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Abstract

We study harmonic maps from an admissible flat simplicial
complex to a non-positively curved Riemannian manifold. Our
main regularity theorem is that these maps are C1,β at the inter-
faces of the top-dimensional simplices in addition to satisfying a
balancing condition. If we assume that the domain is a 2-complex,
then these maps are C∞. As an application, we show that the
regularity, the balancing condition and a Bochner formula lead to
rigidity and vanishing theorems for harmonic maps. Furthermore,
we give an explicit relationship between our techniques and those
obtained via combinatorial methods.

1 Introduction

Harmonic maps are critical points of the energy functional. The energy
of a map ϕ : X → N between two spaces X and N is defined to be
the integral over the domain space of the energy density function which
measures the total stretch of the map at each point of X. In the case
when X and N are smooth Riemannian manifolds, the energy density
function is the squared norm of the differential of the map.

One of the highlights of the harmonic map theory has been in its
successful applications to study representations of discrete groups. Sup-
pose Γ is a fundamental group of a manifold X acting on a space N by
ρ : Γ → Isom(N). The idea is to associate the action with an equivariant
harmonic map f̃ : X̃ → N where X̃ is the universal cover of X. Once
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the existence is established, one can use the curvature assumptions on
the domain and the target spaces to make strong statements about f̃
and hence about the representation ρ.

To illustrate this, let X be a compact Riemannian manifold of non-
negative Ricci curvature and with fundamental group Γ andN be a com-
plete Riemannian manifold of non-positive sectional curvature. Con-
sider a representation ρ : Γ → Isom(N) and let f̃ : X̃ → N be a
Γ−equivariant harmonic map. Such a map f̃ exists as long as the ac-
tion ρ does not fix an equivalence class of rays in N . The Eells-Sampson
Bochner formula implies

1
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4|∇f̃ |2 = |∇df̃ |2+ < df̃(RicX(ek)), df̃(ek) >f̃−1TN

− < RN (df̃(ek), df̃(el))df̃(el), df̃(ek) >f̃−1TN (1)

where RicX and RN are the Ricci and sectional curvatures of X and N
respectively. The right hand side of the equation above is non-negative.
Furthermore, Stoke’s theorem says∫

X
4|∇f̃ |2 = 0 (2)

from which we conclude that each term on the right hand side of equa-
tion (1) is also zero. In particular, ∇df̃ = 0, i.e. the map f̃ is totally
geodesic. The representation ρ : Γ → Isom(N) is then said to be rigid.
Notice that the two important ingredients that were used here are the
Bochner formula and Stoke’s Theorem.

Further rigidity formulas were discovered by Siu, Corlette, and oth-
ers; see for further examples [Si], [C], and [MSiY]. In the seminal work
of Gromov-Schoen [GS] and subsequently Korevaar-Schoen [KS1] [KS2],
the situation in which N is only a complete metric space rather than
a smooth manifold was considered. This enabled them to prove super-
rigidity of p-adic representations along the lines of [C].

In a different direction, one can ask if it is possible to allow the
domain X to be singular, for example a simplicial complex. This idea
goes back to the work of Garland [G] and was subsequenctly elaborated
by several groups of authors (cf. [BS], [Gr], [IN], [W1], [W2] and [Z]) in
connection with Kazhdan property (T). For the nonlinear versions, the
key idea is to define a combinatorial version of harmonic maps and relate
them via a Bochner formula to a combinatorial analogue of curvature
on X. This is in essence a refinement of Garland’s notion of p-adic
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curvature. (For a definition of combinatorial harmonic maps, see [J]
and [W1],[W2].)

The actual notion of a harmonic map on a polyhedral domain, rather
than its combinatorial counterpart, was first introduced in [Ch] and was
further developed in [EF], [DM] and [M]. In the special case when X is
a flat n-dimensional simplicial complex, it was shown in [DM] and [M]
that the harmonic map is Lipschitz across the edges. In the case of a
2-dimensional flat simplicial complex, the harmonic map has particular
growth rate at the vertices depending on the order of the map. (See
Section 2, Theorems 1 and 2 for precise statements of the results.)

The main goal of this paper is to further improve the regularity
of harmonic maps defined on polyhedral domains. In particular, we
show that the harmonic map must be C1,β across the strict (n − 1)-
skeleton and satisfy a natural balancing condition. (See Theorem 4 and
Corollary 5). Furthermore, if n = 2, then we show that the harmonic
map must be C∞ at the interfaces of the 1-skeleton.

The second goal of the paper is to generalize the Bochner technique
described earlier in the introduction to the case when X is a simplicial
complex. Here, we restrict to the case dimX = 2 and introduce weights
(see the beginning of Section 2 for a precise definition.) This imposes no
restriction as far as applications to group theory is concerned. We show
that under the assumption that |∇f̃ | is bounded, Stoke’s formula (2)
still holds. By combining this with a simplex-wise Bochner formula (1),
we obtain that f̃ is totally geodesic (see Theorem 8).

It therefore remains to establish the assumption on X for which har-
monic maps from X are forced to satisfy the condition |∇f̃ | ≤ C. It is
not hard to see that the latter condition is equivalent to the condition
that the order of f is ≥ 1 for all points p inX, which in turn is equivalent
to the condition that the first nonzero eigenvalue of the Laplacian of the
link of p, Lk(p), is ≥ 1. Of course the Lk(p) is a graph and we can easily
relate the spectrum of the Laplacian on Lk(p) to the spectrum of the
discrete Laplacian (cf. Proposition 13 and Corollary 14). In particular,
we show that the condition that the first nonzero eigenvalue being > 1
is equivalent to the first nonzero eigenvalue of the discrete Laplacian
being > 1

2 which is precisely the condition appearing in the combinato-
rial approach (cf. [BS], [IN], [W1], [W2], [Z]). This allows us to deduce
the main theorem in [W1], that if Σn is compact simplicial n-complex
with admissible weights whose first nonzero eigenvalue of each link of
a vertex is > 1

2 then any isometric action of Γ on a complete simply
connected manifold of nonpositive sectional curvature has a fixed point,
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as a direct consequence of the Eells-Sampson Bochner formula for poly-
hedral domains. Furthermore, our approach enables us to prove rigidity
in the borderline case when the eigenvalue of the discrete laplacian is
= 1

2 as conjectured by M.-T. Wang. There are important examples of
simplicial complexes associated to p-adic groups where the eigenvalues
are indeed equal to 1/2 [W2].

We now turn to the organization of the paper. Throughout the rest
of the paper, X will be a compact, admissible and flat simplicial complex
and (N, g) a complete Riemannian manifold. Section 2 is a review of the
results in [DM] about the existence and regularity of harmonic maps.
The only difference in this paper is that our maps depend on weights
w(F ) associated to the n-simplices F of X. This slight modification,
which from the point of view of the analysis amounts to taking certain
weighted Sobolev spaces associated to the complex, is necessary in order
to cover all p-adic buildings. We therefore talk about the w-energy of a
map or w-harmonic maps, but this imposes no real analytical difficulty.
Section 3 contains our main regularity result and the balancing condi-
tion. More precisely, we show:

Theorem (cf. Theorem 4 and Corollary 6) Let f : X → (Nm, g)
be a w-harmonic map. Then for any n-dimensional simplex F , the re-
striction of f to F̄ −X(n−2) is a C1,β-map. If n = 2, then f is C∞.

Theorem (cf. Corollary 5) Let f : X → (Nm, g) be a w-harmonic
map. For any point p ∈ X(n−1)−X(n−2), let F1, ..., FJ be the n-simplices
containing p and let E = ∩Jj=1Fj. Choose coordinates (x1, ..., xn) on X
near p so that E corresponds to the equation xn = 0 and coordinates
(y1, .., ym) on N near f(p). Set fαj = yα ◦ f |Fj . Then

J∑
j=1

w(Fj)
∂fαj
∂xn

(x1, ..., xn−1, 0) = 0

where w(Fj) are the weights associated to Fj.

We also prove:

Theorem (cf. Theorem 8) Let f : X → (N, g) be a w-harmonic
map where dim X = 2, N has nonpositive sectional curvature and |∇f |
is a bounded function. Then f is totally geodesic on each simplex of X.
Furthermore, if N has negative sectional curvature, then f maps each
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2-simplex into a geodesic.

Finally in section 4, we relate the question of regularity of the har-
monic map with spectral theory of graphs. In particular, we show:

Theorem (cf. Theorem 12) Suppose that X is a 2-complex such that
every nonzero eigenvalue of the link of every vertex in X satisfies λ ≥ 1.
If f : X → (N, g) is a w-harmonic map into a complete Riemannian
manifold of nonpositive sectional curvature, then f is totally geodesic
on each 2-simplex of X. In particular, this implies that if the sectional
curvature of N is negative, then f maps each simplex into a geodesic. If
the eigenvalues satisfy the stronger condition λ > 1 then f is a constant
map.

We also establish the equivalence of the eigenvalue condition in The-
orem 12 with the one appearing in the combinatorial approach. More
precisely, we show:

Theorem (cf. Corollary 14) The condition λ ≥ (>)1 in the previous
theorem is equivalent to the condition that the first nonzero eigenvalue
of the discrete Laplacian being ≥ (>)1

2 .

By taking (Σn, c) an arbitrary compact n-dimensional weighted sim-
plical complex, by reducing the weights c to its 2-skeleton X = Σ(2) and
by applying the previous two theorems on X, we immediately obtain
the main theorem in [W1].

Corollary (cf. Corollary 15). Let (Σn, c) be a compact simplicial com-
plex with admissible weights. Assume that the first nonzero eigenvalue
of the link of every vertex is > 1

2 . Then π1(Σ) = Γ has property F ; i.e.
any isometric action of Γ on a complete, simply connected manifold N
of nonpositive sectional curvature has a fixed point on N̄ = N ∪ ∂N .

Acknowledgement. The first author would like to thank Professor M.-T.
Wang for communicating his results to him. The second author would
like to thank Professors H. Izeki and S. Nayatani for a useful discussion
at the Conference on Differential Geometry in Tokyo and Nagoya in the
winter of 2004.
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2 Definitions and known results

A simplicial complex of dimension n is referred to as a n-complex. A
connected locally finite n-complex is called admissible (cf. [Ch] and
[EF]) if the following two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained
in a n-simplex, and
(ii) X is locally (n − 1)-chainable, i.e., for any (n − 2)-simplex v, ev-
ery two n-simplices A and B containing v can be joined by a sequence
A = F0, e0, F1, e1, ..., Fk−1, ek−1, Fk = B where Fi is a n-simplex con-
taning v and ei is a (n− 1)-simplex contained in Fi and Fi+1.

The boundary ∂X of X is the union of all simplices of dimension
n − 1 which is contained in only one n dimensional simplex. We call
a n-complex flat if each k-simplex F is isometric to the convex hull
of k + 1 equidistant points of distance 1 in Rk and every l-simplex L
incident to a k-simplexK (l < k) can be seen as a totally geodesic subset
of K̄. In the sequel, all complexes are admissible, flat, compact and
without boundary. An isometric action of a group Γ is a homomorphism
ρ : Γ → Isom(N). Let Γ = π1(X). A map ϕ̃ : X̃ → N is said to be
equivariant if

ρ(γ)ϕ̃(p) = ϕ̃(γp)

for γ ∈ Γ and p ∈ X. If Γ acts freely and properly discontinuously on
N , then the map ϕ̃ is a lift of the map ϕ : X → N/Γ. By identifying X
with a fundamental domain of X̃, we can think of ϕ̃ also being defined
on X.

In order to include certain important examples appearing in p-adic
geometry (e.g. p−adic buildings), we will assume that for each n-
dimensional simplex F in X, we have an associated weight w(F ) > 0
and we define the w-measure dµw by setting

dµw = w(F )dx

where dx is the standard Lebesgue measure on F . We define the w-
energy Ew(ϕ̃) of a map ϕ̃ : X̃ → (N, g) as

Ew(ϕ̃) =
∫
X
|∇ϕ̃|2dµw =

∑
F

w(F )
∫
F
|∇ϕ̃|2dx
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where
∑
F

indicates the sum over all n-dimensional simplices F of X

and |∇ϕ̃|2 is defined as usual; i.e.

|∇ϕ̃|2 =
n∑
k=1

g(
∂ϕ̃

∂xk
,
∂ϕ̃

∂xk
).

Of course, if w(F ) = 1 for all F , then we recover the usual notion of
harmonicity defined in [DM]. For the sake of notational simplicity, we
will fix weights w(F ) on F and we will denote dµ = dµw, E = Ew, etc.
A map f̃ : X̃ → N is said to be w-harmonic if E(f̃) ≤ E(ϕ̃) for all W 1,2

equivariant maps ϕ̃ : X̃ → N (cf. [EF]).
The following existence and regularity results for w-harmonic maps

from a 2-complex into a non-positively curved Riemannian manifolds
follows by minor modification of the arguments presented in [DM] and
[M]. (In [DM] and [M], we only considered weight function w so that
w(F ) = 1 for all 2-simplices F of X.)

Theorem 1 Let X be a 2-complex with Γ = π1(X), N be a complete
Riemannian manifold of non-positive curvature and ρ : Γ → Isom(N) be
an isometric action of Γ. Assume that ρ does not fix an equivalent class
of rays. Then there exists an equivariant w-harmonic map f̃ : X̃ → N .

Theorem 2 Let X be a 2-complex, N a complete Riemannian manifold
of non-positive curvature and f : X → N a w-harmonic map. Then f is
Lipschitz continuous away from the 0-simplices of X with the Lipschitz
bound dependent only on the total w-energy of f and the distance to the
0-simplices. Let p be a 0-simplex and % be the order of f at p. (The
definition of order is given in Section 4.) Then there exists σ > 0 so
that

|∇f |2(q) ≤ Cr2%−2

for all q ∈ Bσ(p) where C depends on E(f) and r = dX(p, q). More
generally, if X is a n-complex and N and f are as above, then f is
Lipschitz continuous away from the (n− 2)-simplices.

3 Regularity results

Let X be a n-complex and N a complete Riemannian manifold as above.
For 0 ≤ k ≤ n, let X(k) denote the k-skeleton of X. Given p ∈ X(n−1)−
X(n−2), choose an (n − 1)-simplex E containing p and let P ∈ U 7→
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(y1, ..., ym) ∈ Rm be a local coordinate system of a neighborhood U of
f(p). Assume g is given by (gαβ) in terms of this coordinate system.
Choose a neighborhood V ⊂ X of p sufficiently small so that V does
not intersect any (n − 2)-simplex and f(V ) is compactly contained in
this coordinate patch. If F1, ..., FJ are the n-simplices of X intersecting
V and Eε is a ε-neighborhood of E, we will use the coordinate system
q ∈ V ∩ (Fj ∪E) 7→ (x1, ..., xn) ∈ Rn for j = 1, ..., J so that a point in E
is given by (x1, ..., xn−1, 0) and a point in V ∩Eε is given by (x1, ..., xn)
with 0 ≤ xn < ε. Let Eε be the ε-neighborhood of E. Furthermore, for
a map f : V → N ,

f(x1, ..., xn) = (f1(x1, ..., xn), ..., fm(x1, ..., xn))

in V and let fαj = fα|Fj for α = 1, ...,m and j = 1, ..., J .

Theorem 3 Let F1, ..., FJ , E,Eε, (x1, ..., xn), and (f1, ..., fm) as above.
If f : V → N is a harmonic map, then for any Lipschitz function
η : V → R with compact support and any α = 1, ...,m,

lim
ε→0

J∑
j=1

w(Fj)
∫
Fj∩∂Eε

η(x1, ..., xn−1, ε)
∂fαj
∂xn

(x1, ..., xn−1, ε)dx1···dxn−1 = 0.

Proof. Let ϕ = (ϕ1, ..., ϕm) : V ⊂ X → Rm be a Lipschitz
continuous map with compact support. For sufficiently small t, define
ft : V ⊂ X → U by setting

ft = f + tϕ = (f1 + tϕ1, ..., fm + tϕm).

The w-energy of ft in V is

E(ft;V )

=
n∑
k=1

m∑
α,β=1

∫
V
gαβ(f(x) + tϕ(x))

(
∂fα

∂xk
+ t

∂ϕα

∂xk

)(
∂fβ

∂xk
+ t

∂ϕβ

∂xk

)
dµ

and since f = f0 is w-energy minimizing,

0 =
d

dt
E(ft;V )|t=0

= 2
n∑
k=1

m∑
α,β=1

∫
V
gαβ(f(x))

∂fα

∂xk
∂ϕβ

∂xk
dµ
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+
∫
V

n∑
k=1

m∑
α,β,γ=1

gαβ,γ(f(x))
∂fα

∂xk
∂fβ

∂xk
ϕγdµ

= 2
n∑
k=1

m∑
α,β=1

∫
V

d

dxk

(
gαβ(f(x))

∂fα

∂xk
ϕβ
)
dµ

−2
n∑
k=1

m∑
α,β=1

∫
V
gαβ(f(x))

∂2fα

∂(xk)2
ϕβdµ

−2
n∑
k=1

m∑
α,β,γ=1

∫
V
gαβ,γ(f(x))

∂fα

∂xk
∂fγ

∂xk
ϕβdµ

+
n∑
k=1

m∑
α,β,γ=1

∫
V
gαβ,γ(f(x))

∂fα

∂xk
∂fβ

∂xk
ϕγdµ

= 2
n∑
k=1

m∑
α,β=1

∫
V

d

dxk

(
gαβ(f(x))

∂fα

∂xk
ϕβ
)
dµ

−2
n∑
k=1

m∑
α,β=1

∫
V
gαβ(f(x))

∂2fα

∂(xk)2
ϕβdµ

−
n∑
k=1

m∑
α,β,γ=1

∫
V
gαβ,γ(f(x))

∂fα

∂xk
∂fγ

∂xk
ϕβdµ

+
n∑
k=1

m∑
α,β=1

∫
V
gγβ,α(f(x))

∂fα

∂xk
∂fγ

∂xk
ϕβdµ

+
n∑
k=1

m∑
α,β,γ=1

∫
V
gαβ,γ(f(x))

∂fα

∂xk
∂fβ

∂xk
ϕγdµ

= 2
n∑
k=1

m∑
α,β=1

∫
V

d

dxk

(
gαβ(f(x))

∂fα

∂xk
ϕβ
)
dµ

−2
n∑
k=1

m∑
α,β=1

∫
V
gαβ(f(x))

∂2fα

∂(xk)2
ϕβdµ

−
n∑
k=1

m∑
α,β,γ=1

∫
V

(gαβ,γ + gγβ,α − gαγ,β)
∂fα

∂xk
∂fγ

∂xk
ϕβdµ.

Let ηα =
∑m
β=1 gαβϕ

β. Then ϕβ =
∑m
α=1 g

αβηα and we see that the last
two terms above equal

−
∫
V

m∑
α=1

24fαηα +
n∑
k=1

m∑
α,β,γ,δ=1

gδβ(gαβ,γ + gγβ,α − gαγ,β)
∂fα

∂xk
∂fγ

∂xk
ηδdµ
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= −2
∫
V

 m∑
α=1

4fαηα + 2
n∑
k=1

m∑
α,γ,δ=1

Γδαγ(f(x))
∂fα

∂xk
∂fγ

∂xk
ηδ

 dµ = 0.

The last equality is because f is a smooth harmonic map in the interior
of each n-simplex F and we have the pointwise equality,

4fα +
n∑
k=1

m∑
β,γ=1

Γαβγ(f(x))
∂fβ

∂xk
∂fγ

∂xk
= 0

in Fj ∩ V . Therefore, by the monotone convergence theorem and the
fact that f is Lipschitz away from the (n − 2)-skeleton by Theorem 2,
we conclude

0 =
n∑
k=1

m∑
α,β=1

∫
V

d

dxk

(
gαβ(f(x))

∂fα

∂xk
ϕβ(x)

)
dµ

= lim
ε→0

n∑
k=1

m∑
α,β=1

∫
V−Eε

d

dxk

(
gαβ(f(x))

∂fα

∂xk
ϕβ(x)

)
dµ

= lim
ε→0

J∑
j=1

w(Fj)
n∑
k=1

m∑
α,β=1

∫
Fj−Eε

d

dxk

(
gαβ(fj(x))

∂fαj
∂xk

ϕβ(x)

)
dx.

Since ϕβ has compact support in V ,

m∑
α,β=1

∫
Fj−Eε

d

∂xk

(
gαβ(fj(x))

∂fαj
∂xk

ϕβ(x)

)
dx = 0

for k = 1, ..., n− 1 and j = 1, ..., J . Hence,

0 = lim
ε→0

J∑
j=1

w(Fj)
m∑

α,β=1

∫
Fj−Eε

d

dxn

(
gαβ(fj(x))

∂fαj
∂xk

ϕβ(x)

)
dx

= lim
ε→0

J∑
j=1

w(Fj)
m∑

α,β=1

∫
Fj∩∂Eε

gαβ(fj(x1, ..., xn−1, ε))
∂fαj
∂xn

ϕβ(x1, ..., xn−1, ε)dx.

Let η : V → R be a Lipschitz continuous compactly supported function
and ϕβ = gβα0η for α0, β ∈ {1, ...,m}. Then

m∑
α,β=1

gαβ
∂fαj
∂xn

ϕβ =
m∑

α,β=1

gαβg
βα0η

∂fαj
∂xn
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=
m∑
α=1

δαα0η
∂fαj
∂xn

= η
∂fα0

j

∂xn

and therefore

lim
ε→0

J∑
j=1

w(Fj)
∫
∂Eε

η(x1, ..., xn−1, ε)
∂fα0

j

∂xn
(x1, ..., xn−1, ε)dx = 0.

q.e.d.

We now prove our main regularity result.

Theorem 4 Let f : V ⊂ X → (Nn, g) be a w-harmonic map so
that f(V ) maps into a coordinate neighborhood. For any point p ∈
V ∩ X(n−1) − X(n−2), let E be the (n − 1)-simplex containing p and
F1, ..., FJ be the n-simplices containing E in its closure. As in Theorem
3, let fαj be the restriction of the coordinate function fα to the n-simplex
Fj and (x1, ..., xn) be a coordinate system for V . Then there exists a
neighborhood Ω ⊂⊂ V of p so that fαj ∈ C1,β(Ω∩Fj), fαj ∈W 2,2(Ω∩Fj)
and

∂fα
j

∂xk ∈W 2,2(Ω ∩ Fj) for k = 1, ..., n− 1.

Proof. Assume p corresponds to (0, ..., 0), let

wj = w(Fj)/(w(F1) + ...+ w(FJ))

and Br ⊂ Rn be a ball of radius r centered at the origin. Fix α0 ∈
{1, ...,m} and j0 ∈ {1, ..., J} and, for r > 0 sufficiently small, define
ψ : Br → R by setting

ψ(x̂, xn) =

{
fα0
j0

(x̂, xn) when xn ≥ 0
−fα0

j0
(x̂,−xn) + 2

J

∑J
j=1wjf

α0
j (x̂,−xn) when xn < 0

where we simplify notation by using (x̂, xn) = (x1, ..., x(n−1), xn). By
the (Lipschitz) continuity of f , fα0

j (x̂, 0) = fα0
j0

(x̂, 0) for all j = 1, ..., J .
Therefore,

−fα0
j0

(x̂, 0) +
2
J

J∑
j=1

wjf
α0
j (x̂, 0) = −fα0

j0
(x̂, 0) +

2
J
fα0
j0

(x̂, 0)
J∑
j=1

wj

= fα0
j0

(x̂, 0).
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This implies that ψ is Lipschitz continuous in Br. Additionally, for fixed
ε > 0,

∂ψ

∂xn
(x̂,−ε) =

∂fα0
j0

∂xn
(x̂, ε)− 2

J

J∑
j=1

wj
∂fα0

j

∂xn
(x̂, ε).

Since

lim
ε→0

∫
Br∩{xn=ε}

J∑
j=1

ϕ(x̂,−ε)wj
∂fα0

j

∂xn
(x̂, ε) = 0

for any ϕ ∈ C∞c (Br) by Theorem 3, we see that

lim
ε→0

∫
Br∩{xn=−ε}

ϕ(x̂,−ε) ∂ψ
∂xn

(x̂,−ε)

= lim
ε→0

∫
Br∩{xn=−ε}

ϕ(x̂,−ε)
∂fα0

j0

∂xn
(x̂, ε)− 2

J
lim
ε→0

∫
Br∩{xn=−ε}

J∑
j=1

ϕ(x̂,−ε)wj
∂fα0

j

∂xn
(x̂, ε)

= lim
ε→0

∫
Br∩{xn=−ε}

ϕ(x̂,−ε)
∂fα0

j0

∂xn
(x̂, ε)

= lim
ε→0

∫
Br∩{xn=ε}

ϕ(x̂, ε)
∂fα0

j0

∂xn
(x̂, ε) + lim

ε→0

∫
Br∩{xn=ε}

(ϕ(x̂,−ε)− ϕ(x̂, ε))
∂fα0

j0

∂xn
(x̂, ε)

= lim
ε→0

∫
Br∩{xn=ε}

ϕ(x̂, ε)
∂ψ

∂xn
(x̂, ε) + lim

ε→0

∫
Br∩{xn=ε}

(ϕ(x̂,−ε)− ϕ(x̂, ε))
∂fα0

j0

∂xn
(x̂, ε).

The last term is equal to zero by the dominated convergence theorem

since ϕ(x̂,−ε) − ϕ(x̂, ε) converges uniformly to 0 as ε → 0 and
∂f

α0
j0

∂xn is
bounded. Thus,

lim
ε→0

∫
Br∩{xn=−ε}

ϕ
∂ψ

∂xn
= lim

ε→0

∫
Br∩{xn=ε}

ϕ
∂ψ

∂xn
. (3)

Also, since fj is a smooth harmonic map in the interior of a n-simplex,

4fαj +
n∑
l=1

m∑
β,γ=1

Γαβγ(fj(x))
∂fβj
∂xl

∂fγj
∂xl

= 0. (4)

Let

Γαj (x̂, xn) =
n∑
l=1

m∑
β,γ=1

Γαβγ(fj(x̂, x
n))

∂fβj
∂xl

(x̂, xn)
∂fγj
∂xl

(x̂, xn)
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and F : Br → R be defined by

F (x̂, xn) =

{
Γα0
j0

(x̂, xn) when xn ≥ 0
−Γα0

j0
(x̂,−xn) + 2

∑J
j=1wjΓ

α0
j (x̂,−xn) when xn < 0

The equality (4) implies that 4ψ(x̂, xn) = −F (x̂, xn) for xn > 0 and
xn < 0. Thus, integration by parts implies∫

Br∩{xn>ε}
∇ϕ · ∇ψ = −

∫
Br∩{xn>ε}

ϕ4ψ +
∫
Br∩{xn=ε}

ϕ
∂ψ

∂xn

=
∫
Br∩{xn>ε}

ϕF −
∫
Br∩{xn=ε}

ϕ
∂ψ

∂xn

and∫
Br∩{xn<−ε}

∇ϕ · ∇ψ = −
∫
Br∩{xn<−ε}

ϕ4ψ −
∫
Br∩{xn=−ε}

ϕ
∂ψ

∂xn

=
∫
Br∩{xn<−ε}

ϕF +
∫
Br∩{xn=−ε}

ϕ
∂ψ

∂xn

for any ϕ ∈ C∞c (Br). Summing the above two equalities, letting ε→ 0
and noting (3), we see that∫

Br

∇ϕ · ∇ψ =
∫
Br

ϕF.

Since F is bounded, the standard elliptic regularity theorem implies that
ψ ∈ C1,β(Br′) and ψ ∈W 2,2(Br′) for r′ < r. Since ψ(x̂, xn) = fα0

j0
(x̂, xn)

for xn ≥ 0 and α0 ∈ {1, ...,m}, j0 ∈ {1, ..., J} are arbitrary choices, this
shows fαj ∈ C1,β(Br′∩{xn ≥ 0}) and fαj ∈W 2,2(Br′∩{xn > 0}) for any

α = 1, ..., n and j = 1, ..., J . Thus, the fact that
∂2fα

j

∂xl∂xk ∈ L2(Br′∩{xn >
0}) combined with

∂fα
j

∂xl being bounded implies that

∂

∂xk

 n∑
l=1

m∑
β,γ=1

Γαβγ(f(x))
∂fβ

∂xl
∂fγ

∂xl


=

n∑
l=1

m∑
β,γ=1

Γαβγ,δ(f(x))
∂fβ

∂xl
∂fγ

∂xl
∂f δ

∂xk

+2
n∑
l=1

m∑
β,γ=1

Γαβγ(f(x))
∂2fβ

∂xl∂xk
∂fγ

∂xl

13



is L2(Br′ ∩ {xn > 0}). This implies ∂F
∂xk is L2(Br′). Now let k =

1, ..., n− 1. Then∫
Br∩{xn>ε}

∇ϕ · ∇ ∂ψ

∂xk
= −

∫
Br∩{xn>ε}

ϕ4 ∂ψ

∂xk
+
∫
Br∩{xn=ε}

ϕ
∂2ψ

∂xk∂xn

=
∫
Br∩{xn>ε}

ϕ
∂F

∂xk
+
∫
Br∩{xn=ε}

ϕ
∂2ψ

∂xk∂xn

=
∫
Br∩{xn>ε}

ϕ
∂F

∂xk
−
∫
Br∩{xn=ε}

∂ϕ

∂xk
∂ψ

∂xn

and∫
Br∩{xn<−ε}

∇ϕ · ∇ ∂ψ

∂xk
= −

∫
Br∩{xn<−ε}

ϕ4 ∂ψ

∂xk
−
∫
Br∩{xn=−ε}

ϕ
∂2ψ

∂xk∂xn

=
∫
Br∩{xn<−ε}

ϕ
∂F

∂xk
−
∫
Br∩{xn=−ε}

ϕ
∂2ψ

∂xk∂xn

=
∫
Br∩{xn<−ε}

ϕ
∂F

∂xk
+
∫
Br∩{xn=−ε}

∂ϕ

∂xk
∂ψ

∂xn
.

Adding the above two equalities, letting ε → 0 and using (3) with ϕ
replaced by ∂ϕ

∂xk , we obtain∫
Br

∇ϕ · ∇ ∂ψ

∂xk
=
∫
Br

ϕ
∂F

∂xk
.

Since ∂F
∂xk ∈ L2(Br′), we conclude ∂ψ

∂xk ∈ W 2,2(Br′′) for r′′ < r′. Thus,
∂fα

j

∂xk is W 2,2(Br′′ ∩ {xn > 0}). q.e.d.

Corollary 5 Let V, F1, ..., FJ , E, (x1, ..., xn), (f1, ..., fm), fαj be as in the
paragraph proceeding Theorem 3. If f : V → N is a harmonic map, then

J∑
j=1

w(Fj)
∂fαj
∂xn

(x1, ..., xn−1, 0) = 0

for all α = 1, ...,m and all (x1, ..., xn−1, 0) ∈ V ∩ E.

Proof. This pointwise equality follows immediately from Theo-
rem 3 and the regularity result of Theorem 4. q.e.d.

The following corollary to Theorem 4 will be important in Theorem 7
when we restrict our attention to two-dimensional domains.
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Corollary 6 Assume n = 2. Then for every 2-simplex F , the restric-
tion of fα to the closure of F is C∞ away from the 0-simplices.

Proof. We can push the argument for the proof of Theorem 4
further in the case n = 2. We let x = x1 and y = x2. Using the
Lipschitz continuity to bound the first partial derivatives of f , we see
that ∣∣∣∣∣∣ ∂

2

∂x2

 m∑
β,γ=1

Γαβγ(f(x))

(
∂fβ

∂x

∂fγ

∂x
+
∂fβ

∂y

∂fγ

∂y

)∣∣∣∣∣∣
≤ C0 + C1|D2f |+ C2|D2f |2 + C3|D3f |

where C0, C1, C2, C3 are constants, |Dif | is the sum of the absolute
values of the ith order partial derivatives of f which involves at most one
∂
∂y . By Theorem 4,

∂fα
j

∂x ∈ W 2,2(B+
r1) for some r1 > 0 where we use the

notation B+
r = Br ∩ {y ≥ 0}. Thus,

∂2fα
j

∂x2 ,
∂2fα

j

∂x∂y ∈ W
1,2(Br1) and hence

the Sobolev embedding theorem implies that
∂2fα

j

∂x2 ,
∂2fα

j

∂x∂y ∈ Lq(Br1) for

any q < ∞. Therefore, we conclude that ∂2F
∂x2 ∈ L2(Br′). Using an

analogous argument as in the proof of Theorem 4, we can show that∫
Br1

∇ϕ · ∇∂
2ψ

∂x2
=
∫
Br1

ϕ
∂2F

∂x2

for any ϕ ∈ C∞c (Br1). Thus, ∂2ψ
∂x2 ∈ W 2,2(Br2) for some r2 < r1 which

immediately implies
∂2fα

j

∂x2 ∈W 2,2(B+
r2)

Now we continue inductively. Assume
∂lfα

j

∂xl ∈ W 2,2(B+
rl

). Then
∂l+1fα

j

∂xl+1 ,
∂l+1fα

j

∂xl∂y
∈ W 1,2(B+

rl
) and

∂l+1fα
j

∂xl+1 ,
∂l+1fα

j

∂xl∂y
∈ Lq(B+

rl
) for any q =

1, 2, .... Then ∂l+1F
∂xl+1 ∈ L2(B+

rl
) since∣∣∣∣∣∣ ∂

l+1

∂xl+1

 m∑
β,γ=1

Γαβγ(f(x))

(
∂fβ

∂x

∂fγ

∂x
+
∂fβ

∂y

∂fγ

∂y

)∣∣∣∣∣∣
≤ P (|D2f |, ..., |Dl+1f |) + Cl+2|Dl+2f |

where Cl+1 is a constant, |Dif | is the sum of absolute values of the
ith order partial derivatives of f which involves at most one ∂

∂y and
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P (X2, ...Xl+1) is a polynomial involving variables X2, ..., Xl+1. Using
the weak differential equality∫

Brl

∇ϕ · ∇∂
l+1ψ

∂xl+1
=
∫
Brl

ϕ
∂l+1F

∂xl+1
, ∀ϕ ∈ C∞c (Brl)

we see that
∂l+1fα

j

∂xl+1 ∈W 2,2(B+
rl+1

) for rl+1 < rl.

We now show that fαj is C∞. By the trace theory,
∂l+1fα

j

∂xl+1 ∈W 1,2(Brl+1
∩

{y = 0}) and hence fαj ∈W l+2,2(Brl+1
∩{y = 0}) which in turn implies

fαj ∈ C l+1(Brl+1
∩ {y = 0}). Since fαj is a smooth harmonic map in

Brl+1
∩ {y > 0}, this implies that fαj ∈ C l(B+

rl+1
) by the boundary reg-

ularity theory of harmonic maps. Since l can be made arbitrarily large,
fαj is C∞. q.e.d.

For a 2-complex X, the balancing condition along the 1-simplex
stated in Corollary 5 implies that Stoke’s theorem can be applied the
integral of 4|∇f |2 as long as |∇f | is a bounded function in X.

Theorem 7 Let X be a 2-complex and f : X̃ → (N, g) be a w-harmonic
map. If there exists C so that |∇f | ≤ C, then∫

X
4|∇f |2dµ = 0.

Proof. The Bochner formula gives

1
2
4|∇f |2(x, y) = |∇df |2− < RN (

∂f

∂x
,
∂f

∂y
)
∂f

∂y
,
∂f

∂x
>

where RN (·, ·) ≤ 0 by hypothesis. In particular, 4|∇f |2 ≥ 0 and the
monotone convergence theorem implies

0 ≤
∫
X
4|∇f |2dµ (5)

= lim
σ→0

∫
X−∪v∈VBσ(v)

4|∇f |2dµ.

Now applying Stoke’s theorem to each 2-simplex F of X, we have

0 ≤
∫
X
4|∇f |2dµ (6)
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= lim
σ→0

∑
F

w(F )
∫
∂F−∪v∈VF

Bσ(v)

∂

∂η
|∇f |2ds (7)

+ lim
σ→0

∑
F

w(F )
∑
v

∫
∂Bσ(v)∩F

∂

∂η
|∇f |2ds

where
∑
F

and
∑
v

indicates the sum over all 2-simplices F and 0-

simplices v of X respectively and η is the outward pointing normal
to F − ∪v∈VF

Bσ(v). For an edge point p ∈ X, let (x1, x2) = (x, y),
(f1, ..., fm), F1, ..., FJ and fαj be as in the paragraph proceeding Theo-
rem 3. Then for every (x, 0) ∈ V

J∑
j=1

w(Fj)
∂

∂η
|∇fj |2(x, 0)

= −
J∑
j=1

w(Fj)
∂

∂y
|∇fj |2(x, 0)

= −
J∑
j=1

w(Fj)
∂

∂y

 m∑
α,β=1

gαβ(fj(x, y))

∂fαj
∂x

∂fβj
∂x

+
∂fαj
∂y

∂fβj
∂y

 |(x,y)=(x,0)

Now recall that the function φj : Fj → C defined by

φj(x, y) =
n∑

α,β=1

gαβ(fj(x, y))

∂fαj
∂x

∂fβj
∂x

−
∂fαj
∂y

∂fβj
∂y

− 2i
∂fαj
∂x

∂fβj
∂y

 (x, y)

is a holomorphic function [S]. By Corollary 5,

Im
J∑
j=1

w(Fj)φj(x, 0)

= 2
n∑

α,β=1

gαβ(f1(x, 0))
∂fα1
∂x

(x, 0)
J∑
j=1

w(Fj)
∂fβj
∂y

(x, 0) = 0.

Here, we have used the fact that f is smooth and hence fαj (x, 0) =

fα1 (x, 0) and
∂fα

j

∂x (x, 0) = ∂fα
1

∂x (x, 0) for each j = 1, ..., J . Hence

φ(x, y) =
J∑
j=1

w(Fj)φj(x, y)
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extends across y = 0 as a holomorphic function. By the Cauchy-
Riemann equation,

0 = −
(
∂

∂x
Imφ

)
(x, 0)

=
(
∂

∂y
Reφ

)
(x, 0)

=
J∑
j=1

w(Fj)
∂

∂y

 m∑
α,β=1

gαβ(fj(x, y))

∂fαj
∂x

∂fβj
∂x

−
∂fαj
∂y

∂fβj
∂y

 (x, y)

 |(x,y)=(x,0)

Hence,

J∑
j=1

w(Fj)
∂

∂y
|∇fj |2(x, 0)

= 2
J∑
j=1

w(Fj)
∂

∂y

 m∑
α,β=1

gαβ(fj(x, y))
∂fαj
∂x

∂fβj
∂x

(x, y)

 |(x,y)=(x,0)

= 2
J∑
j=1

w(Fj)
m∑

α,β=1

gαβ,γ(fj(x, 0))
∂fαj
∂x

∂fβj
∂x

∂fγj
∂y

(x, 0)

+4
J∑
j=1

w(Fj)
m∑

α,β=1

gαβ(fj(x, 0))
∂fαj
∂x

∂2fβj
∂x∂y

(x, 0).

Again, using the fact that f is smooth which implies fj(x, 0) = f1(x, 0)
and ∂fj

∂x (x, 0) = ∂f1
∂x (x, 0), we have

J∑
j=1

w(Fj)
∂

∂y
|∇fj |2(x, 0)

= 2
m∑

α,β=1

gαβ,γ(fj(x, 0))
∂fα1
∂x

∂fβ1
∂x

(x, 0)

 J∑
j=1

w(Fj)
∂fγj
∂y

(x, 0)


+4

m∑
α,β=1

gαβ(fj(x, 0))
∂fα1
∂x

(x, 0)
∂

∂x

 J∑
j=1

w(Fj)
∂fβj
∂y

 (x, 0).

By Corollary 5,
J∑
j=1

w(Fj)
∂fγj
∂y

(x, 0) = 0.
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Thus, we conclude

∑
F

w(F )
∫
∂F−∪v∈VBσ(v)

∂

∂η
|∇f |2ds = 0 (8)

for any σ > 0. This implies

0 ≤
∫
X−∪v∈VBσ(v)

4|∇f |2dµ =
∑
F

w(F )
∑
v

∫
∂Bσ(v)∩F

∂

∂η
|∇f |2ds (9)

by equation (5). With r denoting the distance from the vertex v,∫
∂Bσ(v)∩F

∂

∂r
|∇f |2ds = σ

d

dσ

(
1
σ

∫
∂Bσ(v)∩F

|∇f |2ds
)
.

Since ∂
∂η = − ∂

∂r , equation (9) implies

d

dσ

(∑
F

w(F )
∑
v

1
σ

∫
∂Bσ(v)∩F

|∇f |2ds
)
≤ 0

and
σ 7→

∑
F

w(F )
∑
v

1
σ

∫
∂Bσ(v)∩F

|∇f |2ds

is monotone non-increasing. On the other hand, the hypothesis implies
that

1
σ

∫
∂Bσ(v)∩F

|∇f |2ds ≤ C ′

for some constant C ′. Thus,

L = lim
σ→0

∑
F

w(F )
∑
v

1
σ

∫
∂Bσ(v)∩F

|∇f |2ds

exists. Let

G(ε) =

 0 for ε = 0∑
F w(F )

∑
v

∫
∂Bε(v)∩F |∇f |

2ds for ε ∈ (0, 1
2 ]

Since |∇f |2 is C1 away from the vertices, G is a differentiable function
on (0, 1

2). Furthermore, since |∇f | is bounded, G is continuous on [0, 1
2 ].
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Therefore, for σi → 0, we can choose εi ∈ (0, σi) by the mean value
theorem so that

d

dε

(∑
F

w(F )
∑
v

∫
∂Bε(v)∩F

|∇f |2ds
)
|ε=εi

=
1
σi

∑
F

w(F )
∑
v

∫
∂Bσi∩F

|∇f |2ds.

Then ∑
F

w(F )
∑
v

∫
∂Bεi(v)∩F

∂

∂r
|∇f |2ds

=
∑
F

w(F )
∑
v

εi
d

dε

(
1
ε

∫
∂Bε(v)∩F

|∇f |2ds
)
|ε=εi

=
d

dε

(∑
F

w(F )
∑
v

∫
∂Bε(v)∩F

|∇f |2
)
|ε=εi

−
∑
F

w(F )
∑
v

1
εi

∫
∂Bεi (v)∩F

|∇f |2ds

=
∑
F

w(F )
∑
v

1
σi

∫
∂Bσi (v)∩F

|∇f |2

−
∑
F

w(F )
∑
v

1
εi

∫
∂Bεi (v)∩F

|∇f |2ds

Letting i→ 0, we obtain

0 ≤
∫
X
4|∇f |2dµ = lim

i→0

∑
F

w(F )
∑
v

∫
∂Bεi(v)∩F

∂

∂r
|∇f |2ds = L−L = 0.

q.e.d.

We are now ready to prove the following:

Theorem 8 Suppose X is a 2-complex and (N, g) a complete Rieman-
nian manifold of nonpositive sectional curvature. If f : X → (N, g) is a
w-harmonic map and |∇f | is bounded, then f is totally geodesic on each
simplex of X. Furthermore, if the sectional curvature of N is strictly
negative, then f maps each 2-simplex into a geodesic.

Proof. By Theorem 7,∫
X
4|∇f |2dµ = 0.
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On the other hand, for any point on the interior of a 2-simplex, the
Bochner formula implies

1
2
4|∇f |2 ≥ |∇df |2 ≥ 0 (10)

by the hypothesis on the flatness of X and the nonpositive curvature
of N . Therefore |∇df |2 = 0 and f is totally geodesic on each simplex.
The second statement follows because the second inequality of (10) is a
strict inequality if f is nonconstant and the sectional curvature of N is
negative. q.e.d.

4 Tangent maps and eigenvalues of the link

By Theorem 8, a harmonic map is totally geodesic provided that its the
energy density function is bounded. This behavior can be guaranteed
by certain assumption on the link of a vertex which is defined in terms
of a spectral theory on graphs.

Let G be a graph. We denote the edges and vertices of G by e1, ..., eL
and v1, ..., vK respectively. For each k = 1, ...,K, let Ek be the set of
edges incident to vertex vk. We identify each edge el with the inter-
val [0, π3 ] (the π

3 corresponding to the fact that all our 2-simplices are
equilateral triangles) and we assume that each edge el has an associated
weight ŵl = ŵ(el). In the case G = Lk(v) where v is a vertex of a
2-dimensional simplex X with weights w(Fj), we define

ŵ(el) = w(Fl)

where Fl is the join (i.e. convex hull) of v and el. Returning to the case
of a general graph G with weights ŵl, l = 1, ..., L, we let G be the set of
functions ϕ : G → R so that ϕl = ϕ|el

is smooth up to the endpoints
and ∑

el∈Ek

ŵl
∂ϕl
∂η

(vk) = 0 (11)

where ∂
∂η is the outward pointing unit normal at the vertex vk. On each

edge el, define the measure ŵldτ , where dτ is the Lebesgue measure on
el ≡ [0, π3 ] and let dν be the measure on G so that dν|el

= ŵldτ .
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Lemma 9 For any ϕ ∈ G,∫
G
ψϕ′′dν = −

∫
G
ψ′ϕ′dν

where ψ : G→ R is a continuous function so that ψl = ψ|el
is C1.

Proof. By integration by parts, we get∫
G
ψϕ′′dν =

L∑
l=1

ŵl

∫ π/3

0

(
(ψlϕ′l)

′ − ψ′lϕ
′
l

)
dτ

=
L∑
l=1

ŵl

(
ψl(0)

dϕl
dη

(0) + ψl(π/3)
dϕl
dη

(π/3)−
∫ π/3

0
ψ′lϕ

′
ldτ

)

=
L∑
l=1

ŵl

(
ψl(0)

dϕl
dη

(0) + ψl(π/3)
dϕl
dη

(π/3)
)
−
∫
G
ψ′ϕ′dτ.

On the other hand,

L∑
l=1

ŵl

(
ψl(0)

dϕl
dη

(0) + ψl(π/3)
dϕl
dη

(π/3)
)

=
K∑
k=1

ψl(vk)
∑
el∈El

ŵl
dϕl
dη

(vk) = 0

by equation (11). q.e.d.

Definition The eigenfunction and eigenvalue of the Laplacian 4 on G
is a function ϕ ∈ G, not identically 0, and λ ∈ R so that for ϕl = ϕ|el

,

ϕ′′l + λϕl = 0.

Lemma 10 The eigenvalue λ of G is positive.

Proof. By Lemma 9,

λ

∫
G
ϕ2dν = −

∫
G
ϕϕ′′dν =

∫
(ϕ′)2dν

which immediately implies λ > 0. q.e.d.

Next, we show that a tangent map of a w-harmonic map at 0-simplex
v defines an eigenfunction on the link of v. First, we review the notion
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of tangent map f∗ of f . For a more detailed discussion for the special
case of w so that w(F ) = 1, see [DM]. The general case considered here
follows by a trivial modification of the argument in [DM]. Let p ∈ X
and dg be the distance function on N induced by its metric g. Define

E(σ) =
∫
Bσ(p)

|∇f |2dµ

I(σ) =
∫
∂Bσ(p)

d2
g(f, f(p))ds,

µ(σ) = (I(σ)σ−1)−
1
2

and
% = lim

σ→0

σE(σ)
I(σ)

where ds is the measure on ∂Bσ(p) so that ds|F∩∂Bσ(p) = w(F )dθ where
dθ is the Lebesgue measure on ∂Bσ(p). The above limit always exists
as the quotient appearing on the right is a monotone non-decreasing
function of σ. This limit is called the order of f at p.

Let p ∈ X. The star St(p) is the union of all simplices whose closure
contains p. Let σ sufficiently small so that Bσ(p) ⊂ St(p), let B1 be
Bσ(p) rescaled by a factor of 1

σ so that it has radius 1, and S : B1 →
Bσ(p) be the natural identification map defined by the scaling. Define
the σ-blow up map of f at p as the map σf : B1 → (N, gσ) given by

σf = f ◦ S

and where (N, gσ) is the manifold (N, g) rescaled by a factor of µ(σ)2,
i.e. gσ = µ(σ)2g. The map σf converges locally uniformly in the pull-
back sense (see [KS2] and [DM]) to a w-harmonic homogeneous map
f∗ = (f1

∗ , ..., f
m
∗ ) : B1 → Rm of order %. By using polar coordinates

(r, θ) on each face F incident to p so that r measures the distance from
the vertex p, we can write

fα∗ (r, θ) = r%fα∗ (1, θ)

for α = 1, ...,m.

Lemma 11 Let p be a vertex of X and f∗ : B1 → Rn be a tangent map
of f at p. The function ϕ∗ : G → R defined by letting G = ∂B1 and
ϕ∗(θ) = fα∗ (1, θ) is a eigenfunction of G with eigenvalue %2.
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Proof. Let v be a vertex in Lk(p). Let Fl, l = 1, ..., L, be the faces of
B1 which contain v. Without the loss of generality, we arrange the polar
coordinates (r, θ) on Fl so that (1, 0) corresponds to v. By Corollary 5,

L∑
l=1

w(Fl)
∂fα∗l
∂θ

(1, 0) = 0

where f∗l = f∗|Fl
, which is equivalent to

∑
el∈E

ŵl
∂ϕα∗l
∂η

(v) = 0

where E is the set of edges of Lk(p) containing v. Furthermore, fα∗ is a
w-harmonic function on each face and hence

0 = 4fα∗

=
∂2fα∗
∂r2

+
1
r

∂fα∗
∂r

+
1
r2
∂2fα∗
∂θ2

= %(%− 1)r%−2ϕα∗ + %r%−2ϕα∗ + r%−2(ϕα∗ )′′

= (%2ϕα∗ + (ϕα∗ )′′)r%−2

which shows (ϕα∗ )′′ + %2ϕα∗ = 0. q.e.d.

By combining Lemma 11 with Theorem 8, we obtain:

Theorem 12 Suppose that X is a 2-complex such that every nonzero
eigenvalue of the link of every vertex in X satisfies λ ≥ 1. (i) If f :
X → (N, g) is a w-harmonic map into a complete Riemannian manifold
of nonpositive sectional curvature, then f is totally geodesic on each 2-
simplex of X. In particular, this implies that if the sectional curvature
of N is negative, f maps each 2-simplex into a geodesic. (ii) If the
eigenvalues satisfy the stronger condition λ > 1 then f is a constant
map.

Proof. If % is the order of f at a vertex p, then by Lemma 11, %2 is
an eigenvalue. Hence % ≥ 1 by assumption and the first assertion of the
theorem follows from Theorems 2 and 8. Let (r, θ) be the polar coordi-
nate where r measures the distance from a vertex p. Since f is totally
geodesic, we have f(r, θ) = rf(1, θ). If f is not identically constant then
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f is of order 1 at p. Again, by Lemma 11, the second assertion of the
theorem follows immediately. q.e.d.

Finally, we need to characterize the assumption on the complex X
for which the eigenvalue assumption of Theorem 12 is satisfied. For this,
we need to divert our attention to the notion of the discrete Laplacian
on a graph. Again, let G be a weighted graph as in the beginning of
this section. Let V (G) = {v1, ..., vK} denote the vertex set of G and
let A(G) ∼= RK denote the space of functions ϕ : V (G) → R. Given
vi, vj ∈ G, we set

ŵij =

{
ŵs if vi is adjacent to vj and vivj = es
0 otherwise

and

di =
k∑
j=1

ŵij .

Finally, the discrete Laplacian is defined to be the linear operator

4disc : A(G) → A(G)

defined as

(4discϕ)(vi) =
K∑

i,j=1

ŵij
di

(ϕ(vi)− ϕ(vj)).

Notice that 4disc is self-adjoint with respect to the inner product

< ϕ,ψ >=
K∑
i=1

diϕ(vi)ψ(vi)

and

< 4discϕ,ψ >=
K∑
i=1

K∑
i,j=1

ŵij(ϕ(vi)− ϕ(vj))(ψ(vi)− ψ(vj)).

The next proposition relates the spectra of 4 and 4disc.

Proposition 13 A real number λ 6= 9k2, k = 1, 2, ..., is an eigenvalue
of 4 if and only if 1− cos

(√
λπ
3

)
is an eigenvalue of 4disc.
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Proof. Assume λ > 0 is an eigenvalue of 4 with eigenfunction ϕ,
λ 6= 9k2. Then for each l = 1, ..., L, 0 ≤ x ≤ π

3 ,

ϕl(x) =
ϕl(0) sin(

√
λ(π/3− x)) + ϕl(π/3) sin

√
λx

sin(
√
λπ/3)

.

We claim that the balancing condition implies that ϕ|V (G) : V (G) → R

is an eigenfunction of 4disc with eigenvalue 1 − cos
√
λ. Indeed, fix

vi ∈ V (G). Then

0 =
∑
el∈Ei

wl
∂ϕl
∂η

(0)

=
∑
el∈Ei

wl
−ϕl(0)

√
λ cos(

√
λ(π/3− x)) + ϕl(π/3) cos

√
λx

sin(
√
λπ/3)

|x=0

=

√
λ

sin
(√

λπ
3

) ∑
el∈Ei

wl

(
−ϕl(0) cos

(√
λπ

3

)
+ ϕl

(
π

3

))

=

√
λ

sin
(√

λπ
3

)
− cos

(√
λπ

3

)∑
el∈Ei

wl

 · ϕ(vi) +
∑
el∈Ei

wlϕl

(
π

3

)
=

√
λ

sin
(√

λπ
3

)
− cos

(√
λπ

3

)
diϕ(vi) +

∑
j 6=i

ŵijϕ(vj)


=

√
λ

sin
(√

λπ
3

)

(

1− cos

(√
λπ

3

))
diϕ(vi) +

∑
j

ŵij(ϕ(vj)− ϕ(vi))

 ,
hence ∑

i,j

ŵij
di

(ϕ(vi)− ϕ(vj)) =

(
1− cos

(√
λπ

3

))
ϕ(vi)

and the proof of the claim is complete. By reversing our argument the
converse is also true. q.e.d.

Corollary 14 Any nonzero eigenvalue of 4 is ≥ (>)1 if and only if
the first nonzero eigenvalue of 4disc is ≥ (>)1

2 .

Proof. It follows immediately from Proposition 13 and the equiv-
alence 1− cos

(
π
3

√
λ
)
≥ (>)1

2 if and only if λ ≥ (>)1 for λ ≥ 0. q.e.d.
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Now let Σn be a compact n-dimensional simplicial complex with an
admissible weight c (see Definition 2.1 of [W1] for a precise definition).
Let w be the induced weights on the 2-skeleton Σ(2) = X. By applying
Theorem 12 and Corollary 14 to X with weights w, we immediately
obtain as a corollary the main theorem of [W1] (cf. [W1] Theorem 1.1)

Corollary 15 Let (Σn, c) be a compact simplicial complex with admis-
sible weight. Assume that the first nonzero eigenvalue of the link of
vertex is > 1

2 . Then π1(Σ) = Γ has property F ; i.e. any isometric
action of Γ on a complete, simply connected manifold N of nonpositive
sectional curvature has a fixed point on N̄ = N ∪ ∂N .
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MR2070914, Zbl 1050.58001.

[MSiY] N. Mok, Y.T. Siu and S.K. Yang. Geometric superrigidity. In-
vent. Math. 113 (1993) 57-83, MR1223224, Zbl 0808.53043.

[S] R. Schoen. Analytic aspects of the harmonic map problem. Math.
Sci. Res. Inst. Publ. vol. 2, 321-358. Springer, Berlin, 1984,
MR076524, Zbl 0551.58011.

[Si] Y.T. Siu. The complex analyticity of harmonic maps and the
strong rigidity of compact Kähler manifolds. Ann. of Math. 112
(1980) 73-111, MR0584075, Zbl 0517.53058.

[W1] M.-T. Wang. A fixed point theorem of discrete group actions
on Riemannian manifolds. J. Diff. Geom. 50 (1998) 249-267,
MR1684980, Zbl 0951.58020.

28



[W2] M.-T. Wang. Generalized harmonic maps and representations
of discrete groups. Comm. Anal. Geom. 8 (2000) 545-563,
MR1775138, Zbl 0977.58018.

[Z] A. Zuk. La propriete (T) de Kazhdan pour les groupes agissant
sur les polyedres. C. R. Acad. Sci. Paris 323, Serie I (1996)
453-458, MR1408975, Zbl 0858.22007.

29


