.

Proof. The assumption implies

δ∗(logP0
◦uσi(x), logP0

◦uσ(x′)) ≤ d∗(uσi(x), uσi(x
′))

≤ (1 + o(1))δ∗(logP0
◦uσi(x), logP0

◦uσ(x′))

for x, x′ ∈ B1(0) where o(1) → 0 as i → ∞. Taking the limit as i → ∞, we
obtain

δ∗(v∗(x), v∗(x
′)) = d∗(u∗(x), u∗(x

′)).

q.e.d.

Example 18 For a DM-complex (Y,G) (Differentiable Manifold-complex as
defined in [DM1], i.e. a locally finite complex with a smooth metric G|M
defined on each embedded differentiable manifold M (called a DM)), let
P0 ∈ Y and MP0 denote the set of DM’s M containing P0. If C denotes the
tangent cone of Y at the point P0 as defined in [Fe] 3.1.21, then clearly C is
an unbounded cell complex and TP0Y is isometric to (C,G(P0)) where G(P0)
is the metric defined by the value of G at P0. We can define the exponential
map

expYP0
: TP0Y →

⋃
M∈MP0

M ⊂ Y

by piecing together the exponential maps defined on each M ∈ MP0 . This
is equivalent to the exponential map defined from Alexandrov tangent cone

16



point of view defined above, i.e. given a unit speed geodesic γ and t ∈ [0,∞),
expYP0

(γ, t) = γ(t). By the smoothness of DM’s the Lipschitz constant on
the restriction to Br(P0) ⊂ TP0Y is bounded by 1 + O(r). It follows by
Proposition 17 that for a DM-complex Alexandrov tangent maps are the
same as tangent maps.

5 The uniqueness condition

We will now assume that the tangent cone (TP0Y, δ) is locally compact. This
includes some cases when Y is not locally compact; for example, the case of
the Weil-Petersson completion of Teichmüller space. Consequently, given a
harmonic map u : (B2(0), g) → (Y, d) with u(0) = P0, we can apply Arzela-
Ascoli to assert the existence of a subsequence of logP0

◦uσi that converges
locally uniformly to a map v∗ : B1(0) → (TP0Y, δ). In other words, we can
assume that the target space for any Alexandrov tangent map is the tangent
cone. We continue to denote vσ := logP0

◦uσ and define

Cσ(r) :=
1

rn−1+2α

(∫
∂Br(0)

∂

∂r
δ2(vσ, v∗) dΣ0 −

2α

r

∫
∂Br(0)

δ2(vσ, v∗) dΣ0

)
(15)

and

Aσ(r) :=
∫
∂B1(0)

δ2(vσ, v∗)dΣ0 −
1

rn−1+2α

∫
∂Br(0)

δ2(vσ, v∗)dΣ0. (16)

Lemma 19 With the notation as above

Aσ(r) =
∫ 1

r
Cσ(%)d%.

Proof. We compute

d

dr

(
1

rn−1+2α

∫
∂Br(0)

δ2(vσ, v∗) dΣ0

)

=
1

rn−1+2α

∫
∂Br(0)

∂

∂r
δ2(vσ, v∗) dΣ0 −

2α

rn+2α

∫
∂Br(0)

δ2(vσ, v∗) dΣ0

= Cσ(r).
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Integrating the above differential equality, we obtain

Aσ(r) =
∫
∂B1(0)

δ2(vσ, v∗)dΣ0 −
1

rn−1+2α

∫
∂Br(0)

δ2(vσ, v∗)dΣ0

=
∫ 1

r
Cσ(%)d%.

q.e.d.

Proposition 20 Let u : B2(0)→ Y be a harmonic map into an NPC space
(Y, d) with u(0) = P0 and TP0Y locally compact. If

lim inf
σ→0

Aσ(r) ≥ 0 for all 0 < r ≤ 1, (17)

then we have the following statements:

(i) The Alexandrov tangent map of u at 0 is unique.

(ii) If logP0
: Y → TP0Y has an inverse map expP0

: TP0Y → Y whose
Lipschitz constant restricted to Br(P0) ⊂ TP0Y is bounded by 1 + o(1) where
o(1)→ 0 as r → 0, then the pullback distant function of any tangent map of
u at 0 is unqiue. In other words, if u∗ : Rn → (Y∗, d∗) and ū∗ : Rn → (Ȳ∗, d̄∗)
are tangent maps of u at 0, then

d∗(u∗(·), u∗(·)) = d̄∗(ū∗(·), ū∗(·)).

Proof. Suppose there exist sequences σi → 0 and sj → 0 such that
logP0

◦uσi and logP0
◦usj converge locally uniformly in the pullback sense to

Alexandrov tangent maps v∗ : Rn → (TP0Y, δ) and v̄∗ : Rn → (TP0Y, δ)
respectively. For any sj, we then have

∫
∂B1(0)

δ2(

√√√√ Iu(sj)/s
n−1+2α
j

Iu(σi)/σ
n−1+2α
i

logP0
◦usj(x), v∗(x))dΣ0(x)

=
(
sj
σi

)−2α ∫
∂B1(0)

δ2(
µ−1(σi)

µ−1(sj)
logP0

◦usj(x),
(
sj
σi

)α
v∗(x))dΣ0(x)

=
(
sj
σi

)−2α ∫
∂B1(0)

δ2(µ−1(σi) logP0
◦u(sjx),

(
sj
σi

)α
v∗(x))dΣ0(x)

=
(
sj
σi

)−2α ∫
∂B1(0)

δ2(logP0
◦uσi(

sj
σi
x), v∗(

sj
σi
x))dΣ0(x). (18)
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For a fixed σi > 0, we let rj = sj
σi

in the right hand side of (18) to obtain

∫
∂B1(0)

δ2(

√√√√ Iu(sj)/s
n−1+2α
j

Iu(σi)/σ
n−1+2α
i

logP0
◦usj , v∗)dΣ0

= r−2α
j

∫
∂B1(0)

δ2(logP0
◦uσi(rjx), v∗(rjx))dΣ0

=
1

rn−1+2α
j

∫
∂Brj (0)

δ2(logP0
◦uσi , v∗)dΣ0

=
∫
∂B1(0)

δ2(log ◦uσi , v∗)dΣ0 −Aσi(rj). (19)

We now claim that

I∗ = lim
r→0
I(r) 6= 0. (20)

Indeed, assume that I∗ = 0. Then for a fixed σi,√√√√ Iu(sj)/s
n−1+2α
j

Iu(σi)/σ
n−1+2α
i

logP0
◦usj

converges to the vertex P0 of the Alexandrov tangent cone. For δ > 0, we
can take sj sufficiently small in (19) to obtain∫

∂B1(0)
δ2(P0, v∗)dΣ0 +Aσi(rj) <

∫
∂B1(0)

δ2(log ◦uσi , v∗)dΣ0 + δ.

Then take σi → 0 and use (17) to obtain∫
∂B1(0)

δ2(P0, v∗)dΣ0 ≤ δ.

Since δ > 0 can be chosen arbitrarily small, this contradicts the fact that v∗
is non-constant and completes the proof of (20). We can now let σi → 0,
sj → 0 in (19) and apply (20) to conclude∫

∂B1(0)
δ2(v̄∗, v∗)dΣ0 = 0

which immediately implies assertion (i) of the lemma. Assertion (ii) follows
immediately from Proposition 17 and (i). q.e.d.
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Remark. It is an important question to ask for what NPC spaces Y condi-
tion (17) holds. In the example, below we will prove that (17) holds when Y
is a smooth manifold. It thus follows from a deep regularity result of Gromov-
Schoen that (17) also holds for Euclidean buildings provided Ordu(0) = 1
(cf. [GS] Theorem 5.4). Under the same assumption on the order, it follows
that (17) holds also for DM-complexes (cf. [DM1]).

Example 21 Let u : (B2(0), g0)→ (Y, h) be a harmonic map into a smooth
NPC Riemannian manifold with u(0) = P0 and v∗ : (B1(0), g0)→ TP0Y ≈ Rn

be its tangent map at 0. Let y be the normal coordinates centered at P0 and
let hσ(y) := h(µ(σ)y). The map vσ is harmonic with respect to the metric
hσ on the target. Thus, 4vσ = O(µ(σ)) since the Christoffel symbols of hσ
satisfy Γijk(vσ) = O(µ(σ)), and we obtain

4|vσ − v∗|2 = 2|∇(vσ − v∗)|2 + 2(vσ − v∗) · 4(vσ − v∗)
= 2|∇(vσ − v∗)|2 + 2(vσ − v∗) · 4vσ
≥ 2|∇(vσ − v∗)|2 − 2cµ(σ)|vσ − v∗|
= 2|∇v∗|2 + 2|∇vσ|2 − 4∇v∗ · ∇vσ − 2cµ(σ)|vσ − v∗|.

Furthermore,

|vσ − v∗|2 = |vσ|2 + |v∗|2 − 2vσ · v∗.

The homogeneity of v∗ and Lemma 12 imply

ρ
∫
Bρ(0)

|∇v∗|2dµ0 − α
∫
∂Bρ(0)

|v∗|2dΣ0 = 0

and
∂v∗
∂r

=
α

r
v∗.

The last equality along with the Stoke’s theorem implies

−
∫
Bρ(0)

∇v∗ · ∇vσdµ0 =
∫
Bρ(0)

div(vσ∇v∗)dµ0

=
∫
∂Bρ(0)

vσ
∂v∗
∂r

dΣ0

=
α

ρ

∫
∂Bρ(0)

vσ · v∗ dΣ0.
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Therefore,

Cσ(ρ)

=
1

ρn−1+2α

(∫
Bρ(0)

∂

∂r
δ2(vσ, v∗) dµ0 −

2α

ρ

∫
∂Bρ(0)

δ2(vσ, v∗) dΣ0

)

=
1

ρn−1+2α

(∫
Bρ(0)

4δ2(vσ, v∗) dµ0 −
2α

ρ

∫
∂Bρ(0)

δ2(vσ, v∗) dΣ0

)

≥ 2

ρn−1+2α

(∫
Bρ(0)

|∇vσ|2 − 2cµ(σ)|vσ − v∗|dµ0 −
α

ρ

∫
∂Bρ(0)

|vσ|2dΣ0

)

=
2

ρ

Ivσ(ρ)

ρn−1+2α

(
ρEvσ(ρ)

Ivσ(ρ)
− α

)
− 2cµ(σ)

ρn−1+2α

∫
Bρ(0)

|vσ − v∗|dµ0

≥ 2

ρ
Ivσ(1)

(
Evσ(1)

Ivσ(1)
− α

)
− Cµ(σ)

ρ−1+2α

≥ −Cµ(σ)

ρ−1+2α

where we have used Theorem 3 for the last inequality. By (8) and Lemma 19,
we obtain

lim inf
σ→0

Aσ(r) ≥ 0 for all 0 < r ≤ 1.

Example 22 (Caffarelli-Lin [L]) In this example, we consider a har-
monic map u : (B2(0), g0) → T into an R-tree. Since we are studying
local properties, it suffices by [Su] to assume that T is a n-pod with vertex
u(0) = P0. Thus, the notion of tangent maps and Alexandrov tangent maps
agree. Furthermore, we can identify the tangent cone at P0 with T , hence
we can assume that u = v and that the target space for the tangent map is
T . We will show that Condition (17) is equivalent to uniqueness of tangent
maps. In view of Proposition 20, it suffices to show that (17) is a necessary
condition for uniqueness. Indeed, let φ = u∗ : B1(0) → T be the unique
tangent map. For a flat F0 (i.e. R isometrically embedded in T ), let U be
a connected component of u−1

σ (F0) ∩ φ−1(F0). By identifying F0 with R, we
can compute in U

4d2(uσ, φ) = 4|uσ − φ|2 = 2|∇(uσ − φ)|2 + 2(uσ − φ)4(uσ − φ)

= 2|∇uσ|2 + 2|∇φ|2 − 4∇uσ · ∇φ
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and
d2(uσ, φ) = |uσ − φ|2 = |uσ|2 + |φ|2 − 2uσ · φ.

Furthermore,

−4
∫
Bρ(0)∩U

∇uσ · ∇φdµ0 = −4
∫
∂Bρ(0)∩U

uσ ·
∂φ

dρ
dΣ0 − 4

∫
Bρ(0)∩∂U

uσ ·
∂φ

∂νU
dΣ0

= −4α

ρ

∫
∂Bρ(0)∩U

uσ · φdΣ0 − 4
∫
Bρ(0)∩∂U

uσ ·
∂φ

∂νU
dΣ0

where νU is the outward pointing normal along ∂U . Thus,∫
Bρ(0)∩U

4d2(uσ, φ)dµ0 −
2α

ρ

∫
∂Bρ(0)∩U

d2(uσ, φ)dΣ0

= 2
∫
Bρ(0)∩U

|∇uσ|2dµ0 −
2α

ρ

∫
∂Bρ(0)∩U

|uσ|2dΣ0

+2
∫
Bρ(0)∩U

|∇φ|2dµ0 −
2α

ρ

∫
∂Bρ(0)∩U

|φ|2dΣ0

−4
∫
Bρ(0)∩∂U

uσ ·
∂φ

∂νU
dΣ0.

By applying the divergence theorem on U and using the homogeneity of φ
we obtain∫

∂Bρ(0)∩U

∂

∂r
d2(uσ, φ)dΣ0 −

2α

ρ

∫
∂Bρ(0)∩U

d2(uσ, φ)dΣ0

= 2
∫
Bρ(0)∩U

|∇uσ|2dµ0 −
2α

ρ

∫
∂Bρ(0)∩U

|uσ|2dΣ0

−4
∫
Bρ(0)∩∂U

uσ ·
∂φ

∂νU
dΣ0 −

∫
Bρ(0)∩∂U

∂

∂νU
d2(uσ, φ)dΣ0.

Summing over such U and denoting the union of the boundaries of all such
U by Sσ we obtain for a.e. ρ ∈ (r, 1)∫
∂Bρ(0)

∂

∂r
d2(uσ, φ)dΣ0 −

2α

ρ

∫
∂Bρ(0)

d2(uσ, φ)dΣ0

≥ 2
∫
Bρ(0)

|∇uσ|2dµ0 −
2α

ρ

∫
∂Bρ(0)

|uσ|2dΣ0

−8
∫
Bρ(0)∩Sσ

d(uσ, P0) |∇φ| dΣ0 − 4
∫
Bρ(0)∩Sσ

d(uσ, φ)(|∇uσ|+ |∇φ|)dΣ0.
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Note that

sup
Bρ(0)∩Sσ

d(u, P0)|∇φ| ≤ sup
Bρ(0)

d(uσ, φ)(|∇u|+ |∇φ|)

since uσ(x) = P0 or φ(x) = P0 for x ∈ Sσ. Hence∫
∂Bρ(0)

∂

∂r
d2(uσ, φ)dΣ0 −

2α

ρ

∫
∂Bρ(0)

d2(uσ, φ)dΣ0

≥ 2Euσ(ρ)− 2α

ρ
Iuσ(ρ)

−12Hn−1(Bρ(0) ∩ Sσ) sup
Bρ(0)

d(uσ, φ)(|∇uσ|+ |∇φ|)

≥ 2Iuσ(ρ)

ρ

(
ρEuσ(ρ)

Iuσ(ρ)
− α

)
−CHn−1(Bρ(0) ∩ Sσ) sup

Bρ(0)

d(uσ, φ)

≥ −CHn−1(Bρ(0) ∩ Sσ) sup
Bρ(0)

d(uσ, φ) (by Theorem 3).

Since Hn−1(S) <∞ where S is defined analogously to in Sσ with u replaced
by uσ, we have

lim sup
σ→0

Hn−1(Sσ ∩Bρ(0))

ρn−1
= lim sup

σ→0

Hn−1(S ∩Bσρ(0))

(σρ)n−1
<∞.

Thus, for a.e. ρ ∈ (r, 1), we obtain

Cσ(ρ) =
−1

ρn−1+2α

(∫
Bρ(0)

∂

∂r
d2(u, φ)dµ− 2α

ρ

∫
∂Bρ(0)

d2(u, φ)dµ

)

≥ − C

ρ2α
sup
B1(0)

d(uσ, φ).

By the assumption on the uniqueness of the tangent map and Lemma 19, we
obtain

lim inf
σ→0

Aσ(r) ≥ 0 for all 0 < r ≤ 1

as desired.

We end by making the following Conjecture, which we have shown in the
course of the proof of Proposition 20 to be implied by (17).
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Conjecture 23 If u : (B2(0), g)→ Y is a harmonic map into an NPC space
(Y, d) with Ordu(0) = α, then

lim
r→0
Iu(r) = lim

r→0

Iu(r)

rn−1+2α
6= 0. (21)
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