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Abstract

We prove that the singular set of a harmonic map from a smooth
Riemannian domain to a Riemannian DM-complex is of Hausdorff
codimension at least two. We also explore monotonicity formulas and
an order gap theorem for approximately harmonic maps. These regu-
larity results have applications to rigidity problems examined in sub-
sequent articles.

1 Introduction

Harmonic map theory from Riemannian domains to singular spaces origi-
nate with the work of Gromov-Schoen [GS| and was subsequently extended
in [KS1], [KS2] and also [Jo]. The motivating question comes from rigidity
theory. More precisely, one would like to know that a harmonic map, under
appropriate curvature assumptions on the domain and the target spaces, is
totally geodesic or even constant. This is the famous Bochner method which
has been extensively used in the case when the target space is a smooth
manifold. Recall that the Bochner formula is a differential equation involv-
ing higher derivatives of the map and relies on the smooth structure of the
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Riemannian manifolds involved. Therefore, in order to utilize it in the sin-
gular setting, the key is to show that harmonic maps into singular spaces are
reqular enough on a big open set.

In the seminal work of Gromov and Schoen [GS], it is shown that this is
in fact the case when the target space is an F-connected simplicial complex.
Roughly speaking, a k-dimensional F-connected complex is an NPC (non-
positively curved) Euclidean k-complex where any two adjacent cells lie on a
maximal flat, i.e. an image of the Euclidean space R* embedded isometrically
and totally geodesicly in the complex. Examples of F-connected complexes
are Euclidean buildings. The main technical result of [GS] is to show that
a harmonic map u from a smooth Riemannian domain 2 to a k-dimensional
F-connected complex Y locally maps into a Euclidean space outside a set of
codimension at least 2, or in other words, that the singular set S(u) of u is
at least of Hausdorff codimension 2. To investigate the singular points, they
show the existence of the order function (sometimes also called the frequency
function) associated with a harmonic map. For example, for a harmonic
function u : Q@ — R, the value of the order function Ord"(x) is the order
with which u attains its value u(x) at . Alternatively, it is the degree of the
dominant homogeneous harmonic polynomial which approximates u — u(x)
near x.

The question of superrigidity has played an important role in Geometric
Group Theory, and it is beyond the scope of this introduction to summarize
all the results of the vast literature. The goal of this paper is to lay the
foundational analytic work needed in order to study superrigidity questions
beyond the work of Gromov-Schoen, in other words, for a class of spaces
larger than Euclidean buildings. For this purpose we introduce the notion of
Differentiable Manifold complex (or simply DM-complex). A DM-complex
is a cell complex Y with branching-DM structure in the sense that any two
adjacent cells lie in a DM, the image of a Differentiable Manifold isomet-
rically embedded in Y. Such complexes are assumed to be NPC but they
can have arbitrary Riemannian metrics on their DM’s. Special cases of such
complexes are Fuclidean and hyperbolic buildings. However, most of the
work presented in this paper generalizes to an even larger class of spaces, for
example the Weil-Petersson completion of Teichmiiller space which will be
explored in subsequent papers.

We now summarize the main results of this paper. Our first main theorem
can be stated as follows:



Theorem 1 Ifu:Q — Y is a harmonic map from an n-dimensional Rie-
mannian domain to a k-dimensional NPC DM-complex, then the singular set
S(u) of u has Hausdorff co-dimension at least 2 in ); i.e.

dimy(S(u)) <n —2.
We also prove

Theorem 2 Letu: €2 — Y be as in Theorem 1. For any compact subdomain
Oy of Q, there exists a sequence of smooth functions {1;} with ¥; =0 in a
neighborhood of S(u) N Qy, 0 < ¢y < 1 and ¥i(x) — 1 for all x € \S(u)
such that

1im/ V|| V| du = 0.

i—00 JQ)

A harmonic map u : £ — Y into a k-dimensional DM-complex can be
written locally near a singular point zo € S(u) as u = (V,v) where V is the
non-singular component map that maps into a Euclidean space R? and v is
the singular component map that maps into a lower dimensional complex
Yy /. We partition S(u) as US;(u) where j indicates the dimension of the
target space RY of V' (see Definitions 12 and 14). When the target space YV’
is an F-connected complex, u maps into the product of R’ and Y'Qk_j, and
both components V' and v are harmonic maps. Therefore, the analysis of the
singular set of u can be inductively reduced to the study of the singular set
of v which maps into a lower dimensional complex. This is in fact how it is
argued in [GS]. In the case when the target space is a general DM-complex,
u locally maps into the twisted product of R? and YQk_j which we denote by
(R7 x Y2k_j ,dg). The maps V and v are thus only approzimately harmonic.
More significantly, the map v is the non-dominant term of v = (V,v). This
presents the major technical difficulty of the paper. In analyzing the singular
set of v, we prove a general monotonicity formula to deduce the existence
of the order function and the order gap theorem for the approximate case.
Here, we summarize our results:

Theorem 3 (The Order of the Singular Component) If u : Q@ — Y
1s a harmonic map from an n-dimensional Riemannian domain to a k-
dimensional NPC' DM-complez, j € {0,...,min{n,k}}, zo € S;(u) and
u= (V,v) as above near xq, then



ezxists. (See (1) for the notation.)

As with the case when v is harmonic, the main ingredient in proving the
existence of the order function is a monotonicity formula. For this, the major
steps are proving a target variation formula and a domain variation formula.
This is achieved in sections 6 and 8 respectively. In fact, it follows from earlier
work (cf. [Me] and [DM1]) that all necessary monotonicity can be deduced as
a formal consequence of the domain and target variation formulas combined
with a Poincare type inequality proved in Section 7. The existence of the
order function implies

Theorem 4 (The Gap Theorem) Under the same assumptions as Theo-
rem 3, there exists g > 0 such that Ord’(x) > 1+ €y for all x € S;(u) near
ZIg-

In the follow-up article [DMV], we show how to employ the results of this
paper in order to prove superrigidity for representations of lattices into new
classes of groups not covered by [GS], for example isometry groups of hy-
perbolic buildings. In subsequent articles, we will apply our results to study
rigidity questions of Teichmiiller space and the mapping class group. This
is the reason why, as the reader may notice, our notation is a little more
cumbersome than needed for proving the main results of the paper. For ex-
ample, we state our main assumptions in Section 5 and deduce everything
from there. These assumptions hold for the Teichmiiller space with the Weil-
Petersson metric from which we can deduce properties like monotonicity and
order almost immediately.

Acknowledgement. The authors would like to thank Fang-Hua Lin and
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2 Harmonic maps into NPC spaces and DM-
complexes

Let €2 be a smooth bounded n-dimensional Riemannian domain and (Y, d) a
metric space. First recall that by the work of Gromov-Schoen and Korevaar-
Schoen (cf. [GS] and [KS1]) one can define the Sobolev space of W2 or



finite energy maps WH2(Q,Y) € L*(Q,Y). In particular if f € W'?(Q,Y)
one can define the energy density |V f|? € L}(Q) and the total energy

B = [ 19 fPdn

of f. Furthermore, it is shown in the references above that if f € W2(Q,Y),
then there exists a well-defined notion of a trace of f, denoted Tr(f), which
is an element of L?(99,Y). Two maps f,g € W?(Q,Y) have the same trace
(i.e. Tr(f) = Tr(g)) if and only if d(f, g) € Wy*(Q). Given 2 € Q and f as
above, we will use the following notation

Ef (o) ;:/ IV f[2dy and I (o) ;:/ E(f, fa)ds. (1)
Bs(x) OBs ()
Definition 5 A W'2-map u : © — Y to an NPC space Y is said to be
harmonic or energy minimizer if, for any geodesic ball B,(x) C €, the re-
striction f]| B, (z) 1S €Nergy minimizing among all Wl2-maps with the same
trace.

Let u : 2 — Y be a harmonic map. By Section 1.2 of [GS], there exists a
constant ¢ > 0 depending only on the metric on Q (in particular ¢ = 0 when
Q) is Euclidean) such that

w20 B (0)

o Ord“(z,0) =e To(0)

is non-decreasing for any x € ). As a non-increasing limit of continuous
functions,

Ord*(z) := lig(l) Ord"(z,0)

is an upper semicontinuous function. By following the proof of Theorem 2.3
in [GS], we see that Ord"(x) > 1. The value a = Ord"(z) is called the order
of u at x. The harmonic map u also satisfies the following monotonicity
property (cf. Section 1.3 of [GS]): There exists a constant ¢ > 0 and o > 0
such that

co? E;UL(O-) 2 ]g(O‘)

and o+ e“

ore o-n—2+2a O-n—1+2a

are non-decreasing in [0,00]  (2)



Fix 2y € 2 and choose a normal coordinate system centered at xy = 0.
Set a := Ord"(0). By (2),
lim p, =0 (3)

o—0

flo = m (4)

Set g,(z) = g(ox) and define
Uo : (B1(0),90) = (Y, g 'd),  us(@) = u(ow).

where

By following Section 3 of [GS], we see that u, is a harmonic map with
E§7(1) < 2« and Ij7(1) = 1. Let 6 = ¢(0) be the Euclidean metric de-
fined by the value of g at 0. By Theorem 2.4.6 of [KS1], u, has a uniform
modulus of continuity on compact sets independent of o (with respect to
the metric g(0) on the domain which is uniformly equivalent to g, for o
small). By [KS2|, Proposition 3.7 and a diagonalization argument, there
exists 0; = 0 and a map u, : R" — Y, into an NPC space such that u,,
converges to u, uniformly in the pull-back sense on every compact set. By
(a slight modificaiton of) the L? trace theorem of [KS1], Theorem 1.12.2 and
the fact that I57(1) = 1, we have that w, is non-constant. Furthermore, by
[KS2] Proposition 3.11 the energy of u,, converges to u, on compact subsets
of B1(0). We claim that

u, is an energy minimizer on B;(0). (5)

Indeed, if w : (B1(0), g(0)) — Yi is an energy minimizing map with w]aBl(O) =
Ul gp, (o), then Lemma 2.4.2 [KS1] implies that d*(u.,w) is weakly subhar-
monic with zero boundary condition and hence u, = w on B;(0). Finally u,
is homogeneous degree «;, i.e.

d(us(tz), u.(0)) = t*d(us(z),u(0)) for 0 <t <1, x € R"

by the same argument as in [GS] Proposition 3.3. Variations of the above
argument will be used throughout the paper.
We now specialize to the case when Y is in a special class of cell complexes.

Definition 6 Let E? be an affine space. A convex piecewise linear polyhe-
dron S with interior in some E? C E® is called a cell. We will use the notation



S? to denote a cell S of dimension i. A convex cell complex or simply a com-
plex Y in E? is a finite collection F = {S} of cells satisfying the following
properties: (i) the boundary 9S? of S* € F is a union of T7 € F with j < i
(called the faces of S%) and (i7) if T7,S* € F with j < ¢ and S'NTY # 0,
then TV C S°.

For example, a simplicial complex is a cell complex whose cells are all sim-
plices.

Definition 7 A complex Y along with a metric G = {G®} is called a Rie-
mannian complez if each cell S of Y is equipped with a smooth Riemannian
metric G° such that for each cell S, the component functions of G extend
smoothly all the way to the boundary of S. Furthermore, if S’ is a face of S
then the restriction G° to S’ is equal to G¥'.

Throughout this paper, all cell complexes will have the additional prop-
erty that all cells are bounded unless otherwise specified. If this is not the
case, then we will write unbounded cell compler. Additionally, all cell com-
plexes Y will be locally compact, Riemannian and NPC with respect to the
distance function d induced from G”°.

Definition 8 A k-dimensional Riemannian complex (Y, G) is said to have a
branching Differentiable Manifold structure if given any two cells S; and So
of Y such that S; NSy # 0, there exists a k-dimensional C*°-differentiable,
complete Riemannian manifold M and an isometric and totally geodesic em-
bedding J : M — Y such that S; USy C J(M). Such complexes will be
referred as DM-complexes. By an abuse of notation, we will often denote
J(M) by M and call it a DM (short for Differentiable Manifold).

Remark 9 If any DM of a DM-complex is isometric to a k-dimensional
Euclidean space, then the DM-complex is F-connected in the sense of [GS]
Section 6.1. The NPC assumption implies that if M; and M, are DM’s of a
Riemannian DM-complex, then M; N M, is totally geodesic in M; and Ms.

Recall that for an arbitrary NPC space Y and a point P € Y, the Alexan-
drov tangent cone TpY of Y at P is the cone over the space of directions
IT. Here, II is the completion of the space of equivalence classes of geodesics
emanating from P (where the equivalence relation ~ is given by 73 ~ 75 <
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the angle between ~y;, v, at P is zero) along with the distance function defined
by the angle at P. For a DM-complex Y, let C' denote the tangent cone of
Y at the point P as defined in [Fe] 3.1.21. Clearly, C' is an unbounded cell
complex and

TpY is isometric to (C, G(P)) (6)

where G(P) is the metric defined by the value of G at P. Notice that if
P,Q € int(S), then C for P and @ are isomorphic as sets. Let M p be the set
of all DM’s passing through P. For each M € Mp, define Fy, =TpM C C.
An immediate consequence is the following:

Lemma 10 If M is a DM in (Y,dg), then Fyy is a flat in (C,G(P)) = TpY .
In particular, if Y is a DM-complex, then TpY is F-connected in the sense

of [GS].

We can define the exponential map

expp:TpY = |J MCY (7)
MeMp

by piecing together the exponential maps defined on each M € Mp. This
is equivalent to the exponential map defined from Alexandrov tangent cone
point of view, i.e. given a unit speed geodesic v and t € [0, 00), expb(7,t) =
V(t).

Let u : Q — Y be a harmonic map into an NPC DM-complex and z( € (2.
By choosing normal coordinates, we can identify a neighborhood of zy € Q
with a neighborhood of 0 € R". Let T, ,Y be the tangent cone of ¥ at
u(zg). By a slight abuse of notation, we shall denote by

G and dg respectively (8)

the pullback metric €XDyy (20 G defined on C' and the distance function induced
by this pullback. Since we are only interested in the local behavior of u, we
shall identify Y with (C,dg). Let u, be a tangent map of u at xy. Recall
that by definition, u, is the limit (in the pullback sense as in [KS2] Section 3)
of the maps

Uy, : B1(0) = (C, ,u;,ldg), Uy, (2) = u(o;z). 9)



The induced pullback pseudodistances on B;(0) are the same as that of the
maps

Ho, gt Bi(0) = (Codg,,),  Go(y) = Glhoy). (10)

The smoothness of the metric G implies that G,, converges uniformly to
the metric G(u(0)). Again, since p,, 'u,, have uniformly bounded energy
By e (1) and uniformly bounded I e (1), we obtain by [GS] Theorem
2.4 and Arzela-Ascoli that p,, 'u,, converges locally uniformly to a limit map
up 1 (B1(0),9(0)) = (C,dg o)) By the equivalence of (9) and (10), 1o must
be equal to the tangent map u,. We have thus shown

Lemma 11 Let u : Q — Y be a harmonic map into an NPC DM-complex.
A tangent map of u at xo € Q) is a homogeneous harmonic map into the NPC
space (C, dg(u(xo))) = Tu(xO)Y.

3 Regular and Singular points

As in the previous section, let 2 be an n-dimensional Riemannian domain
and (Y, dq) a k-dimensional NPC DM-complex.

Definition 12 For a map f : Q — Y, let R(f) be the set of all points
xo € ) such that for og > 0 sufficiently small

F(Bay(20)) C exDj(a0)(Xo) (11)

where Xo C Ty Y is isometric to R*. In particular, f maps a neighborhood
of xp into a DM. If u : 2 — Y is a harmonic map, a point xo € 2 is called
a regular point if o € R(u) and Ord*(zy) = 1. A point 2, € Q is called a
singular point if it is not a regular point. Denote the set of regular points by
R(u) and the set of singular points by S(u).

Remark 13 The definition of a regular point in [GS] is slightly different
than ours. Specifically, a regular point in [GS] may have order > 1 whereas
ours does not.

Definition 14 Let u: {2 — Y be a harmonic map,

So(u) = {xg € Q: Ord“(zo) > 1},

9



ko := min{n,k} and S;(u) = 0 for j ¢ {0,1,...,ko}. For j = 1,... ko,
we define S;(u) inductively as follows. Having defined S,,(u) for m = j +
1,..., ko + 1, define S;(u) to be the set of points

ko
m=j+1
with the property that there exists oy > 0 such that
w(Boy (20)) C expyyy)(Xo) (12)

where . .
Xo C Tyzy)Y is isometric to R x Yy (13)

with Y,/ a (k — j)-dimensional unbounded conical F-connected complex
with vertex FP,. Set

Sulw) = U Su) and §50) = U Si(w)

Lemma 15 The sets So(u), Si(u), ..., Skp—1(u), Sk,(u) form a partition of
S(u).

PRrROOF. By definition, Sy(u), ..., Sk,(u) are mutually disjoint sets. Let
xg € S(u). If Ord*(xg) > 1, then zg € Sp(u). If Ord“(zy) = 1, then
the tangent map w, : R" — Ty4,)Y at x¢ is a homogeneous degree 1
map and maps onto a flat Fy C Ty(,)Y by Proposition 3.1 of [GS]. Let
Xo be the union of all k-flats containing Fy. By Lemma 6.2 of [GS], X,
is isometric to R/ x Yy 7 where j € {1,...,ko} is the dimension of Fj.
We can deduce from the proof of Lemma 6.2 of [GS] that Yy 7 is a cone.
Furthermore, by the same lemma, u, is effectively contained in X,. Since
SUDp, (z0) AU, expf(xo) Oty © (expgo)_l) — 0 as r — 0, this implies by Theorem
5.1 of [GS] that 2o € S (u) and hence zg € Sp,(u) for some m € {j,..., ko}.
Q.E.D.

Lemma 16 The sets R(u), R(u) US| (u) are open and the sets S, (u) are
closed.

10



PROOF. Clearly R(u) and R(u) U Sy (u) = Q are open. Now assume
m > 0 and zo € S (u). Thus, o € S;(u) for an integer j > m, hence
Ord*(zg) = 1 and there exists gg > 0 such that u(By,(x¢)) C expz(xo)(Xg)
where X, is isometric to R7 x Y37, Thus, z € B,(x) implies z € S'(u) U
R(u) for some l € {j,...,ko},i.ex € S (u)UR(u). This shows S, (u) UR(u)
is open which in turn this implies S,,(u) = Q\(S,1(u) U R(u)) is closed.
Q.E.D.

Let u: Q — (Y, dg) be a harmonic map and z, € Sj(u) for j > 0. Thus,
we can assume there exists o, > 0 such that

u(Bo, (7,)) C eXPZ(x*)(Rj x Yy )

after isometrically identifying R/ x Yy with Xy (cf. (12) and (13)). As
seen by the proof of Lemma 15, R/ x Y37 is the union of all k-flats {F;}X
containing the j-flat R/ x {Fy}, and we can write

) L
R/ x Yy = F. (14)

=1

Conversely, every k-flat of R/ x Y37 is one of {F;}E . To see this, note
that if F is a k-flat in R/ x Y37 then 7y (F) and 7y(F) are flats in R7 and
ngfj respectively where m; and 7 are the projections onto the two factors
R/ and Y, /. Since dim(m;(F)) 4 dim(my(F)) = dim(F) = k, we necessarily
have dim(m;(F)) = j and dim(7m2(F)) = k — j. Thus, m;(F) = R, and since
R/ x YJ 7 is a cone, mo(F) must contain the point P,. This implies that F
contains the j-flat RY x {Fy}.
We consider metrics

G(u(z,)), Gon R x Yy and hon Yy (15)

as follows. The flat metric G(u(z,)) is as in (6) with P = u(z,). Notice
that G(u(z,)) is a product metric on R? x Y,/ by [GS] Lemma 6.2. The
metric A is defined by restricting G(u(z,)) to Yy 7. In particular, (Yy 7, dy)
is a (k — j)-dimensional F-connected NPC complex. The metric G is the
pullback metric via the exponentail map (7) as in (8). Note that then
(F3,Glp,) is a k-dimensional differentiable manifold for any F; as in (14).

11



Conversely, if (M, G|,,) is a k-dimensional differentiable manifold containing
u(z,), then (M, G(u(z,))) is isometric to R, and hence M = F,. In other

words, (R7 x Y37, dg) is a DM-complex where {(F, G|p,)} is the set DM’s
of (RIx Yy ™7 dg). We identify F} with R* such that Py = (0,...,0) € R¥7.
We will say that

(R7 x Y57, dg) is a local model. (16)

We are interested in the local properties of a harmonic map u : Q2 — Y.
Thus for z, € Q and o, > 0 sufficiently small, we represent u| B, (z,) 85 @
harmonic map

u=(V,v): (B,,(2),9) = (R x Y257 dg). (17)

into a local model and refer to (17) as a local representation. Here, we assume
that if we have the representation in the above form and z, € S(u)\Sy(u),
then z € S;j(u) (cf. Definition 14). Furthermore, if z, € R(u) then we
assume k = j. The projection maps

V:=mou:B, (r,) = R and v:=mou: B, (z,) — Yy

are called the the non-singular component and the singular component re-
spectively. We will also need the following refined notion of regular.

Definition 17 Let u as above, xy € By, (z,), 09 > 0 such that By, (x¢) C
B, (z,) and w : (B, (x0),9) — (Y577 dy) be a harmonic map. A point
z € R(u) is said to be (u,w)-regular if there exists a flat F' of Yy 7 and
r > 0 such that v(B,(z)), w(B,(x)) C F. Denote by R(u,w) the set of all

(u, w)-regular points.

Lemma 18 Let u and w as in Definition 17. For xy € R(u) N R(w), there
exist r > 0 and a set A of finite (n — 1)-Hausdorff measure such that x €
R(u,w) for any x € B,(xo)\A.

PROOF. Let F denote the set of all (k — j)-flats of Y37, Since zo €
R(u) N R(w), there exist r > 0 and F, F'*¥ € F such that v(B,(xy)) C F*
and w(B,(xg)) C F*. For F € F\{F"}, there exists a finite set L} of
(k — 1)-dimensional linear subspaces of F" such that

IF'nF)c |J L

LeLy,

12



Intuitively speaking L}, is the set where flats can branch off F'. Similarly de-
fine £%. We claim that for for every L € LY., either (i) v~ '(L)NB,(x) is a real
analytic subvariety of B,(xq) of codimension at least 1 or (ii) v(B,(zo)) C L.
We also claim an analogous statement for L € £% and w™'(L)N B, (). Since
the proofs are similar, we only prove the first statement. First, isometrically
identify F"V to R¥~7 in such a way that if (3!, ..., 4*) are the standard coor-
dinates of R*¥~7 then L is given by {(y/*%,...,y*) : y* = 0}. Let (V,...,u¥)
be the coordinate expression of u|Br(x0) . By(z9) — R*¥ ~ R/ x F°. Since
u satisfies the harmonic map equation, the unique continuation principle of
elliptic p.d.e.’s implies that either (u*)~1(0) is a subvariety of codimension
at least 1 or u* = 0. This proves the claim. Let ﬁ% be the elements of LY
satisfying (7). Similarly define £%. Then

A= U Uoyu U U w (L) | N B, (x0)

FEF\{F) Lely, FEF\{F*)} Lef

is clearly of finite (n—1)-Hausdorff measure. By construction, given any con-
nected component C' of B,(zo)\A and any F' € F\F" either v(C)NF = ()
or v(C) C F. Hence (after assuming without loss of generality that the
triangulation of Y*7/ has minimal number of cells), v(C) is contained in a
single closed k-cell, say S”. Similarly, w(C') is contained in a single (possibly
the same) closed k-cell, say S*. Since Yy is F-connected and all cells are
adjacent (containing Fp), there exists F' € F containing S¥ and S*. This
shows C' C R(u,w). Q.E.D.

Corollary 19 If u and w as in Definition 17, then B,(x¢)\R(u,w) is of
finite Hausdorff (n — 1)-measure for any r € (0, 09).

PROOF. Since R(w) is of Hausdorff codimension > 2 by [GS], the asser-
tion follows from Lemma 18. Q.E.D.

Let 29 € S;(u) and identify xy = 0 via normal coordinates. Translating

if necessary, assume V' (0) = 0. Recall from (10) that the blow up maps of u
at ro = 0 are the maps

uo(z) = (Vo (), 05 (2)) = (1, 'V (o), 1, v(0))

13



into (R x Yy 7, dg,) where Go(y) = G(isy). Also recall that the tangent
map is a map into (R? x 3", dgu(ayy)) by Lemma 11 and (13).

Lemma 20 If u, : (B1(0),9(0)) = (R? x szfj,dc;(u(mo))) is a tangent map
of u at xy € S;(u), then v, == mou, = B.

PROOF. Assume on the contrary that v, # F,. Since u, is a homoge-
neous degree 1 map, so is v,. By Proposition 3.1 of [GS] v, maps into a flat
Fy of szfj of dimension [. Let X, be the union of all k-flats containing Fy.
By Lemma 6.2 of [GS], Xj is isometric to R/t x 757371 and w, is effectively
contained in R/t x Z577! Since SUpP g, () d(u, €Xpl,) ot 0 (expP) ™) — 0
as r — 0, this implies that 29 € S;;(u) by Theorem 5.1 of [GS] which con-
tradicts that o € Sj(u). Q.E.D.

Given a Lipschitz map
s (V,0): (Ba(2),9) = (R x Y37 do),

the component maps V and o can be seen as maps into a Riemannian man-
ifold (R7, H) where H(V) = G(V,0) and an NPC space (Y3 7, dj,) respec-
tively. We will prove later (cf. Lemma 29) that for a.e. x € By, (z,)

Vi (z) = (IVV () + [V[*(2)) ] < CdP(i(x), Po) (18)

where the constant C' depends only on the Lipschitz constant of @ and the
constant in the estimates (29)-(33) for the target metric G. By an abuse of
notation, we have used | - | to denote the norms with respect to dy, d; and
d¢ for maps into RY, Y2k_j and R x ng_j respectively. For now, we assume
this property and we obtain the following as a corollary of Lemma 20.

Lemma 21 Assume that the DM-complex (R7 x Yy 7 dg) satisfies (18). If
w: (V,v) : (B (2),9) = (R X Y577 dg) is a harmonic map, then for a.e
z € Sj(u)

IVol*(z) =0 and |[VV*(z) = |Vul*(z).

PROOF. Since |Vv|? is L', almost every point of B,,(z,) is a Lebesgue
point. Let x € S;(u) be a Lebesgue point of [Vv|? and C' be the Lipschitz
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bound of v in B,.(x) C By, (). After identifying = 0 via normal coordi-
nates, let u,, = (V;,,v,,) be a sequence blow up maps converging to a tangent
map u, = (Vi,v,). Then (18) implies

E" (r) = (E**(r) + B (r)) + O(0?). (19)
Combined with Lemma 20, we obtain

E"(r) = EY*(r) + E*(r) = EV*(r). (20)
Therefore,

lim sup E"=: (r) < limsup EY7i(r) 4 lim sup E'° (r)

= lim Ei(r) (by (19))

= E"(r) (by [KS2] Theorem 3.11)
E™(r)  (by (20))
liminf £Y7i (r)

1—00

IN

where the last inequality is by the lower semicontinuity of energy [KS2]
Lemma 3.8. This immediately implies

i Vo, — 1 Uo; 3 Vo -
ZIE?OE (r) zlgrgoE (r) and legloE (r)=0. (21)
Therefore,
IVo?(0) = lim 1/ (Vo2 dp
im0 Vol(By,;(0)) JBo,r(0)

2
. — / Vo,
(0)

2
dity,
ioo Vol(B,(0)) /B fo

2d/’l’0'i

02
< lim / Voo,
S I G0 e Vo

— 0 (by (21)).

This implies the first assertion. The second follows immediately from the
first and (20). Q.E.D.

15



4 Metric estimates near a singular point

Given a harmonic map u : Q — (Y, dg), the goal of this section is to derive
some estimates of the metric near u(z,) for z, € S;(u), 7 > 0. Thus, let (R’ x
Yy 7 dg) and (Y37 dy) be as in (15). We will denote by V = (V?,..., V)
the standard coordinates of R, v = (v ... v*) the standard coordinates
of R¥7 and (V,v) the standard coordinates of R¥ = R7 x R¥/.

We will first construct a coordinate chart for a DM M of (R7 x Y37 dg)
in a neighborhood of (0, ). First, we identify R/ x {0} with the lowest
dimensional singular locus R/ x { By} € M of R/ x YQk_j by the identity map.
Next, let {e;11(V,0),...,ex(V,0)} be an orthonormal frame of the normal
space to R7 x {0} in M. Furthermore, for each V € R/, let &y : R* — M
be a normal coordinate chart centered at (V,0) with

d@v‘nmm(ain) =en(V,0), Vm=j+1,...,k
Finally, we construct coordinates for a neighborhood of (0,0) € M by defining
a diffeomorphism ® that agrees with the normal coordinate chart ®y on the
slice {V} x R¥=J. More precisely, for a sufficiently small neighborhood U of
(0,0) € R/ x R¥, define coordinates (V,v) via the coordinate chart

O:UCR XRM = dU) C M, B(V,0) = Oy, prs(v).

We are only interested in the local properties of (R7 x sz_j ,dg). Hence,
by an abuse of notation, we will identify each DM M with R/ x R*~7 along
with (the extension of) the pullback of the metric G via the coordinates (V,v)
(which we shall still denote by G). In particular, since R7 x Y37 is a union
of k-flats {F;} and (F},G|p) is a DM for each i (cf. (14)), we can express

every point P € R/ x Yy 7 as P = (V,v).
Lemma 22 Let M = (R x R¥ 7, G) be a DM in (R x Yy 7 dg) and let

o= Guvy) &)

be the matriz representation of G- with

Gu(Viv) = (Grs(Viv) Gua(V,v) = (Gn(V,v))
G (V,v) = (Gur(V,v)) Gaa(V,v) = (Gim(V,v))
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forI,J=1,....5andl,m=j+1,...,k. Then for (V,v) sufficiently close
to (0,0), there exists a constant C > 0 depending only on

the sup norm of the second derivatives of the metric G, (22)
such that

GraV,0) = Gra(V,O) < CloP, [:Gr(Viv)] < Clol

Gn(V,v)| < Clof?, |GV, 0)] < Clo] (23)

|Gim(V,v) = im| < Clof?, |Gim (V)] < Clof

In the above, G is used indicate any derivatives (i.e. % or %) of G .

PRrooF. To prove (23), we first verify the following equalities:

(1) 616/J<6V1’88vl>(v’0>_0

(i1) 8in<c9?/f’£ﬂ>(v’0):0

(i17) afm < 8‘8/1, 83’ > (V,0)=0

(1v) aav[<aavl,8§n>(v,0):0
0 a 0

(v) 6771<%’%><V’0):0'

Indeed, since {e,,(V,0) }=jt1
of R7 x {Py}, we have that

o 0 - o 0
<W7W><‘/’O):O and <@’81}7m

k. is an orthonormal frame of the normal space

.....

> (V7 0) = 5lm

which immediately implies (i) and (iv). We next verify (7). Fix (V4,0)
and identify (V5,0) = (0,0) for simplicity. Denoting the normal coordinates

centered at (0,0) by (V,0), we have

o
Vx55:(0,0) =0, VX € TR\ m=j+1,... k. (24)
v ’
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Since v = ¥ on the slice {0} x R*7/ by the definition of ®, we have

0 9]
Hym (0 0) = 520, v). (25)
Furthermore, (V,0) — (V,v) is a diffecomorphism in a neighborhood of (0, 0),
and hence (V,7) are also coordinates in a neighborhood of (0,0). In partic-

ular, this implies that

0
Vistm ovT = Y 5ir gm (26)
Thus, we have at (0,0)
9] a 0 9] a 0
B L 2% (e
g vl o~ aom oviaw - Y P
= <V 0 9 >+ < 9 9 >
B o OV O oV wom ol
o 0
= <V_ o VT 9 > by (24)
o 0
= < Va%(%m, 5 > by (26)
= 0 by (24)
which proves (7). Similarly for (ii7) and (v), we have at (0,0)
9] _ a 0 S 9, _ a 0 -
gum " avVIToVI T g T oV oV
= <V 9 >+ < 9 \% 0 >
B 7 VI OV v wm gy
a 0 0 0
= < Vamae oy TS vt Vot gon
= 0
and
o _9 0 0 _0 o
dvm ol Jum Qom0 oo™
= < o0 9 >+ < \% 0 >
B am Ol ’ O ool em ogm
= 0.
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The estimates of (23) follow from the inequalities (i) through (v). Here,
we will only prove

G11(V,0) = G1i (V,0)| < Clof? (27)
and 5
‘8 ZGH(V U)’ < C"U’ (28)

since the other estimates follow by a similar argument. To prove (27), first
apply the Mean Value Theorem and the chain rule to obtain for some 7 €
(0,1)

0
Gll(V, ’U) — Gll(‘/a O) = (atGll(V t'l))) ‘t:T
0
= Z v —GH(V TV).
m=j+1
Since (i77) implies
88771(;11(1/0)_0 Vm=j4+1,...,k,

we have for some o € (0,1)

aamGn(V V) = (885 (aamGu(V STU)))

2
= Z v laa mGu(VaTv)

I=j+1

S=0

Together, we have

2
G (V,v) — G11(V,0) = Z ol aaz G111 (V,om0)

lm=j+1

which implies (27) with C as in (22). To prove (28), we first note that
2.G11(V,0) = 0 by (ii). Thus, for some 7 € (0, 1)

) o (0
G (V.0) = (at <81G11(Vtv)>>‘tﬂ

= ooy GH(V TU)
I=j+1 " oo
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which implies (28) with C' as in (22). Q.E.D.

5 Assumptions

In the subsequent sections, we will analyze a local representation (cf. (17))
u=(V,v): (By,(2.),9) = (R/ x Y27, dg)

of a harmonic map into a DM-complex where the component maps V' and
v can be seen as maps into a Riemannian manifold (R, H) where H(V) =
G(V,0) and an NPC space (Y2k_j ,dy) respectively. In this section, we sum-
marize all the notation and list the relevant properties that will be used.
On the other hand, the DM-complexes share the same properties with other
important spaces, for example the Weil-Petersson completion of Teichmiiller
space which we will study in our forthcoming papers. In other words, we are
interested in applying the results of this paper to a more general setting. For
this reason, we state the properties of the metric space (R’ x 3", dg) and
the harmonic map u in a general form (as assumptions) below.

Assumption 1 The metric space (Y3 7, dj,) is an NPC space with a homo-
geneous structure with respect to a base point Fy € }/Qk_j . In other words,
there is a continuous function

R.g x Yy = Y3, (A, P) — AP

such that APy = P for every A > 0 and the distance function d is homoge-
neous of degree 1, i.e.

d(\P,\P') = \d(P,P'), YP,P' € Ya.

Remark 23 In this paper, we are interested in the case where YQkfj is a
(k — j)-dimensional unbounded conical F-connected complex with vertex P.
The homogeneous structure is given by the scalar multiplication in Euclidean
space (after identifying the (k — j)-dimensional flat that contains P and B
with R¥=J such that P is identified with the origin).

Recall the estimates of the metrics G and h in Lemma 22. We will state
these estimates in in a general setup below.

20



Assumption 2 The metric space (R x Yo dG) is an NPC space. The
Riemannian metric H of R’ and the metric h of Y2 7 is such that on every
DM (R/ x F*¥=3 @), the metric G is asymptotically the product metric

Go(V,v) = H(V) @ h(v).

By this we mean the following. There exist constants C' > 0 and e € (0, %)
such that if, with respect to the standard coordinates (V!,...,V7) of R? and
some coordinates (v/*1, ... v¥) of F*=7 at Py we have

H():( (V)) H=Y(V) = (H"(V)),

h=H(v) = (A" (v)),

),
Gr(V,v) Gu V v ) GV, 0) = ( G (V,v) GT(V,v)
1

G(‘/’ U) - ( GZL(V, Gzl V v

) G (V,v) GUV,v)
with I,L=1,...,7and i,l =5+

, ...,k then the following estimates hold:

CY-estimates:

Gra(V,0) = H(V)ig| < CH(V)iH(V)S,d(0, Po)
|G (Vo) < CH(VI)?IhOf)]?j d*(v, P) (29)
Giy(Vio) = (@) < Ch(0)3h(0)]; (o, Fy)

C'-estimates:

22 Gak(Voo)l < CHWV)iH (V)3 H(Y i
2G(V,o)l < ChFH(V)EH(V)S d(v, By
%GJJ'(V;UN < CH(V)ITIH(V;;Jh(? ?j d(U7P0) (30)
2 Gr(Vov)| < CH(V>IfIh(U)l§1h(U)J§f
s Gu(V.u)l < CHV)3h(0)ih(v)],

2 (Gy(Vow) = (@) < Ch(v)ih()ih(v)],

CY-estimates of the inverse:

G (V,v) — H7 (V)| < CHU(V):H' (V)id(v, P)
~GRW) < CHM(V)2h(0): (v, By) (31)
|GV (V,v) = h7(v)] < Ch*(v)2h77 (v)2 d*(v, o)



Almost diagonal condition for H and h with respect to the coordinates
(VI,...,Vi)and (v7F, ... o)

(32)
Bounds on the derivatives for H and h:
|8%3/1HJK(V)\ < CHH(VI)%HJJ(IVPHKK(V)% (33)
d(v, Po)lgmhinl < Chig(v)2hyj (v) 2 by (v)2.

Remark 24 In this paper, we are interested in the case where H is the
Riemannian metric G(V,0), h is the Euclidean metric h;; = §;; and fgkhij =
%&j = 0. Thus, the above metric estimates follow immediately by Lemma 22.

Remark 25 If G, H and h satisfy Assumption 2, then we have the following
estimates:

1 11
HfIHFLI,K <CHj;;H} ., ‘d(v,Po)h2 < C’h2 hkk (34)
Furthermore,
[
HIQI (Thg — HFJK)‘ < CH}J KK hfi(ré‘k - ) < Ch2 hkk
HIIF < CHJJHkk> HIIij‘ < Ch2 hkk (35)
1

Indeed, Cauchy-Schwarz, (32) and (33) imply

d(v, Po)hZ

‘d(v, Po)h2"T,

hil(h’ljk + Ay — hjk,l)’

N

< Ch?(h”h”)%(h”hmhkk)
S C(hjjhkk) % .

22



Furthermore, Cauchy-Schwarz, (30), (31) and (32) imply

(T = 1)

= HI%I G (Gugi + Gy — Gurce) — H* (Hog i + Hare,y — Hyxc )
< HI%I (G — H'"™)(Grix + Grr.g — GJK,L)‘

—i—HI%I GGk + Gir,g — GJK,Z)‘

+H1%1 H"™(Grix — Hrox +Grryg — Hukg + Hik — GJKvL)’

< (v, Po)Hyy (H' HYY )3 (Hy Hyy i)
+CA (v, Ry Hy (' W) (hu g Hicr)
+CH1%1(HHHLL) S(HppHysHy)?

< C<HJJHKK)%-

The other estimates follow by similar computations.

Assumption 3 Let metrics G and h defined on R/ x Y5 7 and Y,F 7 sat-
isfying Assumption 2 and

u= (V,v) : By, (.),9) = (R x ¥2"7, dg)

be a harmonic map. By this, we assume that the non-singular component
V' of u maps into a smooth Riemannian manifold (R7, H) and the singular
component, v of u maps into the NPC space (Y 7, dy). The set S;(u) satisfies
the following:

(i) v(z) = Py for v € S;(u)
(77) dimy((S(u)\Sj(u)) N Bex (2,)) < n — 2.

Remark 26 For a harmonic map u into a DM-complex as in (17), the fact
that v(z) = B for x € S;(u) follows from the definition of S;(u). On the
other hand, Assumption 3 (1) is a part of the inductive hypothesis when we
will prove Theorem 1 by a backward induction on j in Section 11.
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Assumption 4 For B,(zg) C Bz (z,) and any harmonic map
w: (By(w0), 9) = (Y2, h),

denote R(u,w) as the set of points z with the property that there exists a
DM M of YQk 7 and r > 0 such that the interior of a geodesic connecting
two points in v(B,(z)), w(B.(x)) C M. Then R(u,w) is of full measure in
R(u) N By (xo).

Remark 27 For a harmonic map u into a DM-complex as in (17), Assump-
tion 4 follows from Definition 17 and Corollary 19

Assumption 5 For almost every = € S;(u), we have
Vo> (z) =0 and |VV|*(z) = |Vul*(2).

Remark 28 For a harmonic map u into a DM-complex as in (17), Assump-
tion 5 follows by applying Lemma 29 below to Lemma 21.

By an abuse of notation, we use | - | to denote the norms with respect to
H, h and G for maps into R?, ¥ 7 and R x Y57 respectively. The fact
that G(V,v) is asymptotically a product metric Go(V,v) = H(V') @ h(v) as
v — Py yields the following lemma.

Lemma 29 Let metrics G and h defined on R7 x Yo7 and Yo" satisfy
Assumption 2 and

:(V,0): (By,(2,),9) — (R x Yo7 dg)

be a Lipschitz map. For every x € R(a) N By, (x,) and for almost every
x € By, (xy), we have

Vi (z) = (IVV () + [Vo[*(2))] < CP(i(x), Po)

where the constant C' depends on the Lipschitz constant of i and the constant
in the estimates (29)-(33) for the target metric G.
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PrOOF. We first prove that for P,Q € By(Fp), we have
dren(P, Q)
1-0ON) < —2 220 < (140N 36
To see this, for any vector v/ € Tp/(R7 x F*77) with P' € B\(F), we have

2
< Yoy >Hen — <9 >al KON < Y,y >uen -

Let . .

v :[0,da(P, Q)] — R¥ x Y+
be the arclength parameterized geodesic with respect to dg between P €
B)\(Po) and Q) € B)\(Po) Then

2

d2en(P,Q) < Dy sE
Hon\ L = 0 Y5 ~CHen

IN

dG(PvQ) ’ ’
dG(P7Q)/0 <77 ZHoh dt

da(P,.Q)
A+CN)Ae(P.Q) [ <o gt
0

de,(P,Q) (1+CN).

IN

IN

Next, let 4 4
71 [0, dhgn(P, Q)] — R x V3™

be the arclength parameterized geodesic with respect to dye, between P and

@. Thus
) dwon(PQ) 1 \?
de(P,Q) < /0 <A,y >Edt

duen(P,Q) ,
dH@h(P7Q>/O <7, >a dt

2 dron(PQ) r
< (14 CX)dyen(P, Q)/O <7v,7 >Hendt

< Bien(P.Q) (1+0X).

IN

This completes the proof of (36). By the definition of energy density in
[KS1], this immediately implies for almost every x € B,, (z,) and for every
x € By, (x,) such that 4(Bs(x)) C M for some DM M,
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IVVP(@) + Vi (x) — [V < Cd(i(x), Py)

where C here is as in the assertion of the Lemma. Q.E.D.

Assumption 6 For any subdomain €2 compactly contained in
Be (z.)\ (S(u) o™ (Ry)),

there exists a sequence of smooth functions {t;} with ¢; = 0 in a neighbor-

hood of S(u)NQ, 0 < v; <1, 1; — 1 for all z € Q\S(u) such that
hm/\VVWV%MMzO
i—oo JO

Remark 30 As is the case for Assumption 3 (ii), Assumption 6 is a part of
the inductive hypothesis in the proof of Theorem 1.

Remark 31 In the sections below, we will use the following notation: Given
a point x € R(u), let R? x F be a DM that contains a neighborhood of
u(z) = (V(x),v(x)). Then use the coordinates of Assumption 2 to interpret

OV as a vector in RY and ;2% as vectors in R¥7J. For any j x j-matrix M,

J X (k — j)-matrix Mip and (k — j) x (k — ) matrix Mao, we write
MHVV . VV, M12VV -Vov and MQQVU -V
to denote the inner products defined by

ov\" oV v \" )4 av \" v
aB | 2V . af . aB [ 27 -
o () 2 () o (5s) 20 () 0 () e (55)
respectively. In particular, we use this notation to denote the expressions

G (V,0)VV - VV,G12(V,0v)VV - Vv and Gag(V,v)Vu - Vo

where we follow the notation of Lemma 22 and set

o= Gavy) =)

with
G (V,v) = (Grs(Viv)) GV 0) = (Gr(V,v))
G (V,v) = (Gir(V,v)) Gapn(V,v) = (Gim(V,v))

forI,J=1,...,5and [,m =7+ 1,...,k to be the matrix representation of
G.
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6 The Target Variation

The main goal of this section is to obtain estimates for the target variation
of the singular component map v : B, (4) — (Y™, dy) of a harmonic map
u=(V,v): By, (z,) = (R x Y5F77 dg) as in (17).

Remark 32 In this section, the properties of u that we need are Assump-
tion 2, Assumption 3 and Assumption 4 of Section 5.

Let ro > 0 such that B,,(z9) C Bes () and w : By, (20) — (YS™7 dy) be a
harmonic map. For o € (0,7¢), w is Lipschitz continuous in B,(zy) by [KS1]
Theorem 2.4.6. For ¢t € [0,1] and n € C(B,(zo)) with 0 < n <1, define

Uy : Bo(0) = (Yo7, dp)

by setting
vim(x) = (1 = tn(x))o(x) + tn(r)w(z) (37)

where the sum indicates geometric interpolation. Furthermore, define
A i
Uy By (z9) = (R X Yy, dg)

by setting
u“? = (V, ’Utn). (38)

Let x € By(z9) N R(u,w); this means that there exists § > 0 and a DM
F C Yy77 that contains v(Bs(z)) and w(Bs(z)). Since F is geodesically
convex in Yy 7, it also contains all geodesics from v(z) to w(z’) for all
x' € Bs(xz). Hence, F contains vy, (z') for all ' € Bs(x),t € [0,1]. In
Lemma 33 below, we interpret ?;g as a section of ™' (T'F) where ¢ : [0,1] x
Bs(z) — (Y57 dy) is the map ¢(t,z) = V(). Furthermore, "V denotes
the connection on ¢~ }(T'F) induced by the Levi-Civita connection on F.

Lemma 33 Let u = (V,v) : By, (z.) — (R x Y2"7 dg) be a harmonic
map as in (17). For vy, defined in (37), there exists C > 0 such that for
f=1,....,n and x € B,(xg) N R(u,w), we have

hy , 20m

453 <C (39)
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PROOF. The first step is to prove the assertion under the assumption that
one of the maps v or w are constant identically equal to (Qy. We will only
prove the latter case since the argument for the former case is analogous. Fix
x € By(x9) N R(u,w) and t € (0,1). We are also assuming n = 1. Let F' be
a DM that contains v(Bs(x)) and () and ~ be the arclength parameterized
geodesic ray starting at )y and ending at v(x). For each r > 0 close to
t, let (61,62, ...,08371) be the normal coordinates centered at v(r) for the
radius r sphere 0B, (Qo) in (F,h). We use this to define coordinates in a
neighborhood N of v;(z); more specifically, the coordinates of a point P
close to vy(z) is (r,0',...,08771) where r = d(P, Q) and (6',..., 09~1)
are the coordinates of P as a point in 0B,(Qo).

Since r is the distance from Qo and ~ intersects 9B, (Qo) orthogonally,
the components of h with respect to these coordinates satisfy

her =1, hyg: = 0 in all of V.

Furthermore, the choice of (8',...,0*7771) as the normal coordinates of
0B, (Qy) centered ~y(r) implies that

hgigi = (5; along v in V.

Thus, the Christoffel symbols along ~ in the coordinates (r,6', ..., 08=9=1)
satisfy

"I = By A B (g + hginy = hymg) = 0,

" = B ey B (i + gty — o) = 0,

hriel = W (hprgt + gy — hygr ) + hwj(hejr,el + hgigty — hygrei) = 0,
hrf:l = hekr(hmel + oty — Pygr ) + hekej(hejr,el + hgiorr — Nygres) = 0.

Using the above identities, we obtain

o e OO o 00D

h [ —

Viowr = Véowbor T V4 ouP o0

vy 0 ov o, ag+aiflavgh o
otozP or  0xP Ot o Or  0xP Ot o5 9f
9] D O] Oy <hFr 9, np?* o) )

0t02f or 0xf ot \ Tor T T ogk
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o our r 0 ok O
o0 ot (h%ar“rrelaek)
0%l 0
otdxP Or
dd(v, Q) 0

oxf  or

Thus, the assertion for this case follows with C' dependent on the Lipschitz
constant of v.

The second step is to consider the case when v(z) and w(z) are arbitrary
and n(x) = 1. Fix x € R(u,w) and define

O (2") = (1 — t)v(a') + tw(x)

and
wy(2') == (1 — t)v(z) + tw(a)
for 2’ close to x and t € [0,1]. Since ¥, w; and v; are geodesic interpolation
maps,
8?7t awt avt
are Jacobi fields along the geodesic y(t) = (1 — t)v(x) + tw(x). Since x +—
wy(x) is constant for ¢ = 0, we have

o0v ow ov
Tx;(%)ltzo + %;@)’t:o = 37362(3:)‘15:0'

Similarly, since x + 0;(x) is a constant for ¢t = 1, we have

o0v ow ov
871’;@)'15:1 + %;(x)’tzl = 87]:;@)‘75:1'

Thus, the uniqueness of the solution of the Jacobi equation implies that

Ot owy, . Ov
W(@ + OxP (z) = 0xP

(x), Vte[0,1]. (40)
From the first step, we obtain that

e OO,

ow
%W@?) " :

455@|<C. (41)

Y
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Thus, the assertion in the second step follows immediately from (40) and (41).
Finally we come to the general case when 7 is arbitrary. If ¢ : [0, 1] x Bs(x) —
(Yo, dy) is the map 9(t, z) = v,(z), then ¢(t, x) = 1 (tn, z) = vy (x). From

the second step we know that ‘hV 4 %‘ < C, hence by the chain rule we
t

obtain ]hv%%ﬁﬁ] < (C. Q.E.D.

Remark 34 In the case the target metric h;; = d;; is Euclidean, which is
the case for DM-complexes, the proof of the Lemma above is simpler. Indeed,
d 81}{,7
dt OxP

o A A
WU(UJ —w’)

B ol ow’ am, i
N |77 <8xr3 8$5> * oxP (v =)

<C.

Lemma 35 Let u= (V,v) : B,,(z,) = (R x Y2*77 dg) be a harmonic map
as in (17). If vy, wyy are as in (37), (38) respectively, then

Vg |*(2) = [Vul*(z) = [Vo,[*(z) — [Vo]*(2) + O(F)
for almost every x € S(u) where O(t?) is a term which is quadratic in t.
PrOOF. For z € §;(u), we have v(z) = Fy by Assumption 3 (z). Thus,
A(vn(z), Po) < dlvn(2), 0(2)) + d(w(z), Po) = tnd(v, w)(z).

Furthermore, by Lemma 29 applied with & = « and Assumption 3 (i), we
have for almost every z € S;(u)

[Vul*(z) = [VV[*(z) + [Vo[*(z) + O(d*(v, o)) = [VV]*(2) + [Vo]*(2).

Finally, apply Lemma 29 with @ = w,, implies to obtain for almost every

z € S;(u),

Vg [*(z) = [VV(2) + Vo [*(z) + Od* (viy(x), Fy))
[VV (@) + Vo |*(z) + O(F)

Combining the above two equations, we obtain

Vg [*(2) = [Vul*(z) = [Voy,|*(z) — [Vo*(2) + O(t), Yz € S;(u).
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Since S;(u) is of full measure in S(u) by Assumption 3 (z7), this implies the
assertion. Q.E.D.

Remark 36 We are interested in the quantity
2 2 2 2
Loy (Wl = 1VuP) = (1V0af? ~90f) d

We write the above integral as the sum of two terms, the first being the
integral over R(u) N B,(zo) and the second being integral over S(u)N B, (xp).
Assumption 4 implies that when we estimate the first term, we need only to
estimate the integrand in the subset R(u,w) of R(u) N By(zp). Lemma 35
implies that the second term is O(t?).

The following is an estimate of the first variation for target variations.

Proposition 37 Let u = (V,v) : B, (z,) — (R x Y2"7,d¢) be a har-
monic map as in (17). If w : Byy(x0) = (Yo7 dy) is a harmonic map with
E"(09) < A and vy, wy, are as in (37), (38) respectively, then there exists
C > 0 such that

B (o) — Exi(o)

lim sup <C n(d(v, PBy) + |Vv|)d(v,w)dp
t—0+ t B (z0)
for zg € Sj(u) N Bex (), 00 > 0 with Byy(x0) C Bex(zy), 0 € (0,00]
and n € CX(B,(xg)) with 0 < n < 1. Furthermore, C' depends only on
the constant in the estimates (29)-(33) for the target metric G, the domain
metric g, the Lipschitz constant of u in By, (xg) and A.

Proor. Throughout the proof, we will C' to denote an arbitrary constant
dependent only on the estimates (29)-(33) for the target metric G, the domain
metric g, the Lipschitz constant of u in By, (xo) and A. Let z € B,(zg) N
R(u,w). Thus, there exists a DM F that contains v,(Bs(z)) and M =
R’ x F that contains u,(Bs(x)). Using coordinates of R/ x F, we have for
x € By(x0) N R(u,w), tp > 0 and 7 > 0 small

yvu(to+7)n‘2 — [Vttgy|?
= Gn((V, U(tOJFT)n)VV -VV — G (V, Uton)vv -VV
+2(G12(V, vito+r1n) VV - VUi aryy = Gra(V vy ) VV - Vi)
+G22(V, U(t0+7)n)vv(t0+7)n . Vv(to+7)77 — G’QQ(V, Uton)vvton . Vvton'
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Dividing by 7, taking the limit as 7 — 0, subtracting %’t , |V, |? from both
=lo

sides and noting that R(u,w) is of full measure in R(u) by Assumption 4,
we conclude that at almost every x € B,(zo) N R(u) and for ¢ty > 0 small

d
Tl (VP = Vo)
d d
= a‘t:toGﬂ(V’ v VV - VV + 2%\t:t0(}12(\/, V) VV - Yoy,
d
+a’t=to‘j(v’ Um)va . Vvt'r] (42)

where

D(‘/, U) = GQQ(‘/, U) — h(’U)
Since u is harmonic, we have

d 2
o /B oy VPl >0 (43)

where for a function f(t) defined for ¢t > 0 small we set

d f= liminfw.

dt ‘t:0+ t—0+

By Lemma 35,
Vuy|* — [Vul*d :/ Vg |? — |[VoPdu + O(t?),
/S<u>mBa(x)| al” — [Vul'dy S()NBo() Vo|” = [Voldu+ OF)

and hence

d
%‘tzw /S(u)mBg(;p) ‘Vutn‘Q - ’V?)tn\zdu = 0. (44)
Furthermore,

Claim 38 For ty > 0 small, there exists a constant Cy > 0 depending only
on the estimates (29)-(33) for the target metric G, the domain metric g, on
the Lipschitz constants of u and w in the support of n,

d

%‘t:to S CO’ Vo € R(ua 'U}) N Ba<x0)-

(]VUM\2 - ]Vum|2)

32



PROOF OF CLAIM. In the proof of the claim, we will use Cy to denote a
constant dependent only on the estimates (29)-(33) for the target metric G,
the domain metric g, on the Lipschitz constants of u and w in the support

of n. For x € R(u,w), we use a DM to compute

cZGlQ(V’Utn)VV'VUtn = gaﬁaamGlj(uvt">ClZg)§72‘;:?}gj;7
+ga5G1j(v,%)(;xV:ig”x§;,

i '
Yoxe dt 0xB

By the Lipschitz estimate of u and (32) of Assumption 2,

+2gaBDlj (V, Utn)

1oVt

T 9ze

1 J
1 0v

(v)jj@ < C.

Y

)

Since 7 — v, () is a constant speed geodesic, we also have

1 dv]
‘h(vm)fjd; < nd(v,w).
Thus, '
 duiy

< C.

‘h(vtn)jjdt

Additionally, since

"V 4

vy d vy, vl vk, i\ D
1= r
dt axﬁ

dtor? " 0af ot ) Bu
Lemma 33, (32) and the Christoffel symbols estimates (34) imply

d vt

1
hz— 1

d(U7P0) li% 8%6

= “0-
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Thus, the metric estimates (29), (30) along with (48), (50) and (51) imply
that the absolute value of the right hand side of (45), (46) and (47) is uni-
formly bounded above. Combined with (42), this implies the assertion of the
claim. Q.E.D.

We now continue with the proof of the Proposition. Since R(u,w) is
of full measure in R(u) N B,(xo) by Assumption 4, Claim 38 immediately
implies by letting tg — 0

d ) )
/73(u)ﬂBg(:c0) %‘t:m <|Vu“7‘ — [V, ) du

dt 1t=0% JR(u)NB, (0

) [V |* = [Voy|*du. (52)

Therefore we conclude

d 2
_ﬁ‘t:m /Ba(aco) Vo[ “dp

d ) ,
= %‘t:m /BU(Z'O) \Vu|® — |[Voy|“du  (by (43))

d

— 2 — ’d by (44
Giho Lo 1Vt = V0Pl (by (44)

- /R(u)ﬂB(,(;rO) jt‘tm (Wut"|2 B |V7’tﬂ|2) du  (by (52))
- /73(u)ﬁBd(z0) iLmGU(V’ 0)VV - VVdp
" /R(u)ﬁBa(aco) i’tmGlg(v, ) V'V - Vo dp
* /’R(u)ﬂBU(:}co) c;lt‘tmmv’ Vty) VU - Vogdp (by (42))
= (I)+ (II)+ (II1). (53)

Thus, it suffices to prove the appropriate bounds for (I), (/1) and (/I1).
First, the metric derivative estimates (30) along with (45), (48) and (49)

imply
d

0) = /R(U)ﬂBo(:co) %L:MG”(V’ V) VV - VVdlp
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) dvi, | oV©Iov’
[ d :
R(w)NBo(z0) OV dt 1t=0 x> OxP

nd(v, Fo)d(v, w)dp. (54)

Grs(V,v)

< ¢
R(u)NBs(x0)

Next, by (46), we can write

d
() = /R(U)OB (20) %‘t:mc’l?(v’ Vi) VV - Vorydp
0 dvj,|  OV! ovI
ovt Gri(Vov) dt ‘t=0 oxe 0xP H
+/ 8V1d‘ 82)%7
R(w)NBo (z0) Oz dt1t=0 9zf a
= (II); + (I1)2. (55)

g™’

/R(u)ﬂBg(aco)
gaﬁGIj (V7 U)

The metric derivative estimates (30) along with (45), (48) and (49) imply

0 dvy oV ovI
m, = 8 G (V,v)
(I R(u)ﬂBU(a:O)g ov’ 15V ) dt ‘t=0 Ox® OxP a
< C/ nd(v,w)|Vuldpu. (56)
R(u)NBs(x0)
Before we proceed to (I1)y, we will show
de; — 0 such that ejH”_l(aAz; N By(xg)) — 0 (57)

where

AT ={x € B,(x) : d(v, Py) > €}.

Indeed, if (57) is not true, then eH" 1 (OAF N B,(x)) > § > 0 for € < €.
This in turn implies

/60 HY DAY N B, (10))de > 5/60 L e = 0o,
0 0 €

On the other hand, the co-area formula and the fact that d(v, Fy) is Lipschitz
imply that

/°° H Y (DA N B, (0))de — / Vd(v, By)|dp < oc.
0 AT
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This is a contradiction and this proves (57).
Let 2 € (By(20)\AL)NR(u, w). Using the metric estimates (29), we have
at x

|G 1 (V)| < Cd*(v, R)H(V)7,h(v);;.

Since R (u, w) is of full measure in R(u) by Assumption 4, together with (48),
(51) and the fact that d(v, i) < €; in (R(u) N Bo(x0))\ A, implies

ovl d vl
aﬁG V “7 d O
/(R(umBa(xo))w i(Viv)g s dt’t el Gl
and hence
ovl d ol
17 = / aﬁG . V, “ tn 58
( )2 R(“)ch(xo) g IJ( U) a dt ’t*O axﬁ ( )
ovld ov!
— af tn
_ g Gr(V.v)5— dt]t 28 0 OLe)):

We now apply integration by parts for the integral over AJr above. In order to
do so, let o > 0. By [GS] Theorem 6.4, dimy(S(w)) < n—2. Combined with
Assumption 3 (7)), we have that dim%(S(u)\Sj( )US(w)) < mn—2. Thus,
there exists a cover { By, (1) : { = 1,2, ...} of the set (S(u)\S;(v)US(w))NAL
such that 3°7°, 17"~ < 0. Let ¢; be a Lipschitz cut-off function which is zero
in U2, B,,(z;) and identically one in By ()\ U2, Bay, (7)) with [V | < 21!
in B,,(z;). Thus, with ¢, = II7°¢;, we have

v d vl
af —tn
/ g GIJ(VU)a dt’t 0 gzp
vl d ov?
. . af . t77
= g ar 7o GLlV. ) g dt’t 0928
ovI dv!
N 3 — Oéﬁ tn
N }71—%[ A% \/_(%ﬁ(\/_ o 2)G(Vv) 2 dt du
a 8VI dvtn

ag 209" or 52513V >8 a dt

oVt ¢, dvt?7

_ af
/ 9" CL (V) g oo 5 ar o
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oV dvl 0
By, iy - 9
+ /(9142; 9099 GIJ(‘/? U) 8:B0‘ dt =0 (’I’L 0x5> dz]

= Hm[(I1)a1 + (LD + ()25 + (1D, (59)

As a component function of a harmonic map u, V/ satisfies the equation

1 0 ovly o
ap
Vg 0xP <\/_g 8:70“) VI
ov7 ovE vy o't ovt oI\ 0
— _aB8 1L _ L I
g (FJK(‘/? 1}) O axg +FJZ(‘/7 U) O al’ﬂ +Fzg(‘/7 U)axa ax5> av[

in a neighborhood of a regular point z € AF N R(u). By the Christoffel
symbols estimates (34), (35) and the Lipschitz estimates (48), we obtain

o (5 )

Thus, the metric estimates (29) and (49) imply

1

<C. (60)

— aﬁ 7tn
(‘[I)Ql T A+ @Q\/—a 5(\/§ a a>G1](V U) dt t:OdM

< C nd(v, Py)d(v, w)du. (61)

Bo(x0)

By the metric derivative estimates (30) and the Lipschitz estimates (48) we
obtain

0 0 (9VJ 0 o
|8 BGIJ(VU) = |avJG1](Vv)a 5t 5 (Vv)ﬁxﬂ|
< Cd(v, R) + \VUI)H(V)?Ih(U)fj- (62)

Combined with (48) and (49), this implies

wg O
(D) = = [ eug™ 5 5Cr(V.0)

€3

5o dt o
< Cf . R+ VoD, wydn (63

Bo(z0)
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By the properties of the set of cut-off functions {¢;}, we have

VI dyp, dv]
. af “Y¥o Yt
(I1)y5 = / 970G (Vo) oS dy

CZ/ Vi |dp

Tl ml

IN

I
Q
M
|
E
=
5

< O =0(0). (64)

Furthermore, |Gr(V,v)| < CeiH(V)3h(v); on AL by the metric esti-
mates (29), and hence

oV dv] 0
aBr (V. —in 7-—— | d
/814;;03(,(1-0) 2eg™ GV 0) Oz dt =0 <n 8x5>

< 0657_[1171(814?] N BO-(ZC())) = O(Ej)

where we have used (57) for the last equality. Lastly, the fact that n has
, = 0on 0B, (). Thus,

dv]
compact support in By (x0) implies —* .

oV dvl b,
BG (V. —n i-—— | dx =o0.
/AQLJ,QBBU(xQ) #eg™ Giy(V:v) dze  dt t0<n 8:1:5)
The above two inequalities imply
ovIdvl )
I = B (V. —n 7o —— | dY
(s = [, o GV G0 (7 o)

ovIdvl 0
By (V. Z7tn n-—— | dX
/AjjﬂaBo(:pg) * /3Ajj By (o) g™ G (Vov) Oz dt t=0 (n a;ﬁ)

= 0O(¢). (65)
Combining (58), (59), (61), (63), (64), (65), and letting €;, o — 0, we obtain

(1) < C Bg(xo)n(d(v,PoHIVUI)d(%w) dyt. (66)
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Combining (55), (56), (66), we have

d
(1) = /R( )NBo (x dt‘t 0+G12(V, Vi) VV - Vorydpt

< C - )n(d(v,Po)HW\)d(v,w) dp. (67)

Finally, by (47), we can write

d
(1) = [ o DV Vv Ve

0 dvj,|  Ovt O
(Vo) - 00z 928 "'

= of
/R(u)ﬂBg(aco) g o'
o' d‘ 8vt,7

aﬁD V
+/R(u)ﬂBU(zo)g i )(9xa dt 1t=0 OxP a
= (I1I)y + (I11)s. (68)

We derive an estimate for (//7); in a similar way as in (I) comparing the
metric derivative estimates (30) for Gy;(V,v) and O(V,v). We obtain

8 dv! ovt O
= of V,v) i
(1), R(u)ﬂBg(xo)g vl By (V) dt ‘t —09ze 9z
< C / 1Vold(v, w)dp. (69)
R(w)NBo (z0)
To estimate (I11)q, we write similarly to (1),
(%' ovl
(I11), / in g .
g 8x0“ dt‘t 00xP dp+0(e;)
ot d| vl
— 1 aBm.. in )
= az 7o Pl )&Eadt’t 0z T OE)
dv]
_ 1 . a,B ; V tn
gl—%[ AL \/_8365(\/5 Ox 0‘) iVo0) 5 dt
o’ dvm

_ aB_~ ;.. V,v
AL Yed 5.8 i )8 a dt

vt D, dv
_ B Zreinl g
/Afjg (Vo) e 90 it o™
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. ovi dvi, (. D
e L e (naxﬁ> dzl Ho)

=: E—I%[([[[)Zl + (I11)oe + (L11)a3 + (I111)24] + O(ej).

We obtain the estimates for (I11)sg, (I11)s3 and (111)y4 in exactly the same
way as for (I1)a, (II)2s and (I1)y4 after noting the similarity of the the
metric estimates (29) and (30) for G12(V, v) and O(V,v) = Gao(V, v) — h(v).
Furthermore, we obtain the estimates for (I11),; analogously to (11)s;. In-
deed, as a component function of a harmonic map u, v* satisfies the equation

, ovy 8VK oV’ o' vl vk 0
afs A % 2 -
( V) g s TVl a:w) ovi

in a neighborhood of a regular point z € AF N R(u). By the Christoffel
symbols estimates (34), (35) and the Lipschitz estimates (48), we obtain

d(v, ) \/—am (f 95 ) <C. (70)
Hence,
d
(I11) = / . dt\t OV, 00) Vo, - Vg dp
< c/ d(v, Fo) + [Vo|)d(v,w) dp. (71)

Thus, the assertion of the lemma follows from (53), (54), (67) and (71).
Q.E.D.

Corollary 39 Let u = (V,v) : B, (z.) — (R x Y2 dg) be a harmonic
map as in (17) and Q € Yo", There exists C > 0 such that
—c/ g (d(v, By) + |V)) du+2/ n|[Vol2du
(zo

- V- Vd*(v,Q) dp

Bo(x0)
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for xg € Sj(u) N Bex(24), 09 > 0 with Byy(z9) C Bex (), 0 € (0,0
and n € CX®(By(x9)) with 0 < n < 1. Furthermore, C depends only on
the constant in the estimates (29)-(33) for the target metric G, the domain
metric g and the Lipschitz constant of u in By, (o).

PROOF. From [GS] Section 2,
Bi(0) < [ (=P VoPdp—t [ V-V (o), Q)dp + 0(E)
Bo(z0) Bo(z0)
Hence rearranging terms, dividing by ¢ and letting ¢ — 0, we obtain

2  IVeldn (72)
Bo (0)
<

E (0) — Ev=
- oy V1 V(). Q) dp - lim inf wl0) = Pey(o)
Bs(xg

t—0+ t

Proposition 37 with w = @ implies

EY (0) — Eb
liminf Z2e(@) = Eaf'(@) nd(v, Q)(d(v, Py) + |Vv])dp.

t—0t t Bcr (xO)

Combining the above two, we obtain the assertion of the Proposition. Q.E.D.

The following is the analogue of the target variation formula in [GS].
Proposition 40 Let u = (V,v) : By, (7.) — (R7 x Y2 dg) be a harmonic
map as in (17) and Q € Yo", There exists C > 0 such that

0
v < 2
2Ea:0(g) /8 (@) 7Td (U,Q)dE—I—C - (@0) d(v,Q)(d(v,H))+| QUDCZ,UJ (73)

for zo € Sj(u) N Bex(2), 00 > 0 with Byy(x9) C Bex () and o € (0, 00].
Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of u in

BGO (:L‘O)

Proor. Follows immediately from letting n approximate the character-
istic function of B,(xg) in Corollary 39. Q.E.D.

Remark 41 When (73) is compared with [GS] inequality (2.2), we note the
additional error term of C' [ .\ d(v,Q)(d(v, Fy) + [Vv|)du. Furthermore,
Corollary 39 says that the function d*(v, Q) is almost subharmonic up to the
same error term.
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7 Lower Order Bound

The main goal of this section is to prove that harmonic maps satisfy a
Poincare type inequality (cf. Proposition 43).

Remark 42 In this section, the properties of v that we need are Assump-
tion 1, Assumption 2, Assumption 3 and Assumption 4 of Section 5 which
we will implicitly assume throughout the section.

Proposition 43 Let u = (V,v) : By, (z.) — (R/ x 3" dg) be a harmonic
map as in (17). Then for any ey > 0, there exists Ry > 0 depending only
on €, the constant in the estimates (29)-(33) for the target metric G, the
domain metric g and the Lipschitz constant of u such that

oE}(0)

13,(0)

Before we proceed with the proof of Proposition 43, we need some pre-
liminary material. Let u = (V,v) : By, (7,) — (R? x Y" 7 dg) be as in (17),
z € Sj(u) and o > 0 sufficiently small such that B, (r) C Bes (z,). Note that
x € §;(u) implies v(x) = P (cf. Assumption 3 (¢)). Use normal coordinates
to identify the o-ball about = with (B, (0), g,) where B,(0) C R". We define
the restriction maps

1—¢ < NV € Si(u)N Be. (ry), 0 € (0, Ry). (74)

z,0U ! (Ba(o)?gl”) — Y'Qkij’ oal = U’BU(O)’

the harmonic maps

2,0 (B5(0), 9z) — (YZk_jad) with oww’E)Bg(O) - MU‘BBU(O)

o,zV 1/2
ym:<[0 (")> | (75)

O—nfl

and set

Let g5.:(y) = g.(0y) be the rescaled metric on B;(0). Using the homogeneous
structure of Y57 (cf. Assumption 1), define the rescaled maps

Vo, Woz = (B1(0), gow) — (Y277, d)
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by setting

Vo (Y) = Vs aav(0y) and W, (y) = v, 1 sow(oy).

We will denote by dpi, ., A2, . the volume forms on By (0), 0B,.(0) respectively
with respect to the metric g,,. The normalization by v, , implies that

(1) = 1.

Definition 44 The maps {v,.},>0 are called the blow-up maps of v at x
and the maps {w,,} are called the approzimating harmonic maps of v at .
We will drop the subscript x from v, 4, Wo 2, 6,2, 0,2W; oz, Aiter and dX,
above when it is clear at which point we are taking the blow ups. Note that
in this notation v, may be different from the second component wy 0 u, of U,
as the blow-up factors p, v for u, v respectively may be different. Hopefully,
this will not cause any confusion to the reader since it will be clear from the
context which one we are using. Furthermore, we will drop the subscript x
from FE, and I, when the point is understood.

Lemma 45 Let u = (V,v) : By, (z.) — (R/ x 2" dg) be a harmonic
map as in (17) and ,v, ;w, vy, w, as in Definition 44. Then there ezists a
constant C' > 0 depending only on the domain metric g such that

/B(,m) d*(v,ow)dp < Co® (E"(0) — E7"(0)) (76)
/31(0) d*(vy, wy)dpy < C(E™ (1) — E¥ (1))
[T PP E R
/31(0) Vd(vs, wy)Pdps < E(1) = E*(1)
/ oy Ll Po) dp < Col (o) (78)
/Bl o & (W Po) dpig < C
Jo i 0 70) i < € (91°(0) + 2 E(9) (79)

/ d2(v,, Py) dpty < C (1 + E* (1))
B1(0)
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ProOOF. It suffices to prove (76), (77), (78) and (79) since the other
inequalities will then follow after a change of variables x = oy and a multi-
plication by v, 2. Let oWy B, — (sz_j, dy) be the map defined by setting
Jw%(m) to be the midpoint of the geodesic between v(z) and ,w(z). Then
by (2.2iv) of [KS2], we have

2 "} (0) < E'(0) + E"*(c) — / IVd(v, yw) .
B, (0)
The harmonicity of ,w implies E-¥(¢) < E’"%(o) which in turn implies
(77). Let C' > 0 be a generic constant depending only on the domain metric
g. The Poincare inequality then implies that

/ d*(v, gw)dp < 002/ IVd(v, ;w)|*dpu.
B, (0) B, (0)

o

Combining the above two inequality, we obtain (76). Since ,w is a harmonic
map (cf. [GS], last formula on p. 195),

[
I"(s) < eCUQ#S"“, for s < o.
o

Integrating over s € (0, 0), there exists a constant C' > 0 depending only on
g such that

/ d*(,w, Py) dp < CO‘/ d*(,w, Py) d¥ = Co I'(0)
B5(0) 9B (0)

which proves (78). The inequality (79) follows immediately from the triangle
inequality and (76). Q.E.D.

Lemma 46 Let u = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map
as in (17), vo, w, be as in Definition 44 and assume there exists A > 0 such
that £ (1) < A. Then there exists a constant C' > 0 such that

E" (1) — E* (1) < Co®.

Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g, the Lipschitz constant of u and A.
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Proor. Let @ = (V, ,w). By Lemma 29,
Vo> < |Vu? = |[VV|? + Cd?* (v, Py)

—|Vow]* < —|Va|? + |VV]? + Cd*(,w, Py),
and thus

IVu)? = |Vew|* < [Vul® — [Vi|* + Cd?(v, By) + Cd*(,w, Fy). (80)
Integrating over B, (xg), we obtain
E'(0) — E**(0) < E%(0) — E*(0) + C /B oy 0 P) 4w, P
Harmonicity of u and scaling immediately implies

Ev (1) — B (1)

IA

002/ d*(vy, Py) + d*(wy, Py)dpis
B1(0)
< Co*(1+ E"(1)) (by Lemma 45)

where dy, is the volume form with respect to metric g,. Since E¥ (1) < A,
the proof is complete. Q.E.D.

Lemma 47 Let u = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map
as in (17), 1o = 0 € Bex (x,) N Sj(u), By, (0) C Bex () and v, be the blow
up map of v at xo =0 (cf. Definition 44). For o € (0,0¢), ¥ € (0,1], define

vy (Bi(0),99,) = Yo 7, vg(x) = 67 v, (62) =07, o(0b)

and assume E”g(l) < A. Forr € (0,1), there exists a constant C' > 0 such
that

sup d*(v?, Py) < C.

B (0)
Furthermore, C' depends only on r, the constant in the estimates (29)-(33)

of the target metric G, the domain metric g and the Lipschitz constant of u
in By, (o) and A.
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PrOOF. Corollary 39 says

~C [, R)(d(o, B) + [Voldp+2 [ gl Vold
B (0) Bo (0)

< —/ Vi - Vd2(v, Py) dp.
0'00

Since for any € > 0,

1
P)|Vold /
/BUO(O) (v P Voldp < 5 [

90

€
d2,Pd+f/ Vol2dy, (81
(v, Py)dp 5 BJO(O)I vl*dp,  (81)
we obtain

—C/ nd2 (v, Ry) dp < —/ Vn - Vd* (v, Py) dp,

Bag (0)
in other words, AdQ(v Py) > —Cd*(v, Po) weakly in B,y(0). This immedi-
ately implies Ad2( Py) > —C(09)*d*(v?, By) weakly in B;(0). Standard
inequality together Wlth (79) implies that

sup d*(v?, P)) < C d?(v?, Py)dL, < C(1+ A).
By (0) B1(0)

Q.E.D.

Lemma 48 Let u = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map

as in (17), xo = 0 € Bax (2,) N Sj(u), B,y (0) C Bex () and v, be the blow

up map of v at xy = O (cf Deﬁmtwn 44). For = (0,00), ¥ € (0,1], let

- (B1(0), gg9o) — Y37 be as in Lemma 47 and assume E¥ (1) < A. For

E (0,1), there exists a constant C > 0 depending only on r, the constant

in the estimates (29)-(33) for the target metric G, the domain metric g, the
Lipschitz constant of u and A such that for any harmonic map

w: (B1(0), g9o) — szﬁ

with E*(1) < B (1), we have

sup d*(v?, w”) < C/ d*(v?, w”)dS, 4+ Cod. (82)
B-(0) 8B1(0)

46



PROOF. Let 1 : Byg(0) — Y27 be w(x) = v9w((ev)'x). By [KS1]
Theorem 2.4.2,
Eq"(0) = Ejlo) < —t | oV Vd* (vey (), w)dp + 0(t?)
where n € C®(B,4(0)), 0 < n <1 and v, () = (1 — tn(x))v(x) + tn(x) is
the interpolation map between v and w. Hence rearranging terms, dividing
by t and letting ¢ — 0, we obtain

lim inf Egt"(a) — Ei(o)

t—0+ t

- V1 - Vd* (v, w) dp.
/B o V1V (v, ) dp
Thus, Proposition 37 implies
—C/ d(v, Py) + |Vv|)d(v,w)dpu < — / ()V - Vd? (v, W) dp.
019 0'19 0

Let x € Brgﬁ(O) and 1 approximate the characteristic function of Bs(z) C
B,(0) to obtain

0
—C d(v, P, Voul|)d(v, w)dp < —d*(v, ) d¥
[ R+ Ve < [ i)

for s € (0,(1 — r)ov). By a standard computation,

d eCs
—n+1 A 2 N
—Cs™ "t /S(x)(d(v, Py) + |Vu|)d(v, w)dp < I (3"1 /835(93) d (v,w)dE) :

(83)
For any € > 0,
1
|Vold(v, w)dp < se/ (Vo|*du +— d* (v, w)dp

Bs(x) Bs( Bs(z)
and

o) |Vold(v, Py)du < se/B (Vo2 dy + — / (v, Py)dp.
Additionally, Proposition 40 with @ = P, implies
2/ )|Vv| du

< / )ﬂz v, By) du+C/B A0 P, Po) + [V
., d

< s"

608
4 P(v, Py) d 0/ & ,sz/ Vol2dp,
ds@nléam @}o)u>+ [ @RS [ Vo
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(notice that by use of the arithmetic-geometric mean inequality we can make
the coefficient in front of [ ) [Vo[*du equal to 1), or in other words,

Voul’d

/BS(I)I “du

< g1l 6CS/ (v, Py) d +0/ (v, Py)dS.
- ds \ s"! JoB,(x) o) an ’

Thus, (83) implies

d eCS
— d? (v, w)dY
ds <5”1 /BBS(m) (v, %) )

L ecs/ (v, By) d
- ds \ s"1 JoB,(z) 7o) A

—Cs’"/ ( )dz(v,Po)du—C’s”/ P P (84
s(x Bs(x

for s € (0,(1—r)od) and x € B,,5(0). Multiplying the above by 9~'v 1 and
rescaling the domain by o1}, we obtain (denote d¥ = d¥,y, du = djisg)

d eCs
— (2, w)dx
ds (3"1 /C‘)BS(:E) (v, w) )

> _Copst 608/ (0, Py) d
- Vs s 8B, (x) o0 0] GH

—019*"/ e ﬁ,Pd—Cﬁ*ﬂ/ P(w, Py)dp (85
Vs (vy, Po)dp — Caids o (w, Po)dp (85)

for s € (0,(1 —r)) and and = € B,(0). To estimate the integral with respect
to s of the first term on the right hand side of (85), we apply integration by
parts and the boundedness of d?(v?, ) (cf. Lemma 47) to obtain

9
_0019/ (8” : /833(1) d*(vY, Py) dﬂ) ds

¥é; GCS 9 GCS - B
_ 0019/ = 1/ (0l ) dp ds — Coi (- /@Bs(z)d (7. 70 due )|
> —Co9s / 2, By d
- 782 Joss (v, o) dn
> —Coip.
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To estimate the integral with respect to s of the second term on the right
hand side of (85), again use the boundedness of d?(v?, Py) to obtain

B
—0019/ s_"/ W By ds > ~Cavp.

Since w is harmonic and hence d*(w, Py) is subharmornic, we can similarly
estimate the integral with respect to s of the third term on the right hand
side of (85). Thus, integrating (85) with respect to s over the interval (0, t)
with ¢ € (0, (1 —7)) and applying the above estimates with & = 0 and = t,
we obtain

Ot

d*(vy (), w(w)) <

o — tnfl

— (07, w)dY + Codt
o /m) (v?, w)dS + Co

where (), is a constant depending only on the domain dimension n. Thus,
"2 (02 (7)), w(z)) < C o) B (v2, w)dY + Codt™.
Integrating this over ¢ € (0, (1 — r)), we obtain
(v (x),w(z)) < C o) d*(v?, w)du + Co.
Since x € B,(0), we have B_,(z) C B1(0). Thus,
(WY (x),w(z)) < C ) d*(v?, w)dp + Co. (86)

Next, let = = 0 in (85) and integrate over s € (¢,1). Noting the above
estimates with « = ¢ and § = 1, we obtain

ct

e

/ d*(v?, w)dy < ec/ d*(v?, w)d + Cad.
tn=1 JoB,(0) 8B4 (0)
Furthermore, multiplying this by ¢"~! and integrating over ¢ € (0,1), we
obtain
/ (v, w)dp < C (v, w)dE + Cod.
B1(0) 0B1(0)

Combining this with (86), we obtain

sup d*(v2(z),w(z)) < C d* (v, w)dY + Cav. (87)

B,(0) 8B1(0)

Q.E.D.
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Corollary 49 Let u = (V,v) : B,,(z,) = (R7 x Y,"7,dg) be a harmonic
map as in (17), xg € Bex (1,) NSj(u) and By, (0) C Bex (24). For o € (0, 09)
let vy, w, and g, be as in Definition 44 at v = xy and assume EV (1) < A.
Then, for r € (0,1), there exists a constant C > 0 depending only on r, the
constant in the estimates (29) and (30) for the target metric G, the domain
metric g, the Lipschitz constant of u and A such that

sup d*(vy,w,) < Co.
B,(0)

PrRoOOF. Apply the Proposition above for ¢ =1 and w = w,. Q.E.D.

For u as in Proposition 43, o; > 0 and z; € S;(u) N Bex (), use normal
coordinates to write the unit ball centered at x; = 0 as (B1(0),g). (Here,
by rescaling if necessary, we can assume without the loss of generality that
B1(0) C By, (x).) Denote the o;-blow up map and the approximating har-
monic o;-blow up map at xz; as in Definition 44 as

vi,w;  (B1(0), g:) = (Ya ™, dy) where g;(x) = g(o). (88)

(Izw)”
Vi = ) .
O

(2

Furthermore, set

Lemma 50 Letu = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map
as in (17), x; € Sj(u) N Bex (24), 03 — 0 and v; be as in (88). If there exists
A > 0 such that B (o)
o B (o;
9%, 90 4 89
Loy = )
then there ezists a subsequence of {i} (which we denote again by {i} by abuse
of notation) and a non-constant harmonic map vy : (B1(0),d) — Yy into an
NPC space such that v; — vy, w; — vy locally uniformly in the pullback sense.
(Here, § is the Fuclidean metric.) Furthermore, (after identifying x; = 0 via

normal coordinates)

(1) = lim [5(1) =1 end EP(1) < lim Ef(1). (90)
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PROOF. Let w; as in (88), identify x; = 0 via normal coordinates and
write E = Ey, I = I for simplicity. By Assumption (89) and the energy
minimizing property of w;, we have

= 7o) < A. (91)

Therefore, w; is a family of harmonic maps with uniformly bounded energy.
For any r € (0, 1), the Lipschitz constant of w; in B,(0) depends only the
energy bound and r and is independent of i (cf. [KS1] Theorem 2.4.6).
Thus, w; has a locally uniform Lipschitz constant and, by [KS2] Proposition
3.7, there exists a subsequence (which we still denote by {i} by an abuse of
notation) such that w; converges locally uniformly in the pullback sense to
a map vg. By [KS2] Theorem 3.11, vy is energy minimizing on B,.(0) for any
r € (0,1). The fact that vy is energy minimizing on every compact subset
of By(0) immediately implies vy is energy minimizing on B;(0) by the same
argument as in (5).
We now claim
d(v;,w;) — 0 in W2, (92)

To prove (92), first note that by Lemma 46 and (91),
EYi(1) — E“i(1) < Co?. (93)
Hence, Lemma 45 implies
Vd Vi, Wy 2 d i S CfO'Z2
[, 1w
and
By (0)

Since dp; is uniformly close to the Euclidean volume form dyy it follows that
d(vi,w;) — 0 in W2 as claimed in (92). It now follows from Corollary 49
that d(v;, w;) — 0 uniformly in B,(0), and hence
lim v; = vy uniformly in the pullback sense in B,.(0). (95)
1—r 00

The harmonicity of w; implies the subharmonicity of d*(w;, Py), and hence

/ d2(wi, P())dzl S CT‘n_l/ dQ(U}Z‘, P())dzZ S C, Vr e (0, 1)
9Br(0) 9B1(0)
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Since d(FPp, w;(0)) = d(v;(0),w;(0)) — 0 by Corollary 49, we have

i—0 J9B,.(0) i=0 J9B,.(0)

= d? 0))d¥
/8&(0) (U07UO( )) 0

where d¥g is the volume form with respect to the Euclidean metric
by the Dominated Convergence Theorem,

1
lim [ d(w;, Po)dp; = / lim &2 (w;, Py)dSdr
0

i—0JB1(0) i—0J5B,.(0)
1
= d*(vg, v6(0))dXodr
L @ o w005

= / d2(U0; vo(0))dpo.
B1(0)
Thus, the L? convergence of d(v;,w;) to 0 implies,

lim d2(’l}i, Po)dul = / d2<U0, Uo(O))d,uO
B,1(0)

1—0 /B, (0)

Finally, since
/ IVd(vi, Po)dp; < / (V| 2dp; < A,
B1(0) B1(0)
we conclude by standard W12-trace theory that

1= lim d2(2}i, Po)dﬂz = / d2(’U07U0<0))d,LLQ
0B1(0)

=00 J9B(0)

. Thus,

which is the first assertion of (90). By uniform Lipschitz continuity of w; and

the lower semicontinuity of energy [KS2] Lemma 3.8, we have
EP(1) < lim Efi(1).

i—00

Combined with (93), we obtain the second assertion of (90). Q.E.D.
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PROOF OF PROPOSITION 43. If (74) is not true, then there exist se-
quences z; € S;j(u) N Bex (x,) and o; — 0 such that

o; l;;i(05> < 1
I3 (o) K
which is equivalent to
Evi(1) <1
(1) o
By (90),
E™(1) Evi(1)

< li
Too(1) = 0 I(1)

On the other hand, since vy is a nonconstant harmonic map with respect to
the Euclidean metric, it follows that

f; 1 — €p.

l;vo(l)
1< (1)

The contradiction proves the assertion of the Proposition. Note that the fact
that Ry is independent of u follows by taking a sequence of maps satisfying
the assumptions of the proposition and applying the same argument for the
sequence. Q.E.D.

8 The Domain variation

The main goal of this section is to obtain estimates for the domain variation of
the singular component map v : B,, (z,) — (Yo 7, d;). We start by showing
a regularity result for the non-singular component map.

Lemma 51 Let u = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map
as in (17). If xo € Bes (v,) and 0 € (0, %), then VI € W?P(B,(x0)) for any
p>1.

PROOF. For a smooth n = (n',...,n’) with compact support in B, (),
let V; = V +tnand u; = (V;,v). Assumption 5 states |[Vov|?(x) = 0 for almost
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every = € S;(u), and hence
Vue*(z) = |VVi[*(z)
G11(Vi,v)VV, - VVi(z)
= GH(Vt, U)VV . VV(x) + 2tG11(Vt, U)VV . Vn(x)
+t2G11(Vt, v)Vn - Vn(x).

In R(u),
|Vut|2
GH(VQ,U)VV} . V‘/t —+ 2G12(V2, U)V‘/t - Vo + GQQ(W,U)V'U - Vo
= G (V,v)VV - VV +2tG11 (V;,0)VV -V + 2Gy1 (Vi,v) Vi - Vi
+2G12(V2, U)VV - Vo + 2tG12(V2, ’U)V’I’] - Vo -+ GQQ(‘/t, ’U)VU - V.

Thus, |Vug|?(x) is an integrable function in the variables x, ¢ and, for almost

every x € B,(x0), [Vu|*() is a smooth function in ¢. Furthermore, 4 |Vu,|?
is bounded independently of ¢ by an L' function by the metric estimates and
the Lipschitz continuity of u. We can thus conclude that ¢ — FE(u;) is a
smooth function in ¢, and its derivatives can be computed by differentiation

under the integral sign. In particular, since £ E(u,)|,_, = 0, we obtain

d
O - / 7‘t:0G11(V27 U)VV : VV + 2G11<‘/, U)VV . VT] d,u

Bo(zo) dt
42 / . i’tzoGw(‘/t’””t:ovv Vo + Gia(V,0)V0 - Vo dy
+2/ . jt\t G (Vi 0) |,V - Vo dp

- / aavfG“(V VY - VV 4 2G(V,0)VV - Vi dp
+2 P aav[Glg(V V)VV - Vo + Gio(V,0)Vn - Vo du
+/Bd(x0 . aﬁlem(V V)V - Vo dp. (96)

By applying 1ntegrat10n by parts in the same way as the term (/1) of Propo-
sition 37, we obtain

ont ov*

Gy(V,0)Vn-Voduy = /B(x N aﬁle(Vv)a o 58

/Bg (zo)NR(u)

o4



I
= d 97
/B oy Jrrdp (97)
where fr is a bounded function. Thus, (96) implies that

oV on’
_ aﬁ
Ba(xo) GVio)ygs oz 98

for some bounded vector field F. Let
n’ =Y GV, v)e
K

/ n- Fdu (98)
Bo (z0)

for p € C(B,(x)). Then

on’ 0 K ovE 0 Kk o'
oxB Z( eaurt Vi) ges gt (Vivig s

dp
JK
+GIE (W, >8x5>

and hence

on”’ 0 K ovE
GIJ(VU)a 5 = @%:(GU(V,U)M/LG (Vv >8 3

0 0 0
+Gr(V,0) 25 G (V,v) 2= - >+¢.

ov oxP oxP

11
Since H is a smooth Riemannian metric, H fl, H . are uniformly bounded.
Thus, (29), (30), (31) and (48) imply

0 JK(?VL B gy 0 N OVE
GrigyeG™ g GG Gy GG 5 5
L gyl
< HIIHKK HLQLa 3
< C
and
0 K o' u 0 N OVt
GIJ(‘/:U)a ZG (V )61’/8 = GIJG WG G 8[L’f3
1] 1o
< HfIHKf( hﬁ@
< C.



Thus, (98) implies

oV oy
— LCRA Ay / - fd
/Bd(zo)g oz 0xp M T Bo(xo)(p Jdp

for some bounded function f. By elliptic regularity, V! € W?2P(B,(x)).
Q.E.D.

We now prove the following weaker version of the Lemma 51 for v and
the singular component map v.

Lemma 52 Let u = (V,v) : B,,(z,) — (R? x Y2*7 dg) be a harmonic map
as in (17). If xo € Bex(xy) and o € (0,%), then there exists a constant
C > 0 depending only on the dimension of the domain, the metric g and the
total energy of u such that

/ d(v, Py)|VVuldu < C
B (20)\{d(v,P) =0}

and

/ d(v, Py)|VVuldu < C.
B (e0)\{d(0,P0) =0}

PROOF. Let
d. = max{d(v, Py) — €,0}
and ¢ € C2°(Bzx (29)) such that 0 < ¢ <1, p =1 on B,(x0), ¢ = 0 outside
Bio. (0) and [Ve| < 25, Let ©; be the support of the function d?¢? which
is compactly contained in Bex (79)\{d(v, Fy) = 0} C Bex (20)\S;(u). By the
proof of [GS] Lemma 6.6, Assumption 6 implies that the inequality

1
§A|Vu|2 > |VVul? — ¢|Vul?
holds distributionally in €;. Thus by using d?p? as a the test function

o eV ) VP> [ (VU — |Vl

ax (0
2

2

After an application of the arithmetic-geometric means inequality, we obtain

1
/ (de) ||Vl du—l—c/ d>o*| V> dp > —/ d?p?|VVu|*dp.
2 By (x Bay (o) 2 By (o)
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Noting that d?¢?, ¢?|Vd,|* are bounded by the Lipschitz constant of v (and
hence of u) in Bex (), we obtain,

2
(/ dE|VVu|du>
Bo(ajO)

< C 2 |VVulrdp

- Bo (170)

< C/ d?p?|VVu |2 du
B%(xo)

2

< C (/ IV(dE¢)!2IVUI2du+2c/ dESOQIVUqu)
By (x0) B

ax (T0
2

< C.

By letting ¢ — 0, the first inequality follows. The second inequality follows
from the first. Q.E.D.

Let u = (V,v) : (By,(z,),9) — (R/ x ¥5¥77 dg) be a harmonic map
satisfying the assumptions of Section 5, zo € S;(u) N Bex () and let 7y €
(0, %*). Define the map v, : B, (7o) — (Y57, dy) by setting

v(z) = vo Fy(x)
where F; is a diffeomorphism given by
Fi(r) = (1 +t(2))z, £€CX(Br(0), 0<E<L
Define . .
e Bry(wo) = (R7 x Y57, dg)

by setting

ug = (Vo).
Since u = u; on 0B, (xg), u; is a competitor.
Lemma 53 Let u = (V,v) : B,,(z,) = (R? x Y2*7 dg) be a harmonic map

as in (17). There exists C > 0 such that for xo € S;j(u) N Bex(x,) and
o € (0,ry), we have

E’U _ E’Ut
lim En(0) = Ex(0) ¢d?(v, Py)dy + Co /
B

t—0 t B (z0)

LR
(zo0)

o

o7



Furthermore, C' depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of w.

PROOF. First note that since v € W2 the same argument as in [GS]
p-192 implies that the limit on the left hand side of the inequality above
exists. Moreover, we can take the limit under the integral sign to obtain

By (0) — Eiy(0)

li (99)
t—0 t
2 2
= / lim Vol [Vl du
By () t—0 t
2 2 2 2
= / lim [Vl Vo d,LL+/ lim [Vl Vel dpu.
R(w)NBq (o) 10 t S(u)NBy (z0) =0 t
Next, we claim
1 2 27 . |Vut]2 - |V“|2
Iltli%g o |V |* — |Vul|*dp = /Ba(xo) lim ; dp. (100)

We now prove this claim. For almost every z € F, '(S;(u)), by the chain
rule (cf. [KS1] (2.3iv)) and Assumption 5, we have

(Vo |?(z) =0 and |Vul?(z) = |[VV[*(2). (101)

By Assumption 3 (ii), this implies that for almost every z € F; '(S;(u)), we
can write by letting y = F;(z)

Vul'z) = [V (102
= Gu(V(x),v(x)VV - VV(x)
= R )GV W) o(F )i s (7 () 9 (),
For x € F; '(R(u)), again let y = Fy(x) and write

|V |* () (103)
= Gu(V(x),v(z))VV - VV(x)
+2G12(V(2), v:(x))VV - V() + Goa(V (), ve(x)) Vo, - Vg

1 J
= E )G (VIE 1), o))y s (7 () s (F ()

o8



#2070 GalV () o) () 5 () 55 ()
vt v v J
g () GV (). 00 i g 0) S (7 0) G ) 2 ().

Thus, |Vu|*(z) is an integrable function in the variables z, ¢ and, for al-
most every x € B,(xg), |Vuy|*(z) is a smooth function in ¢. Furthermore,
LIVu|? involves only second derivatives of V and first derivatives of wv.
Hence, £|Vu|* is bounded independently of ¢ by an L' function by the
metric estimates (29), (30), the Lipschitz continuity of u and Lemma 51.
We can thus conclude that the derivative of ¢t — E(u;) can be computed by
differentiation under the integral sign. This proves (100).
Since u is harmonic,

Er (o) — E(0)

0 = lim—>
t—0 t
gL 2 2
— %13%2 o) IVu|* — |Vu|” dp (104)
_ VUl — [V
= /Ba(xo) 11_1}1% ; dp by (100)

Vul?2 — 2 2 2
— / lim [V [Vl du +/ lim [Vl [Vl dp.
R(u)NBq ( t S(u)NBgy (zg) t—0 t

z0) t—0

To address the integral over Sj(u) N By(xo) on the right hand side above, we
consider the following two sets S;(u) N F, '(S;(u)) and S;(u) N F; (R (u)).
By Lemma 29 and (101),
[Vul*(2) = [Vu*(2) _ ) _ [VoP(e) = [Vel*(2)
t t

for almost every = € S;(u) N F;1(S;(u)). For x € S;(u) N FH(R(u)),

d(vi(z), Po) = d(vi(x),v(x)) < C|Fi(z) — x| < CtE(x)|z],
and hence the metric estimates (29) imply

|VUt\2($)
= GH(V, Ut)VV -VV -+ 2G12(V, Ut)VV . VUt + C‘tgg(‘/7 vt)Vvt . V’Ut
|VV|*(2) + [V > () + O(#?).
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Thus, for almost every = € S;(u), we have

‘\Vut\Q(m) —[VuP () [VulP() = [VoP()| o) (105)

t t
Since S;(u) is of full measure in S(u) by Assumption 3 (4i), (104) and (105)
imply
2 _ 2 2 _ 2
/ T et A / fi Ve = Vl®
S(u)NBy (zg) t—0 t R(w)NBy (zg) t—0 t

Combined with (99), we obtain

By (0) — i (o)
t—0 t

(106)

|VUt|2d,U,

Vo |2du + —
| t| a R(u)NBo (0) dt)tzo

-

lim —
R(u)NBy (z0) t—0 dt
For x € R(u) and t sufficiently small such that F;(z) € R(u),
GV, 0)VV - YV — Gu(V,0)VV - YV
+2(G12(‘/, vt)VV . V’Ut — Glg(‘/, U)VV : V'U)
+Gaoo(V, 1)V, - Vg — Goo(V,v)Vu - V.

|Vut|2 — |VU|2 =

Divide the above by t and take the limit as ¢t — 0. Integrating the resulting
inequality and combining with (106)

E? (o) — EY(0) p
) 0 — d G V V | Vd
g /R(u)mBg(mO) dt‘tzo 11( ,vt)V VVdu

li
t—0 t

d
2/ — | _ GV, V- Voud
" R(u)NBq (20) dt‘tzo 12(Vo0)VV - Vudp

d
1t oV, . d
" /73(u)ﬂBg(xO) dt‘t:o ( ’Ut)VUt Vudp
= (i) + (id) + (idd) 107)
where O(V,v) = Gaa(V,v) — h(v). We claim that
d
N 1 o |
g /R(u)ﬂB(,(xO) dt‘t:o n(V,v)VV - VV
= €%, Po)du+ Oo” / EIVoldu,  (108)
Folo) Bo(20)
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d
(i) = 2/ ] Gu(Vu)VV - Vudu
NBs(xo =0

y dtlt=
2 2
< of . (U,Po)du+ca/30(zo)g\vuy . (109)
and
(iii) = / i\ O(V, )V, - Vogd
' RN By (wg) dtlt=0 7T teH
< C ng(U,Po)dunLC’a/ \VolPdu. (110)
Bg (o) Bs (o)

Combined with (107), the estimates (108), (109) and (110) prove the Lemma.
Thus, our goal now is to prove these estimates.

We first prove (i). Let x € R(u) N By(zp). Then with
Ay~
y" = (L+E(0))" and = = £(a)a®
we have
d ; ; o ot Ay
£\tZOG11(V, v)VVE-VVI| < © ;%GH(V U)Z D ar

< Cold(v, Ky)|Vo|

which in turn implies

d
) = 1t G11(V, V.-VV
g /7€(u)m35(x0 dt‘tzo 1n(V,u)VV .V

< Ca/( cd(v, Py)| V|

< C'/ ) d*(v, Py)du + Co? / ( )§|Vv|2d,u.
(zo

Bo(x0

This proves (108).
Next, we prove (ii). First, we write

.. d

= 2/ w)NBe (o) %‘tngm(V: v)VV - Voudp
d

- 2/ NBy(z0) %‘tzoGH(V: v)VV - Vodu

d
+2 / o GV, 0) =] VV - Vo

= (ii)y + (id)s- (111)
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We can estimate (ii); in similar way as (¢) to obtain

} d
(i), = 2/ . xo)g\tzoew(v,vt)vv-vudu

< C’a/ Vol2dy. 112
Ba(m)ﬂ |“dp (112)

We now estimate (ii)2. First, note that since

v} (2) = o'
0xP oy

) (116D + 07 15 0)).

we also have

920 ov' o€

d 8%
at = 5275757 +a /3“ 7 9B

hence Lemma 52 implies

g d d avt
dt 9 lt=0 i

d(’U, PQ) d/l <C.

/Ba(xo)\{d(UvPO)ZO}

Thus, by the metric estimates (29), the Lipschitz property of VI and with
Al defined as in the proof of Proposition 37, we have

oVl d ot
BGL(V,v t d
/Ba(xo)\(AzLiUSj(u))g i )8 o dt OB lt=0 H
d ov?
< C d*(v, Py) |— = d
= 7 B o\ (A US; W) (0, ) s
d ot
< Ce / d(v, P) | 2 2% 1
B ‘ Bv(xo)\{d(v’PO)ZO} (U 0) dt axﬁ =0 ILL
S CEZ‘.
Thus,
ovl d ot
.. afB t )
(i) < o Gri(V,v) 5= 55|, dn+ Cei.
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Integrating by parts as in (59), we write

oVl d ovl
af ey 7t
/Ajl g GIZ(‘/’ U) 8.7}0[ dt axﬁ t—Od'u

oVt dv?
— i — af t
%)I—I}(l)[ AL \/_5@3(\/_9 or ~)Gr(V,v) dt‘

op O oV dv;

- e Yol O BGh(V U)a &« ‘t:odu

oV oy, dvt‘
dz® 9z dt lt=0"""

oV dvi 0
aBey t 7.
+ ~/8A2' Yol GI%(V7 U) axa dt ’t:O (n axﬁ) dE]

= Lim{(it)o1 + (@2)22 + (10)23 + (0)20]- (113)

- /.. 97Gn(v,0)

By following the proof of estimate (I7),, we obtain

(i), < Ca/ fd(v,P0)|Vv|du+Ca/B( Ivuan.

Bo($0) o (Zo
< C £d?(v, Po)dp + C’J/ |Vl (114)
BO’(:BO) G(ZO)
. . dv{n .
5axs$ in (113) instead of —* e nd(v,w) in

the corresponding expressmn (59) for (I1),. This accounts for the difference
of d(v,w) and |Vv| in the two estimates. We obtain (109) by combining
(111), (112) and (114) and Cauchy-Schwartz.

Finally, we estimate (ii7). We have

d
(1ii) = /R(U)QBU(IO) %‘t:om(v’ v)Vuy - Vo dp

d
= forma dtL V)TV

d
2/ Vo) o| Ve Vo du (115)
QBU :L‘o dt
= (4i1)1 + (i4i)s.

We derive an estimate for (7ii); in a similar way as in (/17); to account for
the difference in the C' estimates for O(V,v) from that of Gio(V,v). We
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obtain

) dvt, Ot 7
— af 2 O, (V. o) N
(222)1 /B(,(mo)\S]-(u)g ol ’LJ( >'U) dt ‘tzo ore OrP 1%
1 0t
< C / hi —a°| |[Vu|*d
< B (5008 1) Ehi e ’ ‘ X
S Co’/ \VZT 2d ) 116
Bo (20)\S;(u) Vel o

(Note that again we used the Lipschitz property of v in order to bound one
term of |Vv|.) Next, we derive an estimate for (i7i)2 in a similar way as in
(II1)y and (i) to account for the difference in the C! estimates of O(V, v)
and Gi2(V,v). We obtain

(iti)s < C (v, Py) + Co /

Bs (o)

( )§|VU|2d,u. (117)

o

Combining inequalities (115), (116) and (117) proves (110) and finishes the
proof. Q.E.D.

Lemma 53 implies the following analogue of the domain variation formula

(2.3) of [GS].

Proposition 54 Let u = (V,v) : By, (7.) — (R? x 5" dg) be a harmonic
map satisfying the assumptions of Section 5. There exist Ry > 0 and C' > 0
such that for zy € Sj(u) N Bex () and o € (0, Ro), we have

2

; / ov
i 92 — dX

Bl (0) L 2-n+Co  opee |Or (118)
B, (0) o B

Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of u.

ProoF. We will write £/ = E and I = I for simplicity. By Lemma 53,

d E(o)<C Ed* (v, Py)dpu + C’J/

- Vol?dpu.
dt ‘t:() Bo(x0) (z0) €| ’ H

o
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As in [GS] p.192-193, after letting £ approximate the characteristic function,
we obtain

2

(2—n+CJ)E(0)+J/ \Vv]2d2—20/ dv dx
0B, (0) 8B, (x0) | OT
>-C d*(v, Py)dy.

Bo‘(xo)
Combining the above with (79) and dividing by 0 E(0), we obtain

2

ov
2 —| dX
FE'(0) N 2—n+Co < /630(300) or d _c I(0)
E(o) S E(o) T oE(0)

Proposition 43 asserts that there exists Ry > 0 such that

” I(o)
oE(o)

> —20, Yo € (0, Ry).

The assertion immediately follows from combining the above two inequali-
ties. Q.E.D.

9 Order Function

The main result of this section is to prove the following existence property
of the order for the singular component of a harmonic map.

Proposition 55 Let u = (V,v) : By, (7.) — (R x 5" dg) be a harmonic
map as in (17). For x € 8j(u)N Bex () and 0 < 0 < 09 =: sup{0o : B,(z) C
By, (z4)}, assume that v is not constant in any neighborhood of x and define

Ord*(z,0) = U[Eﬂég) (119)

Then, there exist constants C' > 0, C; > 0 and Ry > 0 such that for any
x € Sj(u) N Bax (x4), there exists a function o+ J,(0) with the properties

e %(0) < Jo(0) < I%(0)e®?, Vo € (0, Ry) (120)
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and
Co 9 E;:)(O)

ore NACE is non-decreasing in (0, Ry). (121)
Thus,
Ord’(x) := 511)1(1) Ord’(z,o)
exists and

-0 E:(0)

I3(0)
The constants Cy, C' and Ry depend only on the constant in the estimates
(29)-(33) for the target metric G, the domain metric g and the Lipschitz
constant of u.

Ord®(z) < e+

, Vo € (0, Ry). (122)

PRrROOF. Fix z € S;(u). For notational simplicity, let I(o) = I¥(o) and
E(o) = EY(0). Recall (cf. [GS] p.193) the equality

0

I'lo) /83[,(1’) Edz(v’ FPo)dx n—1+0(c?)
o) T(o) * - (123)

where O(o) depends only on g. Combining (123) with (118), we obtain

B G (124)

2
dZ)
+C.

@
or

By (z) or 8B, ()

(E(a) /8 9 (v, P)ds — 21(0) /

N E(0)I(0)
Now note that (123) implies

a 2 /
— <
/880(96) (v, Po)dE < I'(o)

for o > 0 sufficiently small. Furthermore, Lemma 45 (cf. (79)) and Proposi-
tion 43 imply that

/B o, P P < C(o1(0) + 0" E(0) < Co’Blo) (125)
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for o > 0 sufficiently small. Thus, Proposition 40 implies that

2

0 ov
E —d*(v, Py)d% — 21 —| d¥
(0) /6?30(95) 87"d (v, Fo)d (o) /830(:):) or d
<! / 9 P, Pyas+C [ dw, Po)d(o, Po) + |Vl
— 2 \JoB,(x) Or v 1o Bo(z) v FoRE, o vhaH
X / 9 (v, Py)ds —21(0—)/ o[ s
8B, (z) Or 0 8B, (z) | OT
0 2 o’
< oI / G dw. Py dx —21 / 2N as.
- () 9Bq () 8rd(v b)| @ (0) 0B, (z) | OT d

+Co*E(0)I'(0)

< Co*E(o)I'(0) (126)

Combining (124) with (126), we conclude that there exists Ry > 0 such that

+C, forae o€ (0,Ry). (127)

Note that C' and Ry depend only on the constant in the estimates (29)-(33)for
the target metric GG, the domain metric g and the Lipschitz constant of w,
and thus can be chosen to depend continuously on z.

Inequality (127) was first considered in [Me] formula (15) and subse-
quently in [DM1] formula (3.22). The existence of the limit follows as a
special case of [DM1] Corollary 3.1. Note that since v is Lipschitz, we
have by [GS] p. 200-201 that in the definition of the order we can take
I(0) = I(0,v(0)) instead of I(o,Q,). Therefore, if we set

Jo(0) =I(0)exp (C’ /OU 32;; log ](s)ds)

(note that the error terms in [DM1] are O(c) and not O(c?), and this ac-
counts for the difference in the definition of J(o)), then (120) follows from
[DM1] formula 3.32 and (121) follows from [DM1] Lemma 3.7. Inequality
(122) follows immediately from (120) and (121). Q.E.D.
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Remark 56 The above Proposition works in great generality, and it implies
that if a Lipschitz map satisfies the domain, the target variation formulas
and the lower order bound, then it also satisfies the monotonicity formula
(127) and has a well defined order. Formulas (120) - (122) follow as a formal
consequence of (127).

Several corollaries of Proposition 55 are listed below.

Corollary 57 Let u = (V,v) : By, (7,) — (R x Y2¥77 dg) be a harmonic
map as in (17) and xo € Sj(u) N Besx (z4). If {vs} is as in Definition 44
at x = x9, then for any sequence o; — 0, there exists a subsequence of
{v,,} converging locally uniformly in the pullback sense to a harmonic map
vy : B1(0) — Yo from the Euclidean ball unit ball into an NPC' space and
Ord®(zg) > 1.

Proor. By Proposition 55, the quantity ogg?g) is bounded above for
o > 0 small. Hence the first assertion follows from Lemma 50. Furthermore,
combining (90) with the monotonicity property of the harmonic map vy and
Proposition 55, we obtain

Y (0 . Evgi 1 EY(1
Ord’(xzg) = lim 0:L5,(01) = lim 30_( ) > ) () > Ord™(1) > 1.
a0 Iv (07) =0 I37(1) 190(1)

Q.E.D.

Definition 58 The harmonic map vy : B1(0) — Yj in Corollary 57 is called
a tangent map of v at xo. A map vy : (B1(0),0) — Yy into an NPC space is
said to be homogeneous map of degree o if

d(vo(Ax),v0(0)) = A¥d(vo(x),v0(0)), Vz € dB;1(0).

and X € [0,1] — vo(Az) is a geodesic for all z € 9B;(0). We shall prove be-
low (cf. Lemma 62) that vy is a homogeneous map of degree o = Ord™(0) =
Ord’(x).

Corollary 59 Let u = (V,v) : B,,(z,) = (R7 x Y2"7,dg) be a harmonic

map as in (17). If v = By on any open subset of B%*(x*), then v = Py in
B (y).
2
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PROOF. If v is not constant in Bex (z,) but identically equal to P on
an open subset of Bex (1), then there exists a ball B C Bex (z4) such that
v = P, in the interior of B, but for some zy € 0B, v is not constant in any
neighborhood of zq. Let vy : B1(0) — Yj be the tangent map of v at xg. Then
v is identically constant on half of B;(0) and this contradicts Proposition
3.4 of [GS]. Q.E.D.

Corollary 60 Let u = (V,v) : B, (x,) — (R/ x Y5¥77, dg) be a harmonic
map as in (17). Then there exists A > 0 such that for x € S;j(u) N Bex (24),
we have

Ord’(xz) < A.

PROOF. Since

o d 7
/ ’ s log I)(s)ds = oglog I, (0¢) — o log I (o) — / i log I2(s)ds,

(e

the map = — J,(0) is a continuous map and J,(c) # 0 by Corollary 59.
Thus the map x +— %(S) is continuous, and the result follows from the fact

that a non-increasing limit of continuous functions is upper semicontinuous.
Q.E.D.

Corollary 61 Let u = (V,v) : B, (x,) — (R/ x Y5¥77,dg) be a harmonic
map as in (17). Then there exist C > 0 and Ry > 0 such that for any
z € Sj(u) N Bex (24), we have

(o) E;(0)

and o — €7

Co
ogrre 0—n—1+2a O-n—2+2a

are monotone non-decreasing in (0, Ry) where a = Ord"(xo) > 1. The con-
stants C1, C' and Ry can be chosen to depend continuously on x and depend
only on the constant in the estimates (29)-(33) for the target metric G, the
domain metric g and the Lipschitz constant of u.

PROOF. Let I(0) = IY(0), E(c) = EY(0) and J(o) = J,(0). Combining
Proposition 40 with (125) and Corollary 60, we obtain

9
< g2
2B(0) < /8 oty o 0 P+ 01 (0) + CoB(o)

n—1
o

< I'(o) — ——I(o) + ClI(0).
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Since Proposition 55 implies
e “al(0) < e “al(o) <oE(0c), Vo€ (0,Ry),
we obtain
2al(c) < ol'(c) — (n—1)I(0) + Col(o), Vo € (0,Rp).

In the above the constant C' depends as before on the constant in the esti-
mates (29)-(33) for the target metric G, the domain metric ¢ and the Lips-
chitz constant of u. By rearranging, we obtain

dlog< I(0) )ZI(J)_n—l—i-Zozz_C’ Vo € (0, Ro)

do on—1+2 I(o) o

Combining this with inequality (127), we obtain

> —C, Vo € (O,R(])

d 1 E(o) \  E'(c) n—-2+2a
do Bl\gn2e2 )~ E(o) o

The above two inequalities immediately imply the assertion of the Corollary.
Q.E.D.

Lemma 62 Let u = (V,v) : B,,(z,) = (R? x Y2*77 dg) be a harmonic map
as in (17). A tangent map vy of v at ¥y € Sj(u) N Bex (x4) s a homogeneous
map and Ord™(0) = Ord®(xo).

PROOF. Assume {v,,} converges locally uniformly in the pullback sense
to a tangent map map vy : B1(0) — Yy. Fix R € (0, i) For each i, we choose

r; € (%, R) such that

2 [Ro; 2
V2d2<—/ / Vol2dSdr < —— E°(Ro,).
/83,,.1.%@0)' vl ~ Ro; JE GB,-(mO)| vl = Ro (Fos)

7

Combined with Corollary 57 and Corollary 61, we thus obtain

CR™!
/ IVo|2dS < E*(c)). (128)
OBro,; (w0) 0i
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Here and henceforth, C' will denote an arbitrary constant independent of
i. Now note that the map v is not a competitor of the harmonic map , w
in the domain B, ,,(x¢) because ,,w does not necessarily agree with v on
OB, (20). Therefore, we “bridge” the gap between v and ,,w using [KS2]
Lemma 3.12 to define a map ,,%w with the same boundary value as v. More
precisely, for p > 0 small, we let F' : B,,,,_,(0) = By,s,(%0) be the scaling

map F(z) = zo + ;2% (z — x) and set
3(z) = vo F(x) for z € B,,5—p(20),
=\ W) for 2 € Broy(w0)\Bru,_p(z0)

where

W Brigi(x(])\BTiUi—p(‘TO) = aBTiUi(a;O) X [07/)] — S/Qkij (129>

is the interpolation map between , w5 and v[yp
K3

04 (1'0) oy (330)

Wiy, s)=(1- Z)v(y, p) + Z o W(Y, p)-

Thus, W = voF on 0B,,,,_ (o) and W = ,,w on 0B,,,,(xo). The energy of v
is close to that of v inside the ball B,,,,(x¢); more precisely, since | Boeo:—p(w0)
and v| B (0) differ only by scaling, we can bound the difference by

EE(T,L'O'Z‘) — EU(T’Z'O',L)

2
< ( ;05 ) Ev<7’7;0'i)—Ev(TiU7;)+EW

ri0; — p

C
< p EY(rio;) + EV
Ti0;
CpR
< P B+ BV (130)
0;

3
provided p small compared to o; (in fact, later we set p = 02). Furthermore,

by [KS2] (3.23)

Cr |Vul* 4+ |Vq,w|?dY + ¢ d*(v, 5,w)d%. (131)

EV <
2 JoB,,o, (z0) p JOBy;o, (x0)
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(The constant C' comes from the fact that the metric in the annulus does
not correspond with the product metric via (129).) Since ,,w is a harmonic
map,

n—1
/ Vo, w[?dY < cR E¥(0y). (132)
aBn‘Uz‘(IO) 7
Applying (128) and (132) in (131), we obtain
n—1
EV < e pE”(Ji) + C/ d* (v, ,w)d>. (133)
& P J9Br;q;(x0)

The fact that v is a competitor for ,,w, (130) and (133) imply

E"iw(riai) — EU<T1'O—Z')
< E7%(rio;) — E¥(ri05) + E°(ri0y) — E*(ri0;)

CRn—l
< PEY(07) + CEY
i
< CRnflp

E*(0;) + C/ &2(v, 5 0)dY.
g; P JOBr,s,;(z0)

Thus, by rescaling and applying Corollary 49 and the uniform bound E"i (1) <
2a,, we obtain
CR! Co;
B (r) — B (r) < ——LRri(1) 4 =2
0; P
CR"1p CR"'o?
+ .
0; p

/ & (v, w,, )5
8B7»i (QC())

(S0

Thus, by choosing p = o2, we have

%

1

EYi(r;) — E"i(r;) < CR" 'o?. (134)
We can similarly define

o) = | wwoF@) for € Brugi—p(0),
o, W\T) = W(I') for x € BmUz’(mO)\B”Ui_p(l‘O)

where W is the interpolation map between ,,w and v so that W =, woF on
0B;.0i—p(z0) and W = v on 0B,,,,(x¢). The energy of 4 = (V,,,w) is close
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to that of w = (V,,,w) inside the ball B,,,,; more precisely, we can bound
the difference using Lemma 29 by

Eﬂ(riai) — Eﬁ(ﬁ'ai)

2
< ( ;05 ) Eoiw(rio-i) _ Eoiw(’l"iO_i) + EW

ri0i —p
+C d*(v, Py) + d*(,w, Py)dp
Brio'i(z())
CR"1 —
< P g (r00) + EV + C . A (v, Py) + d(,,w, Py)dp.
0-7, B'rio'i o

Integrating inequality (80) over B,.,, (7o) and using the fact that u is a com-
petitor for the harmonic map u, we obtain

E(ri0;) — E7"(ri0:) (135)
< E“(ryo;) — Ery0;) + C A d*(v, Py) + d* (5w, Py)dp
< E“(ryo;) — E"(ri04) + Eﬁ(r;a;) — E(rio;)
+C . d*(v, Py) + d*(o,w, Py)dpu
< CR;_IPEU’M(TZ‘U@') +CEV +C B (o) d*(v, Py) + d*(4,w, Py)djt.

We can bound EW in an analogous way as E", hence by scaling, applying
Lemma 45 and Lemma 46, noting that E*7i(1) < E'i(1) < 2« and letting
3

p = o2, we obtain
EYei (Tl) — B (TZ)
CR"'p CR"¢?
+

L+ C d*(vy,, Py) + d*(w,,, Py)d
B o p * By, (o) (o0, o) + & (wer, P}
CR! CR" 'o?
< Py % + CR"o?
Oj P
3
< CR"'o?. (136)

Combining (134) and (136),
(1) = B (r)| < CR'o7, (137)
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and we can deduce

Sole

ri(Evi(r;) — Co?) < riE"ei(r;)

ri(E%i (1) + Co?)
[Yoi (Tz) - [Wou (Tz) '

[Woi (7’2)

< (138)
Recall that w,, is a sequence of harmonic maps with uniformly bounded
Lipschitz constant in B;(0) (cf. (132)). Thus, after passing to a subsequence,

R
ri — 1o € (5, R)
and by [KS2] Proposition 3.7 and Theorem 3.11 I*7i(r;) — I1"(ro) and
Evei(r;) — E"(ry). Furthermore, I (r;) — 1"(ro) by Corollary 49. There-
fore

1 1
. Ev"’i . :I: 5 I'UUZ' . .Evai . . 5
lim rl( (Tl) Caz) — lim (7’@) T (rz) + Crzal
imroe i (ry) imoo \ IWei (1) Ivoi(r;) — I°i(ry)
= llm /rl Evai (TZ)
i—oo [V (rl)
’ rio; EY (r;0;)
= 1 "

(139)

On the other hand R was arbitrary and ro € (£, R). This implies that on
the one hand that Ord’(z¢) = Ord™(z,) and that v, is a homogeneous map
of degree a = Ord"(xy) by the monotonicity properties of the harmonic map
vo and [GS] Lemma 3.2. Q.E.D.

Lemma 63 Let u = (V,v) : B,,(z,) = (R? x 2" dg) be a harmonic map
as in (17), xo = 0 € Bex (2,) N Sj(u) and B,,(0) C Bex(x). For o € (0, 09)
let vy, w, and g, be as in Definition /4. If o; — 0 is a sequence such that
v, converges locally uniformly in the pullback sense to a tangent map vy,
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then there exists C > 0 such that for any sequence {x;} C o;'SN B%(O) and
R € (0,4), there exists r; € [£, R] such that

|27 (i) — B2 (ri)| < CR™ o2,

PROOF. This assertion can be proven by a similar argument as the proof
of inequality (137). Q.E.D.

10 The Gap Theorem

First recall the e-gap Theorem 6.3 of [GS] which states that if X is a F-
connected complex and K a bounded subset of X, then there exists ¢g > 0
such that for any harmonic map u : (B1(0),9) — X with u(B;(0)) C K,
either

Ord*(0) =1 or Ord“(0) > 1+ e. (140)

This gap property also holds for a DM-complex.

Theorem 64 If (Y,dq) is a NPC DM-complez, K is a bounded subset of Y,
there exists €g > 0 depending only on K and n such that for any harmonic
map u : (B1(0),g9) — (Y,dg) with u(0) C K,

Ord“(0) =1 or Ord“(0) > 1+ €.

PROOF. On the contrary, assume there exists a sequence of harmonic
maps {u;} with 4;(0) C K and

1
1 <Ord"(0) <1+ 7 (141)

Let u;, be the o-blow up map of u;. By the monotonicity properties of u, we
can choose o; — 0 such that

1
E%ei(1) <14 - and ["i(1) = 1.
i

Since K is compact, by taking a subsequence if necessary, we may assume
that u;,, maps into a single tangent cone at P € K, i.e.

Ui, = (Vi, v5) - B1(0) = (R x Y377 G).
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Here, the metric G; is the appropriate blow up metric at «;(0) as in (10). We
may also assume (by taking a subsequence if necessary) that u;(0) — Qo € K.
Since (G is a smooth metric up to its boundary on each simplex and o; — 0,
G; converges smoothly to a Euclidean metric Go. Finally, we may assume
that j is the maximal integer such that wu,,, can be represented in the above

form; i.e. there does not exist j* > j and ¢ € (0,1] such that u,,

B, (0)
maps into a cone RY x ZF7'. Let u; = (Vis, vix) be a tangent map of u; at
0. Here, Vi, : B1(0) — R/ is a harmonic map into Euclidean space. Since
1 < Ord*+(0) = Ord*(0) < 1+ %, we conclude that V;, = 0.

The maps {u;,, } are uniformly Lipschitz with respect to Gy and the en-
ergy of w;,,, with respect to Gy is within ¢; of minimizing where ¢, — 0
as i — oo. Thus, (after taking a subsequence if necessary) we can as-
sume that u;,, converges locally uniformly to a non-constant harmonic map
up = (Vo,v0) : B1(0) — (R/ x YZk_j, Gy) and the energy of u,, B,(0) COLVETges
to that of ug|p o) for all v € (0,1) (cf. [KS2] Theorem 3.11). Thus,

rE"(r) _ lim rEYei(r)

—= =1 1).
Tol) ~ AW e ) , Vr e (0,1)

This implies that ug = (Vp,vp) is a homogeneous map of degree 1 (cf. [GS]
Lemma 3.2). We claim that vy is a constant map. Indeed, if vy is not a con-
stant, then vy is effectively contained a subcomplex R! x igk_j L of RI x Y2k_j
(cf. [GS] Proposition 3.1 and Lemma 6.2). By [GS] Theorem 5.1, there exists
ro > 0 such that w,, (B, (0)) € RIT x YF 77 for i sufficiently large. This
contradicts the maximality of j proving the claim. Since vy is a constant
map, Vf is a non-constant map. The proof of Lemma 51 implies that the
C*? norm of V; is uniformly bounded in B 1 (0). Hence (by Arzela-Ascoli and

taking a subsequence if necessary), we may assume that % converges to
g%. Thus, Vj, is not a constant map for sufficiently large ¢, a contradiction

to the conclusion in the previous paragraph. Q.E.D.

As a consequence of Theorem 64, we have the following

Proposition 65 If u : (Q,9) — (Y,dg) is a harmonic map from a Rie-
mannian domain into a DM-complex and u = (V,v) : (By,(2.),9) = (R7 x
Y2* dg) a local representation as in (17), then there exists ¢ > 0 such that

Ord“(zo) > 1+ €, Vg € So(u) N B%*(a:*)
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and
dimy (So(u) N B%*(x*)) <n-—2.

Proor. By the interior Lipschitz continuity of u, we can choose a
bounded set K such that u(Be (z,)) C K. The first assertion follows from
Theorem 64. A tangent map u, of u maps into an F-connected complex, so
dim (Sp(us)) < n — 2 by [GS] Theorem 6.4. Combining this with the first
assertion, we can apply Theorem 82 of Appendix 2 with & := Sp(u)N Bex ()
to prove the second assertion. Q.E.D.

Additionally, we need an analogous statement for the singular component
map.

Proposition 66 Under the same assumptions as in Proposition 65 and un-
der the assumptions of Section 5, there exists eg > 0 such that

Ord"(xo) > 1+ €, Vag € Sj(u) N Bex (x4)

and
dimy (Sj(u) N Bex (x*)) <n-—2.

Proor. By Corollary 57, Ord’(x¢) > 1. As in the proof of Theorem 65,
choose a bounded set K such that u(Bex(z,)) C K. The proof closely
follows that of Theorem 64, and we assume to the contrary that there exists
a sequence of points x; € S;(u) N Bex (24) such that

1
1 <Ord’(z;) <1+ =

On the other hand, the proof here differs from that of Theorem 64 in that
instead of using a o;-blow up map of u; (as done in Theorem 64), we use the
o;-blow up map v; := v,, », and the o;-approximate harmonic blow up map
W; = Wg, 4, of v at z; (cf. Definition 44). Indeed, by Proposition 55, we can
choose o; — 0 such that

1
EY (1) < E'(l) <1+ - and, d*(w;, Py)d%; = 1.
i 8B1(0)

We can thus argue as in the proof of Theorem 64 to obtain a homogeneous
degree 1 harmonic map vy : B1(0) — (Y5 7, d,) into a F-connected complex
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as a limit (under uniform convergence on compact sets) of the sequence {w;},
and hence of {v;} (by Corollary 49). Furthermore, the space (Y3 7 dj) is
essentially regular by [GS] Theorem 6.3. Therefore, if Ord"(0) = 1 then
applying Proposition 72 of Appendix 1 with [ = vy, we conclude that for any
1 sufficiently large

sup d(v;, Py) > As for s > 0 sufficiently small
B.(0)

or equivalently,

sup d(v(o;x), Py) > Av,,s for s > 0 sufficiently small. (142)
Bs(0)
Fix ¢ > 0 sufficiently large, identify z; = 0 and let v,, = I;_n(fﬁ), Kk = %

k3

Multiply equation (142) by p;;i. Then, by the monotonicity property of the
harmonic map u, we then have for ¢ > 0 sufficiently small,

sup d(vyq, (), By) = p;;id(v(aaix),Po)
B1(0)
> /’l’;UlrL)\VUzO-
Ay, | (o) Tt

o \ 1*(o0y)

> K L
— \eelu(1)

Thus, there exists a sequence o; — 0 and a tangent map u, = (Vi,v,) of u
at z; such that by replacing o by ¢; in the above inequality, we obtain

1

d(vi(z), By) > K T (1)

>0

We can thus
+ € for Ty €

which contradicts Lemma 20 and the fact that z; € S;(u
conclude that there exists ¢y > 0 such that Ord"(zg) >
S](u) N B% ($*>

For the second assertion, let S := S;(u) N Bex (). The map v and the
set S satisfy Properties (P1) and (P2) of Appendix 2. Indeed, (P1) follows
from Proposition 55 and (P2) follows from Corollary 49, Corollary 57 and

).
1
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Lemma 63. Furthermore, Proposition 66 implies that the order gap prop-
erty of Definition 77 in Appendix 2 is satisfied. Since a tangent map vy is a
harmonic map into an F-connected complex, [GS] Theorem 6.4 implies that
v satisfies the codimension 2 property of the tangent map with respect to S
of Definition 81 in Appendix 2. Thus, the first assertion and Theorem 82
implies dimy, (Sj(u) N Bex (SC*>) <n—2. Q.E.D.

11 Proof of Theorems 1 - 4

We now turn to the proof of Theorem 1. Fix a j € {ko,...,1} and let
u=(V,v): (B, (2.),9) = (R x ;7 dg)

be a local representation of a harmonic map into a DM-complex (cf. (17)).
Define the following:

STATEMENT 1[j]: dimy (8(u) N B%*(x*)) <n-—2.

STATEMENT 2[j]: For any compactly contained subdomain € of Bex (z),
there exists a sequence of smoth functions {t;} with ¥; = 0 in a neighbor-
hood of S(u) N Q, 0 < ; <1, ¢ — 1 for all z € Q\S(u) such that

lim /Q [V Vu|[Vapy| dp = 0. (143)

Our strategy is to prove STATEMENT 1[j] for all j € {ko + 1,...,1}
which immediately proves Theorem 1. Similarly STATEMENT 2[j] for all
j€{ko+1,...,1} proves Theorem 2. We proceed with backwards induction
on j. In order to use the results of the previous sections, we have to satisfy
all the Assumptions of Section 5 and thus we have to prove both statements
at the same time. The initial step is the case when j = kg 4+ 1. Since
Sko+1(u) = 0, Proposition 65 immediately implies STATEMENT 1[ko + 1].
Furthermore, using order gap property for u asserted in Proposition 65, we
can apply the same proof as in [GS] Lemma 6.4 (with S replaced by Sy(u))
to prove STATEMENT 2[ko + 1].

For the inductive step when j € {ko,..., 1}, we assume that STATEMENT
1[I] and STATEMENT 2[{] hold for [ > j. Now, the assumptions of Section 5
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are always satisfied except Assumption 3 (i7) and Assumption 6. However,
by combining STATEMENT 1[j + 1] and Proposition 65 we obtain that As-
sumption 3 (i7) holds. Furthermore, by combining STATEMENT 2[5 + 1] and
a partition of unity argument Assumption 6 also holds.

Under these assumptions, we now verify STATEMENT 1[j] and STATE-
MENT 2[j].

PROOF OF STATEMENT 1[j]. Proposition 65, Proposition 66 and STATE-
MENT 1[j + 1] immediately imply STATEMENT 1[j]. Q.E.D.

Before we prove STATEMENT 2[j], we need some preliminary results. Let
2 be as in STATEMENT 2[j]. First, we define the sequence of functions {¢;}
as follows: For ¢ € {1,2,...}, STATEMENT 1[j] implies that we can choose
a finite covering {B,,(x;) : J = 1,...,I'} of the compact set S;(u) N Q
satisfying

4 1
S < L
J=1 20

Furthermore, let

Soj(u) = Sp(u) N v HPy).

Proposition 65 implies that we can choose a finite covering {B,,(z;) : J
I'+1,...,1} of Sp;(u) N such that

! 1
Yoo < %
J=U'+1 t

Thus,
1

l
S <o (144)
J=1 b

Let & s be a smooth function such that & ; = 0 on B,,(zy), & = 1 on
O\ By, (27), 0 < &y < 1, [V& [ < 2 and [VVE | < % Define &; by
setting

& =min{&1,..., &} (145)
Thus, & = 0 in U)_, By, (z;) (which contains (S;(u) U Sp;(u)) N Q), & =1
outside U,_; By, (7y) and 0 < & < 1. Since |VE& ;| < X4, V& | for all
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I=1,...,], we have

!
V&| < Z V& . (146)
J=1
Lemma 67 For {&} defined by (145) and any n € CX(Q),
lim [ V¢ - V|Vul|? du = 0.
i—00 JO)
PROOF. Let ¢y > 0 be smaller than the ¢, that appears in Proposition 65
and Proposition 66. Fix constants ¢ < 2, p > 2 and D > 0 satisfying
1 1
—+-=1, —24+D<—q and D <e. (147)
P qg

We can write the gradient of the energy density function on the regular
set (thus outside the singular set which we already know to be Hausdorff
codimension at least 2 by STATEMENT 1[j]) as

oviovy oV ovd o' O’
2 _ B . 5
V|vu| \Y <g <GIJ<U> ox b + QGI](U) O OB + GZ](U’) O 8[E6>>
oviov/ oV ovd
— ap ap A
- (g Crr) g mﬁ) oy (g 2 () aw) 5P
oV _ (o ovt v
aBey (N 7 aBey (N 2T
+29*°Grj(u) axaV <8x5> +V (g G”(“)axa 8:155) : (148)
The first three terms on the right hand side above can be bounded by
oviov’
ap
|v (g GIJ(U) Or 82:13)‘
< |V (¢ Griw)| IVV +2[9°°Gry(u)| [VV] [VVV]
< C+C|VVV], (149)
VLN ovd
af )

IV (9°°2G 1 (w))| [VV] Vo] + |g72G 1 (u)| VYV ||V

<
< C+C|VVV] (150)
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and, using the metric estimates (29),

N ovl _ (ov
|29 ’BGU(U) O \Y (a,],”B)

IN

Cd*(v, Py)|VV| |[VV

< COd*(v, Py)|VVul. (151)

(B) = —/nvgi-wvuﬁ dp
¢ [ Ve du+0/ V& VYV dy

er (z)

IN

+C/ V& |d (v, By) |V V| dps
vt Ov?
- [ v&-v ( () 2 W) dy
¢ [ IV&l du+C [ V&l VOV dy
. 2 . 2
+C [ 1V&ld* (v, Po)[VVul du+C | |5&] [Vof? dy

=t (Bi1) + (Bi2) + (Bis) + (Bia)- (152)

The first term on the right hand side of (152) can be estimated using (144)
and (146) as

Bi, <CZ/ |V§1J|du<02/ <

Bgr] xJ J=1 B27"] xJ

IN

¢
1

The second term can be estimated using Lemma 51, (147) and (144) as

(Bio) = [ IV&IIVVV] du

< C(/QWVVP”) (/ Ve, | du) ;
< o[ Ievvp )’ ( )|V5¢,J|q)q
)

C(/|VVV|p du (Z - q)

IA
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1
< c3)
i
The third term can be estimated using Lemma 52 and (146) as

(Biy) = C/|V§i|d2(v,Po)|VVu] du

IN

</ |V&2d? (v, Py du) (/ d*(v PO)|VVu|2 du) :
(Z /BQU o) V& 5 12d? (v, Py du> (/ d*(v, Py)|VVul? du)1

IN

IN

c(89) (f#erwt a)

IN

z 3
C (Z T?) (by Lemma 52)
J=1

< 0(1,)2.
7

The fourth term can be estimated as follows.

(Bia) = /Q]VU]Q\A&]du

= C/Q IVo|[A&] dp
< ¢ [ Vol [VV& dp
< dy
= CZ/ |Vo||[VV§ 5| dp
Bar;(x)
s ¢ Vv2d>2< vvi2d>2
Jzzzl </Bzr,](m1) ‘ | I /Ber(xJ) | 5,J’ 0
<

( [ Vel du)
BQTJ (Q?])

U )
C Vul“d
ng </BQTJ (z7) | U| ﬂ)
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l % 2
+C / w%z) (/ YV, 2d>
> ( o (5] |Vul~dp B (5) IVVEi ™ du

J=U+1
l nteg n—4 l C
< CY ryt ot =0 <=
J=1 J=1 !

where we have used monotonicity property (2) for the harmonic map u and
Corollary 61 for the component map v to estimate the energies of u and v in
the balls {Ba,,(z,)}. Thus, combining the estimates for (B, 1), (Bia), (Bi3)
and (B;4), we obtain

my<o(l)

1
and completes the proof. Q.E.D.

Lemma 68 The functions |VVu| and |Vul? are in L2, and W> respec-

loc
tively.

Proor. By following the proof of Gromov-Schoen Lemma 6.6 and us-
ing the inductive hypothesis STATEMENT 2[/] for [ > j, the Eells-Sampson
inequality holds distributionally on Q\U,_, B,,(z). Thus, for n € C.(Q2),
n >0 and {&} as in (145), we have

[ eIvuldn (153)
< —/V(nsz) : V!VUIQCZMC/UQ&?\W\ZOZM

< —2/7725N& : VIVUPdM?c/&?Wn : VIVUPdHc/nZ!VUqu-

Applying Cauchy-Schwartz, for any € > 0,

/éfnvn V| Vaul® dp
< 2/§3n\vu|w.ku\ dy

1
< = [EIVnPIVuld + ¢ [ €V Vulap.
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Thus, combining the above two inequalities,
(1= ¢) [ €IV Tuld
< —2/772@-% V|Vl du + i/|V77|2|Vu|2du + 0/772|Vu]2du.
Let Ba.(z) C 2. Let n be such that n = 1 in B,.(z) and n = 0 in Q\B,(z).

Letting ¢ — oo, applying Fatou’s Lemma and the left hand side of (153) and
Lemma 67 to the first term on the right hand side of (153), we obtain

[ IVVuPde < [nIvuldy
Br(z)
C
< ;/|V77|2|Vu|2du+C/172|Vu|2d,u.
Thus, we obtain a local L? bound of [VVu|. Since |[V|Vul?| < |Vu||V|Vul| <
C|Vu||VVul, we conclude that |Vu|? € W22, Q.E.D.

Lemma 69 Ifu: (Q,9) — (Y,d) is a harmonic map, then the inequality
1
§A’VU|2 > |VVul? — c|Vul?

holds distributionally.

PROOF. By Lemma 68, |V|Vu|?|, [VVu| € L3,.. Thus, the Dominated
Convergence Theorem implies

lim [ 72|V Vuldy =0
11— 00

and

1i>m/ffvnQ-V|Vu|2d,u:/QVUQ-V\VuF dp.

Combining this with Lemma 67 and letting ¢ — oo in (153) proves the de-
sired differential inequality. Q.E.D.
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PROOF OF STATEMENT 2[j]. Let ¢g > 0 be smaller than the ¢, that
appears in Proposition 65 and Proposition 66. Fix constants ¢ < 2, p > 2,
0 >0 and D > 0 satisfying

;—1—;:1, D<d<e and —2+D < —q— qo. (154)

Let Q2 be a subdomain compactly contained in Bex (x,). For afixed i € N,

we define the function v; as follows. Below, we will use C' to denote any

generic constant that depends only on the dimension of n of the domain, the

Lipschitz constant of u in 2, and the L' norms of |VVV [P and d(v, Py)|VV0|?

(cf. Lemma 51 and Lemma 52). Let {B,,(z;) : J = 1,...,1} be the cover

defined in the the proof of Lemma 48 satisfying (144) and let ¢ ; be a smooth

function such that ¢; = 0 on B, (x;), p;s =1 on Q\By,,(zs), 0 < ¢y <1,
Vs < % and |[VVy,| < % Define ¢ by setting

e =min{yy,..., ¢}

Thus, ¢ = 0 in U'_, B,,(z;) (which contains (S;(u) U Sy;(u)) NQ), ¢ = 1
outside U’_, By, (zy) and 0 < ¢ < 1. Let

l/

0y = Q\ U B, (xy).

By the inductive assumption STATEMENT [2(j-1)] with the choice = (),
there exists v satisfying

N 1
/Q [VVul Vil < . (155)

We define ; := 2.
We will now prove that {v;} satisfies the assertion of STATEMENT 2[j].
To see this, we need to estimate

L1vullVilde = 2 [ G9VVullVilde+2 [ $%|VVul[Veld

< 2/Q|VVU||V1/AJ|d,u+2/Q\VVu||Vg0|d,u

= (A)+ (B)
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where (A) < 2 by (155).
We next estimate (B). To do so, we define a smooth function such that

0 |ZL’ — .%‘J| < %’
Aj(z)y =4 r7° ry<|v—mxs]<2r,

0 |I — .TJ| > 3ry

and
IVA;| <4r;'7° and |[VVAy| < 4r;%7°. (156)
In By, (x;)\B,,(x;) (and hence in the support of |V¢l),
AT <78,
Define
A =max{Ay,...,As}.

Then

A =min{A7 AT <A<, VI =1,. L (157)
Since |[VA;|9 < S |[VA|? for any T = 1,...,1, we have

l
q q
[ 1w < J}Zjl/QWAJ\

l
< CY T (by (156))
J=1

- ¢ (158)

1

Similarly, |[Ver|? < 34_, [Vs|? for any I =1,...,1, we have
I
LIvePa < 3 [ (9e,at
0 = Ja

l
- Z/ |VQ0J|2A_1
J=1 BQ’I‘J(Z“])\BT"](Z‘J)

l
Cy e (by (157))
J=1

< f (159)

IN
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The last inequalities of (158) and (159) use (154) and (144). Since the func-
tion A is with compact support, we obtain by Lemma 69 and (159) that

(B) = 2 [ IVVul|lVe| du

< 9 </vavu\2/\ du)Q (/Q|w|2A-1 du>2

1 3 O\
sy anita)' (9
< 2( 2/QVA V|Vl du+c/QA]Vu] )" (~

(5)

We will now estimate (Bj) and (By). First,

N[

= 2((B1) + (B2))

(By) = c/QA|Vu|2 dyi

_ C/Adu
Q
l
= C [ > A dp
Q50
!
~- C / Ay d
ng B37‘J(£J) ! ILL

! C
< C’Zr?“s dp < —.
J=1 t

The estimate of (Bj) is very similar to the estimate of (B;) in Lemma 69.
Indeed, using (148), (149), (150) and (151),

1
B = _7/ A- 2 g
(B1) QQV VIVul* dp
l
< >

J=1

(C/ IVA| du+C/ IVA| [VVV] dy
BgTJ(:EJ) B3’V‘J("EJ)

+C ; IVA|d? (v, Py)|VVu| du
3r \TJ
1 ovt v’
_Z A - () ——
2 /B3, (2g) VA-V(Gy (“)axa 81‘5) dﬂ)
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IN

l
ey (/ VA du+/ IVA| [VVV] dp
J=1 BSTJ(IJ) 3TJ IJ

+ IVA|d* (v, Py)|VVu| du

Bsr (%)
o
= (Bu)+ (312) (313)+(Bl4)- (160)

The first term on the right hand side of (160) can be estimated using (154)
and (144) as

NS du)

(B11) CZ/ \VA|d,u<C’Z/ 15<C
Bsr; (27) By ; () 1
The second term can be estimated using Lemma 51, (154) and (144) as
!
(Bu) = €% / VATV d
<

ok (Jrveve) ([
c(fwevra) (£, o)
o ([ 1v9vi an) g (; wqqé) '

< o)

The third term can be estimated using Lemma 52 (or the fact that we have
already shown that |[VVu| € L?), (144), (146) and (154) as

IN

IA

(Bi) = C/Q|VA|d2(v,P0)|VVu| dyi

IN

(/ VAR (v, Py) du) (/ d&2(v, Py) [V Vul? d@l
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IN

l 1 1
c VAP (v, Py)d ( &(v, P vvu2d)
(S, waPee. ) (f e R an

! 3
et

J=1

The fourth term can be estimated as,

(Bi) = [ IVoPlAA] du

C’/Q|Vv| IVVA| dp

IN

IA

l
c/ Vo Z|VVA|du

IA

CZ/ V|| VVA| du

37‘J ‘TJ
( [ veap du)
B37‘J(£J)

C / Vol2d )
Jzz:l ( Bar () | ’ s
4 1
c / w%z) (/ vvzx%z)
ng ( B31"J(1'J) | ’ lu Bg,«J(wJ) | J| lu
l % %
+C / vu2d> </ VVA 2d>
Z < BSrJ(IJ) ’ ’ a BSTJ(ZJ) | J‘ H

J=l'+1

n+2eo n—4—25 4 25 l C

< CZTJ T Z —24€0—6 <=

i .

D=
=

IA

N

IN

where we have used monotonicity property (2) for the harmonic map u and
Corollary 61 for the component map v to estimate the energies of u and v in
the balls {Bs,,(z;)}. Thus, combining the estimates for (By1), (B12), (Bi3)
and (Bi4), we obtain

1 1\ 4
(Br) =~ [ VIVuP VA~ du <0 (3)
Q 1
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Combining this with the estimate for (Bs), we obtain

m<c(l).

7

Combining the estimates for (A) and (B), we obtain

1\
L9Vl wuidn < o (5)
which proves STATEMENT 2[j|. Q.E.D.

The above completes the proof of Theorem 1 and Theorem 2. The in-
ductive process also yields Theorem 3 as a consequence of Proposition 55.
Similarly, Theorem 4 is an immediately consequence of Proposition 66. Fur-
thermore, from Corollary 61, we can immediately deduce the following:

Corollary 70 If u = (V,v) : By, (z,) — (R x Y2"7,dg) is a harmonic
map, then there exist C >0, ¢ > 0, Ry > 0 and ¢y > 0 such that

2 0B (0) I;,(0) Bz, (0)
I+e<e WSC, mgc andm_
o

for all xy € §;(u) N Bex(x4) and o € (0, Ry).

12 Appendix 1

The goal of this Section is to establish Proposition 72 below which is an
analogue of [GS] Theorem 5.1. Recall that in Section 11, Proposition 72 was
applied to the singular component map v of a harmonic map into a DM-
complex and zy € S;(u). The main difference from [GS] is that the map v
is not necessarily harmonic but only approximately harmonic. We first need
the following preliminary lemma.

Lemma 71 Let B;(0) C R", v' : Bi(0) = Yo" be a map, I' : B;(0) —
Yy a homogeneous degree 1 map and v*(0) = 1'(0). For 9 € (0,1], define

v’ Bi(0) = Y w(x) =0 (W)
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and .
17 Bi(0) = Yy, 1P(z) =07 (D).

Assume the following conditions:

(i) For v € (0,1] and the harmonic map
w: B1(0) — YQkfj with w\aBl(o) = U§|aBl(0),

we have

NI

Bsu(po) d(v’(z),w(z)) < 2. (161)

(ii) Forw : By(0) = Yy 7 as in (i), there exist constants C' > 1, 3> 0 and
a homogeneous degree 1 map | : By(0) — Y57 such that

. 1
sup d(w, () < Cr*™Pinf sup d(w, L), Vr € (0,-) (162)
B,(0) L B0 8

where the infimum is taken over all homogeneous maps L of degree 1.

(ii) The constants C > 1, 6 € (0, %), 8 and ¢ € (0,1) satisfy

1
Co® < T (163)

and D
¢ < QTO' (164)

For a natural number i, assume ;1 : B1(0) — YQkfj is a homogeneous map of
degree 1. Then we have the following implication:
i D

sup d(v?', ;1) < —Z.O

B 2 (165)

supd(v?,19)dp < ;6

B1(0)
implies that there exists a homogeneous degree 1 map ;11 : B1(0) — YQkfj 50
that

i1 D
;u(%))d(UG Tinl) < 2i+01
1
sup d(va i ,le +1) < 410 1= 207122 4 ;0.
B1(0) 2
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PrOOF. We first give the proof of the first inequality of (166). With
w: By(0) = Yy asin (i) with 9 = 6, we have

sup d(v” ,w) < b7 (by (161))
51(0)

Dy 1
< QZE (by (164) and 0 < 3)
Do

< (167)

By Assumption (i) inequality (162), there exists a homogeneous degree 1
harmonic map [ : B;(0) — Y57 such that

sup d(w,1) < CO™° sup d(w,;l). (168)
By (0) B1(0)
With | A
i1l 2 B1(0) = Y37 defined by ;411(x) = 671 (0z)
and A
w? : B1(0) = Yy 7 defined by wf(z) = 0~ w(z),
we obtain
sup d(uw’, ;1) < 07" sup d(w,])
B1(0) By(0)
< €O sup dw, 1) (by (168))
B1(0)

IN

B1(0) B1(0)
4 4

co° (sup d(w,v"") 4+ sup d(vel,il))

< Co° <9D°+D.°> (by (167) and (165))

4 2 2t
D
g ~0
< (4 =
Do
< o (by (163)).
Combined with (167), we obtain
41 i4+1 D
sup d(ve+ yiv1l) < sup d(U0+ 7w0) + sup d(w97i+ll> < %‘
B1(0) B1(0) B1(0) 2+
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This completes the proof of the first inequality of (166). .
We now prove the second inequality of (166). Since 1?°(0) = v? (0), we
have

i i D
d(I” (0),:(0)) = d(v”(0),:1(0)) < 7 (by (165)).
By the NPC condition, we obtain for any = € B;(z) that

(1 (0z),:1(0z)) < (1 — 0)d(1” (0),,1(0)) + 0d(1” (), il(x)).

Thus,
d(1% (0z),,1(02)) < (1— 9)1;9 +0d(I” (), :1(x))
Dy

IN

(1= 0)57 +0(d(l" (2), 0" (2)) + d(v” (2), il(x)))
D D
< (1- 9)279 +0(;6 + 279) (by (165))
< — 0.
< 0
Combining this with (165), we obtain

d(vem(x)’ l9i+1 ([B)) < 201];0 4 i(S-

This proves the second inequality of (166) and completes the proof. Q.E.D.

Proposition 72 Let u = (V,v) : By, (z.) = (R/ x 3" dg) be a harmonic
map as in (17), 0 € Bex (2,) NS;(u), By, (0) C Bex (24) and {v,} be the blow
up maps of v at 0 (cf. Definition 44). Given a homogeneous degree 1 map
I: By(0) = Y37 with 1(0) = v,(0), there exist A\ > 0 and Dy > 0 such that
if

sup d(Ua'7l) < D07

B1(0)

2

then

sup d(vy, Py) > As

B (0)

for s > 0,0 > 0 sufficiently small.
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ProoOF. Let A > 0 be such that

sup d(l, Py) > 4\s.
B (0)
By [GS] Theorem 6.3, there exist constants C' > 1, > 0 such that condition
(i1) of Lemma 71 is satisfied. Next choose 6 € (0,3) such that (163) is
satisfied; i.e.
1
co’ < .
8
Finally, let Dy satisfy
202Dy + 607" Dy = A (169)
and assume

sup d(vy,1) < Dy.
B1(0)

Define v; : B1(0) — Yy and ly : B1(0) — Yy by setting vi(x) = V()
and [;(r) = I(5). Thus,

sup d(vy, ;) < Dy
B1(0)

and

sup d(l;, Py) > 2s.

Bs(0)
Furthermore, let vfi(x) = 67'v;(0'z) and l?i(x) = 67'l4(f'z). Lemma 48
implies

sup d(v?i,w) < % (with ¢ = Co)
51(0)

for any harmonic map w : (By(0), ggiy) — Yy 7 with w = vy on 0B4(0).
Choose o > 0 such that (164) is satisfied for ¢ = v/Co. Therefore, conditions
(¢) and (ii7) of Lemma 71 are satisfied.
Inductively apply Lemma 71 to obtain
sup d(v?l, l?l) < 0
B1(0)

D
- 9_121.7_01 + i_15

IA

1—1 D
-1 0
072 57 o0
7=0
< 207'Dy + Dy.
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Thus, . .
sup d(vy, ly) < 201Dy + 0" D,
Bgi (*T)

For s > 0, let j such that ¢! < s < #7. Then by (169),

sup d(vi, i) < 201Dy + 07Dy < (2072Dy + 671 Dy)s = As.
B (0)

This in turn implies that for s € (0, 0),

sup d(vi, Py) > sup d(ly, Py) — sup d(vy, 1) > 2As — As = As,

B.(0) B, (0) B, (0)
hence
sup d(vy, Py) > 2As > As.
B (0)
Q.E.D

13 Appendix 2

The purpose of this Appendix is provide a proof of the crucial codimension
2 property for a set of higher order points needed in the proof of Theorem 1.
As described in the proof of Theorem 1, we need two separate statements:
one for the original harmonic map u and one for the singular component
v. In addition, a more general statement is needed in future applications.
Thus, we will prove a general codimension 2 statement that covers all cases at
once. We start with lemma regarding the upper semicontinuity of Hausdorff
dimension.

Lemma 73 If S; be a sequence of closed subsets of B1(0) satisfying a prop-
erty that
r; €85; and x; — 19 € Bl(O) = x9 €9 (170)

for some closed subset Sy of B1(0), then

lim sup dimy(.S;) < dimy(Sp). (171)

1—>00
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PROOF. Following [GS], define H*(-) by

H*(S) = inf {Z r; : all coverings {B,,(x;)};2, of S by open balls} :

Called the rough outer Hausdorff measure, H* is not precisely the Hausdorff
measure H®, but its importance is in the fact that the Hausdorff dimension
of any set S is given by

dimy(S) = inf{s : H*(S) = 0} = inf{s : H*(S) = 0}.

We now come to the proof of (171). First, fix s > 0 and let r € (0,1). Given
61 > 0, let {B,,(z;)}¥, be a finite covering of Sy N B,.(0) such that z; € Sy
and

H*(So N B,(0) —|—€1>ZTI

Note here that it is enough to consider finite coverings since Sy is compact.
By (170), {B,,(z;)}}Y, is a covering of S;NB,.(0) for i sufficiently large. Hence,
for ¢ sufficiently large,

N
H (SoﬁB +€1 Z BT(O))
Since € is arbitrary, this proves (171). Q.E.D.

Recall that we are interested in maps that are not necessarily harmonic.
More precisely, we are interested in maps given in the following:

Definition 74 Let v : B, (x,) — (Y,d) be a finite energy continuous map
from a Riemannian domain into an NPC space and let § be a closed subset
of Bex (x,). We say v satisfies (P1) and (P2) with respect to S if it satisfies
the properties below.

(P1) At any zp € S, we require that v has a well defined order at x( in
the sense that it satisfies the following property: Assume that v is not con-
stant in any neighborhood of xy and that there exist constants ¢ > 0 and
Ry > 0 such that for any zy € S,
hm Ord®(zo) == lil% Ord®(zo, o) exists

o—r

og—0
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and B (o)
ok (o
Ordv(l'o) < €Caﬁ, Vo € (0, Ro)

(P2) For any zq € S, define blow-up maps {v,} and approzimating harmonic
maps {w,} at zq as follows: Identify o = 0 via normal coordinates, let

vy = (fg))m (172)

and g,(y) = g(oy) be the rescaled metric on By(0). For o > 0 sufficiently
small, v, is the rescaled map

vy 1 (B1(0), go) = (Y,v;'d),  vo(y) = v(oy)
and w, is the harmonic map

wo : (Bi(0),95) = (Y, v, 'd), wU|8B1(O) = Ua|aBl(0)'

We require that given a sequence o; — 0, there exists a subsequence (which
we call again o; by a slight abuse of notation) such that the blow up maps
{v,,} and {w,,} converge locally uniformly in the pullback sense to a homo-
geneous harmonic map vy : (B1(0),d) — (Yo, do) for some NPC space. For
any r € (0,1),

lim sup d(v,,,w,,) = 0.

=00 B (0)

Furthermore, for any sequence {z;} C ;'S N B%(O), R € (0, i), there exists
{r:} € [£, R] such that

lim

71— 00
Remark 75 A harmonic map u : B1(0) — Y into an NPC space satisfies
properties (P1) and (P2) with respect to & = Bex () (cf. [GS]). Also, a
singular component v of a harmonic map u = (V,v) : B;(0) — (R/,Y3) into
a DM-complex satisfies properties (P1) and (P2) respect to S = S;(u) by
Proposition 55, Corollary 49, Corollary 57 and Lemma 63.
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Lemma 76 Let v : B, (x,) — (Y,d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S C Bex(z4). Let v =0 € S, {v,,}
the blow-up maps of v at x and vy as in (P2). If x; € 0;'S converges to
xo € B1(0), then

liminf Ord" (z;) < Ord™(x).

1—00

PROOF. Let w,, be as in (P2). For i sufficiently large,

Ey" (1) 0:EY0y)

Ey7i(1) < By (1) = = =
0 ( )— 0 ( ) ]Oaz(l) [;;)(O—z)

< 20rd"(z).

Thus, for R € (0,3), [KS1] Theorem 2.4.6 implies that {w,, |Bpo) has a
uniform Lipschitz bound. We can therefore apply lower semlcontlnmty of
energy (cf. [KS2] Lemma 3.8) to conclude that, for any zo € B;(0) and
any r € (£, R), we have E*(r) < liminf; ,o Ez,"(r). On the other hand, by
[KS2] Theorem 3.9 there is no loss of energy, i.e E%(r) = lim;_,o Er,*(r). By
the uniform Lipschitz continuity and the convergence x; — z(, we also have
|Eryi(r) — Ez. ' (r)] < Clz; — x| for some C indepedent of i. Furthermore,
(P2) implies there exists r; € (£, R) such that ‘E;)”’ (r;)) — Ex’i (r;)| < Coyz.

By taking a subsequence if necessary, we can assume r; — 1o € [%, R]. Hence

Vo, R
EX(rg) = lim Ez*(r;), 10 € [+,
l—00

> .

Furthermore,
. Vo,
I7(ro) = }i{glo Iz (r3)
by the local uniform convergence in the pullback sense. Combining the above
two equalities, we obtain

lim rEg (1) rE0(ro)
im _

v, = s S
i—oo [, Ul( z) Igo(’/’o) "o [

};,R]. (173)

Now we apply the monotonicity property of (P1), namely

Ord"i(x;) < et ——— )
r (x;) <e 7 ()
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This implies that for any € > 0, there exists iy such that

TE;;g (7’0)

A% (1.) < 70
Oram ) =

+ €, VlE{Zo,Zo+1,}

Taking liminf as ¢ — oo in the above inequality and noting € is arbitrary, we

obtain
To E;;g (7’0) R

liminf Ord" (z;) < e“° ro € [E

1—00 ]}E’g (TO)

, R
Finally, we let R — 0 (and hence ry — 0), we obtain
lim inf Ord" (x;) < Ord™(x).
1—00

Q.E.D.

Definition 77 We say that a map v : By, (z,) — (Y, d) satisfying properties
(P1) and (P2) with respect to closed subset S C Bex (1) satisfies an order
gap property with respect to S if there exists ¢y > 0 such that for any z € S,
either Ord’(z) = 1 or Ord’(z) > 1+ € (or equivalently, Ord™(0) = 1 or
Ord™(0) > 1+ ¢ for vy as in (P2).)

Definition 78 A higher order point of v is a point x such that Ord’(z)
exists and is > 1. We denote the set of higher order points of v by Sy(v).

Lemma 79 Let v : B, () — (Y,d) be a map satisfying properties (P1)
and (P2) with respect to S C B1(0). If v satisfies the order gap property with
respect to S as in Definition 77 and x € S, {vy,} and vy are as in (P2), then

lim sup dimy (0; H(So(v) N'S)) < dimy (Sp(vo)).

1—00

ProOF. Identify z = 0 via normal coordinates. By Lemma 73, it suffices
to prove
z; € 0, (So(v) NS) and 2, — 19 = 10 € So(vp).

Since 1 + ¢y < Ord’(o;x;) = Ord™i(x;) by the order gap assumption, we
have 1 + ¢y < Ord™(xy) by Lemma 76. Hence x¢ € Sp(vg). Q.E.D.
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Lemma 80 Let v : By, () — (Y,d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S C Bex(x4). If v satisfies the order
gap property with respect to S as in Definition 77, then for every x € Sp(v)

dimy (So(v) N'S) < dimy(So(vo))
where vy is the limit of the blow-up maps of v at x as in (P2).

PROOF. Suppose on the contrary that dimy (Sp(v) N'S) > dimy (So(ve)N
S) and choose
dimy (Sp(v) N'S) > s > dimy/(Sp(vp)).
Since H*(Sp(v)NS) > 0, [Fe] 2.10.19 implies that there exists € Sp(v) such
that (after identifying x = 0 via normal coordinates)
*(So(v) NS N By, (0
lim (o7 (So(0) N ) = lim TS0) ) {0)

1—00 1—00 o;

Thus, dimy(o;'(Sp(v) N'S)) > s for i sufficiently large. By Lemma 79,
dimy(Sp(vp)) > s which is a contradiction. Q.E.D.

> 277

Definition 81 Let v : B,, (z,) — (Y, d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S C Bex (24). The map v is said to
satisfy the codimension 2 property of the tangent map with respect to S if
for any x € S and for vy the limit of the blow-up maps of v at x as in (P2),
we have

dimy (Sp(vp)) < n — 2.

Theorem 82 Let v : B,, (z,) — (Y,d) be a map satisfying properties (P1)
and (P2) with respect to S C B%*(x*). If v also satisfies the order gap
property with respect to S as in Definition 77 and the codimension 2 property
of the tangent map with respect to S as in Definition 81, then

PROOF. Since v satisfies the order gap property, we can choose z € Sy(v)
as in Lemma 80 such that

dimy, (Sp(v) NS) < dimy(Sp(vo))

where vy as (P2). The assumption that v satisfies the codimension 2 property
of the tangent map implies dimy(Sp(vp)) < n — 2. Q.E.D.
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