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Abstract

We prove that the singular set of a harmonic map from a smooth
Riemannian domain to a Riemannian DM-complex is of Hausdorff
codimension at least two. We also explore monotonicity formulas and
an order gap theorem for approximately harmonic maps. These regu-
larity results have applications to rigidity problems examined in sub-
sequent articles.

1 Introduction

Harmonic map theory from Riemannian domains to singular spaces origi-
nate with the work of Gromov-Schoen [GS] and was subsequently extended
in [KS1], [KS2] and also [Jo]. The motivating question comes from rigidity
theory. More precisely, one would like to know that a harmonic map, under
appropriate curvature assumptions on the domain and the target spaces, is
totally geodesic or even constant. This is the famous Bochner method which
has been extensively used in the case when the target space is a smooth
manifold. Recall that the Bochner formula is a differential equation involv-
ing higher derivatives of the map and relies on the smooth structure of the
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Riemannian manifolds involved. Therefore, in order to utilize it in the sin-
gular setting, the key is to show that harmonic maps into singular spaces are
regular enough on a big open set.

In the seminal work of Gromov and Schoen [GS], it is shown that this is
in fact the case when the target space is an F-connected simplicial complex.
Roughly speaking, a k-dimensional F-connected complex is an NPC (non-
positively curved) Euclidean k-complex where any two adjacent cells lie on a
maximal flat, i.e. an image of the Euclidean space Rk embedded isometrically
and totally geodesicly in the complex. Examples of F-connected complexes
are Euclidean buildings. The main technical result of [GS] is to show that
a harmonic map u from a smooth Riemannian domain Ω to a k-dimensional
F-connected complex Y locally maps into a Euclidean space outside a set of
codimension at least 2, or in other words, that the singular set S(u) of u is
at least of Hausdorff codimension 2. To investigate the singular points, they
show the existence of the order function (sometimes also called the frequency
function) associated with a harmonic map. For example, for a harmonic
function u : Ω → R, the value of the order function Ordu(x) is the order
with which u attains its value u(x) at x. Alternatively, it is the degree of the
dominant homogeneous harmonic polynomial which approximates u − u(x)
near x.

The question of superrigidity has played an important role in Geometric
Group Theory, and it is beyond the scope of this introduction to summarize
all the results of the vast literature. The goal of this paper is to lay the
foundational analytic work needed in order to study superrigidity questions
beyond the work of Gromov-Schoen, in other words, for a class of spaces
larger than Euclidean buildings. For this purpose we introduce the notion of
Differentiable Manifold complex (or simply DM-complex). A DM-complex
is a cell complex Y with branching-DM structure in the sense that any two
adjacent cells lie in a DM, the image of a Differentiable Manifold isomet-
rically embedded in Y . Such complexes are assumed to be NPC but they
can have arbitrary Riemannian metrics on their DM’s. Special cases of such
complexes are Euclidean and hyperbolic buildings. However, most of the
work presented in this paper generalizes to an even larger class of spaces, for
example the Weil-Petersson completion of Teichmüller space which will be
explored in subsequent papers.

We now summarize the main results of this paper. Our first main theorem
can be stated as follows:
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Theorem 1 If u : Ω → Y is a harmonic map from an n-dimensional Rie-
mannian domain to a k-dimensional NPC DM-complex, then the singular set
S(u) of u has Hausdorff co-dimension at least 2 in Ω; i.e.

dimH(S(u)) ≤ n− 2.

We also prove

Theorem 2 Let u : Ω→ Y be as in Theorem 1. For any compact subdomain
Ω1 of Ω, there exists a sequence of smooth functions {ψi} with ψi ≡ 0 in a
neighborhood of S(u) ∩ Ω1, 0 ≤ ψi ≤ 1 and ψi(x) → 1 for all x ∈ Ω1\S(u)
such that

lim
i→∞

∫
Ω
|∇∇u||∇ψi| dµ = 0.

A harmonic map u : Ω → Y into a k-dimensional DM-complex can be
written locally near a singular point x0 ∈ S(u) as u = (V, v) where V is the
non-singular component map that maps into a Euclidean space Rj and v is
the singular component map that maps into a lower dimensional complex
Y k−j

2 . We partition S(u) as
⋃Sj(u) where j indicates the dimension of the

target space Rj of V (see Definitions 12 and 14). When the target space Y
is an F-connected complex, u maps into the product of Rj and Y k−j

2 , and
both components V and v are harmonic maps. Therefore, the analysis of the
singular set of u can be inductively reduced to the study of the singular set
of v which maps into a lower dimensional complex. This is in fact how it is
argued in [GS]. In the case when the target space is a general DM-complex,
u locally maps into the twisted product of Rj and Y k−j

2 which we denote by
(Rj × Y k−j

2 , dG). The maps V and v are thus only approximately harmonic.
More significantly, the map v is the non-dominant term of u = (V, v). This
presents the major technical difficulty of the paper. In analyzing the singular
set of v, we prove a general monotonicity formula to deduce the existence
of the order function and the order gap theorem for the approximate case.
Here, we summarize our results:

Theorem 3 (The Order of the Singular Component) If u : Ω → Y
is a harmonic map from an n-dimensional Riemannian domain to a k-
dimensional NPC DM-complex, j ∈ {0, . . . ,min{n, k}}, x0 ∈ Sj(u) and
u = (V, v) as above near x0, then

Ordv(x0) := lim
σ→0

σEv
x0

(σ)

Ivx0(σ)
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exists. (See (1) for the notation.)

As with the case when v is harmonic, the main ingredient in proving the
existence of the order function is a monotonicity formula. For this, the major
steps are proving a target variation formula and a domain variation formula.
This is achieved in sections 6 and 8 respectively. In fact, it follows from earlier
work (cf. [Me] and [DM1]) that all necessary monotonicity can be deduced as
a formal consequence of the domain and target variation formulas combined
with a Poincare type inequality proved in Section 7. The existence of the
order function implies

Theorem 4 (The Gap Theorem) Under the same assumptions as Theo-
rem 3, there exists ε0 > 0 such that Ordv(x) ≥ 1 + ε0 for all x ∈ Sj(u) near
x0.

In the follow-up article [DMV], we show how to employ the results of this
paper in order to prove superrigidity for representations of lattices into new
classes of groups not covered by [GS], for example isometry groups of hy-
perbolic buildings. In subsequent articles, we will apply our results to study
rigidity questions of Teichmüller space and the mapping class group. This
is the reason why, as the reader may notice, our notation is a little more
cumbersome than needed for proving the main results of the paper. For ex-
ample, we state our main assumptions in Section 5 and deduce everything
from there. These assumptions hold for the Teichmüller space with the Weil-
Petersson metric from which we can deduce properties like monotonicity and
order almost immediately.

Acknowledgement. The authors would like to thank Fang-Hua Lin and
Bill Minicozzi for useful discussions.

2 Harmonic maps into NPC spaces and DM-

complexes

Let Ω be a smooth bounded n-dimensional Riemannian domain and (Y, d) a
metric space. First recall that by the work of Gromov-Schoen and Korevaar-
Schoen (cf. [GS] and [KS1]) one can define the Sobolev space of W 1,2 or
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finite energy maps W 1,2(Ω, Y ) ⊂ L2(Ω, Y ). In particular if f ∈ W 1,2(Ω, Y )
one can define the energy density |∇f |2 ∈ L1(Ω) and the total energy

Ef =
∫

Ω
|∇f |2dµ

of f . Furthermore, it is shown in the references above that if f ∈ W 1,2(Ω, Y ),
then there exists a well-defined notion of a trace of f , denoted Tr(f), which
is an element of L2(∂Ω, Y ). Two maps f, g ∈ W 1,2(Ω, Y ) have the same trace
(i.e. Tr(f) = Tr(g)) if and only if d(f, g) ∈ W 1,2

0 (Ω). Given x ∈ Ω and f as
above, we will use the following notation

Ef
x (σ) :=

∫
Bσ(x)

|∇f |2dµ and Ifx (σ) :=
∫
∂Bσ(x)

d2(f, f(x))dΣ. (1)

Definition 5 A W 1,2-map u : Ω → Y to an NPC space Y is said to be
harmonic or energy minimizer if, for any geodesic ball Br(x) ⊂ Ω, the re-
striction f |Br(x) is energy minimizing among all W 1,2-maps with the same
trace.

Let u : Ω→ Y be a harmonic map. By Section 1.2 of [GS], there exists a
constant c > 0 depending only on the metric on Ω (in particular c = 0 when
Ω is Euclidean) such that

σ 7→ Ordu(x, σ) := ecσ
2 σ Eu

x(σ)

Iux (σ)

is non-decreasing for any x ∈ Ω. As a non-increasing limit of continuous
functions,

Ordu(x) := lim
σ→0

Ordu(x, σ)

is an upper semicontinuous function. By following the proof of Theorem 2.3
in [GS], we see that Ordu(x) ≥ 1. The value α = Ordu(x) is called the order
of u at x. The harmonic map u also satisfies the following monotonicity
property (cf. Section 1.3 of [GS]): There exists a constant c > 0 and σ0 > 0
such that

σ 7→ ecσ
2 Eu

x(σ)

σn−2+2α
and σ 7→ ecσ

2 Iux (σ)

σn−1+2α
are non-decreasing in [0, σ0] (2)

5



Fix x0 ∈ Ω and choose a normal coordinate system centered at x0 = 0.
Set α := Ordu(0). By (2),

lim
σ→0

µσ = 0 (3)

where

µσ :=

√
Iu0 (σ)

σn−1
. (4)

Set gσ(x) = g(σx) and define

uσ : (B1(0), gσ)→ (Y, µ−1
σ d), uσ(x) = u(σx).

By following Section 3 of [GS], we see that uσ is a harmonic map with
Euσ

0 (1) ≤ 2α and Iuσ0 (1) = 1. Let δ = g(0) be the Euclidean metric de-
fined by the value of g at 0. By Theorem 2.4.6 of [KS1], uσ has a uniform
modulus of continuity on compact sets independent of σ (with respect to
the metric g(0) on the domain which is uniformly equivalent to gσ for σ
small). By [KS2], Proposition 3.7 and a diagonalization argument, there
exists σi → 0 and a map u∗ : Rn → Y∗ into an NPC space such that uσi
converges to u∗ uniformly in the pull-back sense on every compact set. By
(a slight modificaiton of) the L2 trace theorem of [KS1], Theorem 1.12.2 and
the fact that Iuσ0 (1) = 1, we have that u∗ is non-constant. Furthermore, by
[KS2] Proposition 3.11 the energy of uσi converges to u∗ on compact subsets
of B1(0). We claim that

u∗ is an energy minimizer on B1(0). (5)

Indeed, if w : (B1(0), g(0))→ Y∗ is an energy minimizing map with w|∂B1(0) =

u∗|∂B1(0), then Lemma 2.4.2 [KS1] implies that d2(u∗, w) is weakly subhar-
monic with zero boundary condition and hence u∗ = w on B1(0). Finally u∗
is homogeneous degree α, i.e.

d(u∗(tx), u∗(0)) = tαd(u∗(x), u(0)) for 0 ≤ t ≤ 1, x ∈ Rn

by the same argument as in [GS] Proposition 3.3. Variations of the above
argument will be used throughout the paper.

We now specialize to the case when Y is in a special class of cell complexes.

Definition 6 Let Ed be an affine space. A convex piecewise linear polyhe-
dron S with interior in some Ei ⊂ Ed is called a cell. We will use the notation
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Si to denote a cell S of dimension i. A convex cell complex or simply a com-
plex Y in Ed is a finite collection F = {S} of cells satisfying the following
properties: (i) the boundary ∂Si of Si ∈ F is a union of T j ∈ F with j < i
(called the faces of Si) and (ii) if T j, Si ∈ F with j < i and Si ∩ T j 6= ∅,
then T j ⊂ Si.

For example, a simplicial complex is a cell complex whose cells are all sim-
plices.

Definition 7 A complex Y along with a metric G = {GS} is called a Rie-
mannian complex if each cell S of Y is equipped with a smooth Riemannian
metric GS such that for each cell S, the component functions of GS extend
smoothly all the way to the boundary of S. Furthermore, if S ′ is a face of S
then the restriction GS to S ′ is equal to GS′ .

Throughout this paper, all cell complexes will have the additional prop-
erty that all cells are bounded unless otherwise specified. If this is not the
case, then we will write unbounded cell complex. Additionally, all cell com-
plexes Y will be locally compact, Riemannian and NPC with respect to the
distance function d induced from GS.

Definition 8 A k-dimensional Riemannian complex (Y,G) is said to have a
branching Differentiable Manifold structure if given any two cells S1 and S2

of Y such that S1 ∩ S2 6= ∅, there exists a k-dimensional C∞-differentiable,
complete Riemannian manifold M and an isometric and totally geodesic em-
bedding J : M → Y such that S1 ∪ S2 ⊂ J(M). Such complexes will be
referred as DM-complexes. By an abuse of notation, we will often denote
J(M) by M and call it a DM (short for Differentiable Manifold).

Remark 9 If any DM of a DM-complex is isometric to a k-dimensional
Euclidean space, then the DM-complex is F-connected in the sense of [GS]
Section 6.1. The NPC assumption implies that if M1 and M2 are DM’s of a
Riemannian DM-complex, then M1 ∩M2 is totally geodesic in M1 and M2.

Recall that for an arbitrary NPC space Y and a point P ∈ Y , the Alexan-
drov tangent cone T PY of Y at P is the cone over the space of directions
Π. Here, Π is the completion of the space of equivalence classes of geodesics
emanating from P (where the equivalence relation ∼ is given by γ1 ∼ γ2 ⇔
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the angle between γ1, γ2 at P is zero) along with the distance function defined
by the angle at P . For a DM-complex Y , let C denote the tangent cone of
Y at the point P as defined in [Fe] 3.1.21. Clearly, C is an unbounded cell
complex and

TPY is isometric to (C,G(P )) (6)

where G(P ) is the metric defined by the value of G at P . Notice that if
P,Q ∈ int(S), then C for P and Q are isomorphic as sets. LetMP be the set
of all DM’s passing through P . For each M ∈MP , define FM = TPM ⊂ C.
An immediate consequence is the following:

Lemma 10 If M is a DM in (Y, dG), then FM is a flat in (C,G(P )) = TPY .
In particular, if Y is a DM-complex, then TPY is F-connected in the sense
of [GS].

We can define the exponential map

expYP : TPY →
⋃

M∈MP

M ⊂ Y (7)

by piecing together the exponential maps defined on each M ∈ MP . This
is equivalent to the exponential map defined from Alexandrov tangent cone
point of view, i.e. given a unit speed geodesic γ and t ∈ [0,∞), expYP (γ, t) =
γ(t).

Let u : Ω→ Y be a harmonic map into an NPC DM-complex and x0 ∈ Ω.
By choosing normal coordinates, we can identify a neighborhood of x0 ∈ Ω
with a neighborhood of 0 ∈ Rn. Let Tu(x0)Y be the tangent cone of Y at
u(x0). By a slight abuse of notation, we shall denote by

G and dG respectively (8)

the pullback metric exp∗u(x0) G defined on C and the distance function induced
by this pullback. Since we are only interested in the local behavior of u, we
shall identify Y with (C, dG). Let u∗ be a tangent map of u at x0. Recall
that by definition, u∗ is the limit (in the pullback sense as in [KS2] Section 3)
of the maps

uσi : B1(0)→ (C, µ−1
σi
dG), uσi(x) = u(σix). (9)
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The induced pullback pseudodistances on B1(0) are the same as that of the
maps

µσi
−1uσi : B1(0)→ (C, dGσi ), Gσi(y) = G(µσiy). (10)

The smoothness of the metric G implies that Gσi converges uniformly to
the metric G(u(0)). Again, since µσi

−1uσi have uniformly bounded energy

E
µσi
−1uσi

0 (1) and uniformly bounded I
µσi
−1uσi

0 (1), we obtain by [GS] Theorem
2.4 and Arzela-Ascoli that µσi

−1uσi converges locally uniformly to a limit map
u0 : (B1(0), g(0))→ (C, dG(u(0))). By the equivalence of (9) and (10), u0 must
be equal to the tangent map u∗. We have thus shown

Lemma 11 Let u : Ω → Y be a harmonic map into an NPC DM-complex.
A tangent map of u at x0 ∈ Ω is a homogeneous harmonic map into the NPC
space (C, dG(u(x0))) = Tu(x0)Y.

3 Regular and Singular points

As in the previous section, let Ω be an n-dimensional Riemannian domain
and (Y, dG) a k-dimensional NPC DM-complex.

Definition 12 For a map f : Ω → Y , let R̂(f) be the set of all points
x0 ∈ Ω such that for σ0 > 0 sufficiently small

f(Bσ0(x0)) ⊂ expYf(x0)(X0) (11)

where X0 ⊂ Tu(x0)Y is isometric to Rk. In particular, f maps a neighborhood
of x0 into a DM. If u : Ω → Y is a harmonic map, a point x0 ∈ Ω is called
a regular point if x0 ∈ R̂(u) and Ordu(x0) = 1. A point x0 ∈ Ω is called a
singular point if it is not a regular point. Denote the set of regular points by
R(u) and the set of singular points by S(u).

Remark 13 The definition of a regular point in [GS] is slightly different
than ours. Specifically, a regular point in [GS] may have order > 1 whereas
ours does not.

Definition 14 Let u : Ω→ Y be a harmonic map,

S0(u) = {x0 ∈ Ω : Ordu(x0) > 1},
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k0 := min{n, k} and Sj(u) = ∅ for j /∈ {0, 1, . . . , k0}. For j = 1, . . . , k0,
we define Sj(u) inductively as follows. Having defined Sm(u) for m = j +
1, . . . , k0 + 1, define Sj(u) to be the set of points

x0 ∈ S(u)\

 k0⋃
m=j+1

Sm(u) ∪ S0(u)


with the property that there exists σ0 > 0 such that

u(Bσ0(x0)) ⊂ expYu(x0)(X0) (12)

where
X0 ⊂ Tu(x0)Y is isometric to Rj × Y k−j

2 (13)

with Y k−j
2 a (k − j)-dimensional unbounded conical F-connected complex

with vertex P0. Set

S−m(u) =
m⋃
j=0

Sj(u) and S+
m(u) =

k⋃
j=m

Sj(u).

Lemma 15 The sets S0(u), S1(u), ..., Sk0−1(u), Sk0(u) form a partition of
S(u).

Proof. By definition, S0(u), . . . , Sk0(u) are mutually disjoint sets. Let
x0 ∈ S(u). If Ordu(x0) > 1, then x0 ∈ S0(u). If Ordu(x0) = 1, then
the tangent map u∗ : Rn → Tu(x0)Y at x0 is a homogeneous degree 1
map and maps onto a flat F0 ⊂ Tu(x0)Y by Proposition 3.1 of [GS]. Let
X0 be the union of all k-flats containing F0. By Lemma 6.2 of [GS], X0

is isometric to Rj × Y k−j
2 where j ∈ {1, . . . , k0} is the dimension of F0.

We can deduce from the proof of Lemma 6.2 of [GS] that Y k−j
2 is a cone.

Furthermore, by the same lemma, u∗ is effectively contained in X0. Since
supBr(x0) d(u, expYu(x0) ◦u∗ ◦ (expΩ

x0
)−1)→ 0 as r → 0, this implies by Theorem

5.1 of [GS] that x0 ∈ S+
j (u) and hence x0 ∈ Sm(u) for some m ∈ {j, . . . , k0}.

q.e.d.

Lemma 16 The sets R(u), R(u) ∪ S+
m(u) are open and the sets S−m(u) are

closed.
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Proof. Clearly R(u) and R(u) ∪ S+
0 (u) = Ω are open. Now assume

m > 0 and x0 ∈ S+
m(u). Thus, x0 ∈ Sj(u) for an integer j ≥ m, hence

Ordu(x0) = 1 and there exists σ0 > 0 such that u(Bσ0(x0)) ⊂ expYu(x0)(X0)

where X0 is isometric to Rj × Y k−j
2 . Thus, x ∈ Bσ(x0) implies x ∈ S l(u) ∪

R(u) for some l ∈ {j, . . . , k0}, i.e x ∈ S+
m(u)∪R(u). This shows S+

m(u)∪R(u)
is open which in turn this implies S−m(u) = Ω\(S+

m+1(u) ∪ R(u)) is closed.
q.e.d.

Let u : Ω→ (Y, dG) be a harmonic map and x? ∈ Sj(u) for j > 0. Thus,
we can assume there exists σ? > 0 such that

u(Bσ?(x?)) ⊂ expYu(x?)(R
j × Y k−j

2 )

after isometrically identifying Rj × Y k−j
2 with X0 (cf. (12) and (13)). As

seen by the proof of Lemma 15, Rj × Y k−j
2 is the union of all k-flats {Fi}Li=1

containing the j-flat Rj × {P0}, and we can write

Rj × Y k−j
2 =

L⋃
i=1

Fi. (14)

Conversely, every k-flat of Rj × Y k−j
2 is one of {Fi}Li=1. To see this, note

that if F is a k-flat in Rj × Y k−j
2 then π1(F ) and π2(F ) are flats in Rj and

Y k−j
2 respectively where π1 and π2 are the projections onto the two factors

Rj and Y k−j
2 . Since dim(π1(F )) + dim(π2(F )) = dim(F ) = k, we necessarily

have dim(π1(F )) = j and dim(π2(F )) = k − j. Thus, π1(F ) = Rj, and since
Rj × Y k−j

2 is a cone, π2(F ) must contain the point P0. This implies that F
contains the j-flat Rj × {P0}.

We consider metrics

G(u(x?)), G on Rj × Y k−j
2 and h on Y k−j

2 (15)

as follows. The flat metric G(u(x?)) is as in (6) with P = u(x?). Notice
that G(u(x?)) is a product metric on Rj × Y k−j

2 by [GS] Lemma 6.2. The
metric h is defined by restricting G(u(x?)) to Y k−j

2 . In particular, (Y k−j
2 , dh)

is a (k − j)-dimensional F-connected NPC complex. The metric G is the
pullback metric via the exponentail map (7) as in (8). Note that then
(Fi, G|Fi) is a k-dimensional differentiable manifold for any Fi as in (14).
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Conversely, if (M,G|M) is a k-dimensional differentiable manifold containing
u(x?), then (M,G(u(x?))) is isometric to Rk, and hence M = Fi. In other
words, (Rj × Y k−j

2 , dG) is a DM-complex where {(Fi, G|Fi)} is the set DM’s

of (Rj×Y k−j
2 , dG). We identify Fi with Rk such that P0 = (0, . . . , 0) ∈ Rk−j.

We will say that
(Rj × Y k−j

2 , dG) is a local model . (16)

We are interested in the local properties of a harmonic map u : Ω → Y .
Thus for x? ∈ Ω and σ? > 0 sufficiently small, we represent u|Bσ? (x?) as a
harmonic map

u = (V, v) : (Bσ?(x?), g)→ (Rj × Y2
k−j, dG). (17)

into a local model and refer to (17) as a local representation. Here, we assume
that if we have the representation in the above form and x? ∈ S(u)\S0(u),
then x ∈ Sj(u) (cf. Definition 14). Furthermore, if x? ∈ R(u) then we
assume k = j. The projection maps

V := π1 ◦ u : Bσ?(x?)→ Rj and v := π2 ◦ u : Bσ?(x?)→ Y k−j
2

are called the the non-singular component and the singular component re-
spectively. We will also need the following refined notion of regular.

Definition 17 Let u as above, x0 ∈ Bσ?(x?), σ0 > 0 such that Bσ0(x0) ⊂
Bσ?(x?) and w : (Bσ0(x0), g) → (Y k−j

2 , dh) be a harmonic map. A point
x ∈ R(u) is said to be (u,w)-regular if there exists a flat F of Y k−j

2 and
r > 0 such that v(Br(x)), w(Br(x)) ⊂ F . Denote by R(u,w) the set of all
(u,w)-regular points.

Lemma 18 Let u and w as in Definition 17. For x0 ∈ R(u) ∩ R(w), there
exist r > 0 and a set Λ of finite (n − 1)-Hausdorff measure such that x ∈
R(u,w) for any x ∈ Br(x0)\Λ.

Proof. Let F denote the set of all (k − j)-flats of Y k−j
2 . Since x0 ∈

R(u) ∩ R(w), there exist r > 0 and F v, Fw ∈ F such that v(Br(x0)) ⊂ F v

and w(Br(x0)) ⊂ Fw. For F ∈ F\{F v}, there exists a finite set LvF of
(k − 1)-dimensional linear subspaces of F v such that

∂(F v ∩ F ) ⊂
⋃

L∈LvF

L.
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Intuitively speaking LvF is the set where flats can branch off F . Similarly de-
fine LwF . We claim that for for every L ∈ LvF , either (i) v−1(L)∩Br(x0) is a real
analytic subvariety of Br(x0) of codimension at least 1 or (ii) v(Br(x0)) ⊂ L.
We also claim an analogous statement for L ∈ LwF and w−1(L)∩Br(x0). Since
the proofs are similar, we only prove the first statement. First, isometrically
identify F v to Rk−j in such a way that if (yj+1, . . . , yk) are the standard coor-
dinates of Rk−j then L is given by {(yj+1, . . . , yk) : yk = 0}. Let (V, . . . , uk)
be the coordinate expression of u|Br(x0) : Br(x0) → Rk ' Rj × F v. Since
u satisfies the harmonic map equation, the unique continuation principle of
elliptic p.d.e.’s implies that either (uk)−1(0) is a subvariety of codimension
at least 1 or uk ≡ 0. This proves the claim. Let L̂vF be the elements of LvF
satisfying (i). Similarly define L̂wF . Then

Λ =

 ⋃
F∈F\{F v}

⋃
L∈L̂vF

v−1(L) ∪
⋃

F∈F\{Fw}

⋃
L∈L̂wF

w−1(L)

 ∩Br(x0)

is clearly of finite (n−1)-Hausdorff measure. By construction, given any con-
nected component C of Br(x0)\Λ and any F ∈ F\Fv either v(C) ∩ F = ∅
or v(C) ⊂ F . Hence (after assuming without loss of generality that the
triangulation of Y k−j has minimal number of cells), v(C) is contained in a
single closed k-cell, say Sv. Similarly, w(C) is contained in a single (possibly
the same) closed k-cell, say Sw. Since Y k−j

2 is F-connected and all cells are
adjacent (containing P0), there exists F ∈ F containing Sv and Sw. This
shows C ⊂ R(u,w). q.e.d.

Corollary 19 If u and w as in Definition 17, then Br(x0)\R(u,w) is of
finite Hausdorff (n− 1)-measure for any r ∈ (0, σ0).

Proof. Since R(w) is of Hausdorff codimension ≥ 2 by [GS], the asser-
tion follows from Lemma 18. q.e.d.

Let x0 ∈ Sj(u) and identify x0 = 0 via normal coordinates. Translating
if necessary, assume V (0) = 0. Recall from (10) that the blow up maps of u
at x0 = 0 are the maps

uσ(x) = (Vσ(x), vσ(x)) := (µ−1
σ V (σx), µ−1

σ v(σx))

13



into (Rj × Y k−j
2 , dGσ) where Gσ(y) = G(µσy). Also recall that the tangent

map is a map into (Rj × Y k−j
2 , dG(u(x0))) by Lemma 11 and (13).

Lemma 20 If u∗ : (B1(0), g(0)) → (Rj × Y k−j
2 , dG(u(x0))) is a tangent map

of u at x0 ∈ Sj(u), then v∗ := π2 ◦ u∗ ≡ P0.

Proof. Assume on the contrary that v∗ 6≡ P0. Since u∗ is a homoge-
neous degree 1 map, so is v∗. By Proposition 3.1 of [GS] v∗ maps into a flat
F0 of Y k−j

2 of dimension l. Let X0 be the union of all k-flats containing F0.
By Lemma 6.2 of [GS], X0 is isometric to Rj+l×Zk−j−l

2 and u∗ is effectively
contained in Rj+l × Zk−j−l

2 . Since supBr(x) d(u, expYu(x) ◦u∗ ◦ (expΩ
x )−1) → 0

as r → 0, this implies that x0 ∈ S+
j+l(u) by Theorem 5.1 of [GS] which con-

tradicts that x0 ∈ Sj(u). q.e.d.

Given a Lipschitz map

û : (V̂ , v̂) : (Bσ?(x?), g)→ (Rj × Y k−j
2 , dG),

the component maps V̂ and v̂ can be seen as maps into a Riemannian man-
ifold (Rj, H) where H(V ) = G(V, 0) and an NPC space (Y k−j

2 , dh) respec-
tively. We will prove later (cf. Lemma 29) that for a.e. x ∈ Bσ?(x?)∣∣∣|∇û|2(x)−

(
|∇V̂ |2(x) + |∇v̂|2(x)

)∣∣∣ ≤ Cd2(v̂(x), P0) (18)

where the constant C depends only on the Lipschitz constant of û and the
constant in the estimates (29)-(33) for the target metric G. By an abuse of
notation, we have used | · | to denote the norms with respect to dH , dh and
dG for maps into Rj, Y k−j

2 and R× Y k−j
2 respectively. For now, we assume

this property and we obtain the following as a corollary of Lemma 20.

Lemma 21 Assume that the DM-complex (Rj × Y k−j
2 , dG) satisfies (18). If

u : (V, v) : (Bσ?(x?), g) → (Rj × Y k−j
2 , dG) is a harmonic map, then for a.e

x ∈ Sj(u)
|∇v|2(x) = 0 and |∇V |2(x) = |∇u|2(x).

Proof. Since |∇v|2 is L1, almost every point of Bσ?(x?) is a Lebesgue
point. Let x ∈ Sj(u) be a Lebesgue point of |∇v|2 and C be the Lipschitz

14



bound of u in Br(x) ⊂ Bσ?(x?). After identifying x = 0 via normal coordi-
nates, let uσi = (Vσi , vσi) be a sequence blow up maps converging to a tangent
map u∗ = (V∗, v∗). Then (18) implies

Euσ(r) =
(
EVσ(r) + Evσ(r)

)
+O(σ2). (19)

Combined with Lemma 20, we obtain

Eu∗(r) = EV∗(r) + Ev∗(r) = EV∗(r). (20)

Therefore,

lim sup
i→∞

EVσi (r) ≤ lim sup
i→∞

EVσi (r) + lim sup
i→∞

Evσi (r)

= lim
i→∞

Euσi (r) (by (19))

= Eu∗(r) (by [KS2] Theorem 3.11)

= EV∗(r) (by (20))

≤ lim inf
i→∞

EVσi (r)

where the last inequality is by the lower semicontinuity of energy [KS2]
Lemma 3.8. This immediately implies

lim
i→∞

EVσi (r) = lim
i→∞

Euσi (r) and lim
i→∞

Evσi (r) = 0. (21)

Therefore,

|∇v|2(0) = lim
i→∞

1

V ol(Bσir(0))

∫
Bσir(0)

|∇v|2dµ

= lim
i→∞

µ2
σi

V ol(Br(0))

∫
Br(0)
|∇vσi |2dµσi

≤ lim
i→∞

C2

V ol(Br(0))

∫
Br(0)
|∇vσi |2dµσi

= 0 (by (21)).

This implies the first assertion. The second follows immediately from the
first and (20). q.e.d.

15



4 Metric estimates near a singular point

Given a harmonic map u : Ω → (Y, dG), the goal of this section is to derive
some estimates of the metric near u(x?) for x? ∈ Sj(u), j > 0. Thus, let (Rj×
Y k−j

2 , dG) and (Y k−j
2 , dh) be as in (15). We will denote by V = (V 1, . . . , V j)

the standard coordinates of Rj, v = (vj+1, . . . , vk) the standard coordinates
of Rk−j and (V, v) the standard coordinates of Rk = Rj ×Rk−j.

We will first construct a coordinate chart for a DM M of (Rj×Y k−j
2 , dG)

in a neighborhood of (0, P0). First, we identify Rj × {0} with the lowest
dimensional singular locus Rj×{P0} ⊂M of Rj×Y k−j

2 by the identity map.
Next, let {ej+1(V, 0), . . . , ek(V, 0)} be an orthonormal frame of the normal
space to Rj × {0} in M . Furthermore, for each V ∈ Rj, let ΦV : Rk → M
be a normal coordinate chart centered at (V, 0) with

dΦV

∣∣∣
T(V,0)R

k
(
∂

∂vm
) = em(V, 0), ∀m = j + 1, . . . , k.

Finally, we construct coordinates for a neighborhood of (0, 0) ∈M by defining
a diffeomorphism Φ that agrees with the normal coordinate chart ΦV on the
slice {V } ×Rk−j. More precisely, for a sufficiently small neighborhood U of
(0, 0) ∈ Rj ×Rk−j, define coordinates (V, v) via the coordinate chart

Φ : U ⊂ Rj ×Rk−j → Φ(U) ⊂M, Φ(V, v) = ΦV |{0}×Rk−j(v).

We are only interested in the local properties of (Rj × Y k−j
2 , dG). Hence,

by an abuse of notation, we will identify each DM M with Rj ×Rk−j along
with (the extension of) the pullback of the metric G via the coordinates (V, v)
(which we shall still denote by G). In particular, since Rj × Y k−j

2 is a union
of k-flats {Fi} and (Fi, G|Fi) is a DM for each i (cf. (14)), we can express

every point P ∈ Rj × Y k−j
2 as P = (V, v).

Lemma 22 Let M = (Rj ×Rk−j, G) be a DM in (Rj × Y k−j
2 , dG) and let

G =

(
G11(V, v) G12(V, v)
G21(V, v) G22(V, v)

)

be the matrix representation of G with

G11(V, v) = (GIJ(V, v)) G12(V, v) = (GIl(V, v))

G21(V, v) = (GlI(V, v)) G22(V, v) = (Glm(V, v))

16



for I, J = 1, . . . , j and l,m = j + 1, . . . , k. Then for (V, v) sufficiently close
to (0, 0), there exists a constant C > 0 depending only on

the sup norm of the second derivatives of the metric G, (22)

such that

|GIJ(V, v)−GIJ(V, 0)| ≤ C|v|2, | ∂
∂vl
GIJ(V, v)| ≤ C|v|

|GIl(V, v)| ≤ C|v|2, |ĠIl(V, v)| ≤ C|v|
|Glm(V, v)− δlm| ≤ C|v|2, |Ġlm(V, v)| ≤ C|v|

(23)

In the above, Ġ is used indicate any derivatives (i.e. ∂
∂V I

or ∂
∂vl

) of G .

Proof. To prove (23), we first verify the following equalities:

(i)
∂

∂V J
<

∂

∂V I
,
∂

∂vl
> (V, 0) = 0

(ii)
∂

∂vm
<

∂

∂V I
,
∂

∂vl
> (V, 0) = 0

(iii)
∂

∂vm
<

∂

∂V I
,
∂

∂V J
> (V, 0) = 0

(iv)
∂

∂V I
<

∂

∂vl
,
∂

∂vm
> (V, 0) = 0

(v)
∂

∂vm
<

∂

∂vl
,
∂

∂vp
> (V, 0) = 0.

Indeed, since {em(V, 0)}m=j+1,...,k is an orthonormal frame of the normal space
of Rj × {P0}, we have that

<
∂

∂V I
,
∂

∂vl
> (V, 0) ≡ 0 and <

∂

∂vl
,
∂

∂vm
> (V, 0) ≡ δlm

which immediately implies (i) and (iv). We next verify (ii). Fix (V0, 0)
and identify (V0, 0) = (0, 0) for simplicity. Denoting the normal coordinates
centered at (0, 0) by (Ṽ , ṽ), we have

∇X
∂

∂ṽm
(0, 0) = 0, ∀X ∈ T(0,0)R

k,m = j + 1, . . . , k. (24)
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Since v = ṽ on the slice {0} ×Rk−j by the definition of Φ, we have

∂

∂vm
(0, v) =

∂

∂ṽm
(0, v). (25)

Furthermore, (V, ṽ) 7→ (V, v) is a diffeomorphism in a neighborhood of (0, 0),
and hence (V, ṽ) are also coordinates in a neighborhood of (0, 0). In partic-
ular, this implies that

∇ ∂
∂ṽm

∂

∂V I
= ∇ ∂

∂V I

∂

∂ṽm
. (26)

Thus, we have at (0, 0)

∂

∂vm
<

∂

∂V I
,
∂

∂vl
> =

∂

∂ṽm
<

∂

∂V I
,
∂

∂ṽl
> by (25)

= < ∇ ∂
∂ṽm

∂

∂V I
,
∂

∂ṽl
> + <

∂

∂V I
,∇ ∂

∂ṽm

∂

∂ṽl
>

= < ∇ ∂
∂ṽm

∂

∂V I
,
∂

∂ṽl
> by (24)

= < ∇ ∂

∂V I

∂

∂ṽm
,
∂

∂ṽl
> by (26)

= 0 by (24)

which proves (ii). Similarly for (iii) and (v), we have at (0, 0)

∂

∂vm
<

∂

∂V I
,
∂

∂V J
> =

∂

∂ṽm
<

∂

∂V I
,
∂

∂V J
>

= < ∇ ∂
∂ṽm

∂

∂V I
,
∂

∂V J
> + <

∂

∂V I
,∇ ∂

∂ṽm

∂

∂V J
>

= < ∇ ∂

∂V I

∂

∂ṽm
,
∂

∂V J
> + <

∂

∂V I
,∇ ∂

∂V J

∂

∂ṽm
>

= 0

and

∂

∂vm
<

∂

∂vl
,
∂

∂vm
> =

∂

∂ṽm
<

∂

∂ṽl
,
∂

∂ṽm
>

= < ∇ ∂
∂ṽm

∂

∂ṽl
,
∂

∂ṽm
> + <

∂

∂ṽl
,∇ ∂

∂ṽm

∂

∂ṽm
>

= 0.
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The estimates of (23) follow from the inequalities (i) through (v). Here,
we will only prove

|G11(V, v)−G11(V, 0)| ≤ C|v|2 (27)

and

| ∂
∂vl

G11(V, v)| ≤ C|v| (28)

since the other estimates follow by a similar argument. To prove (27), first
apply the Mean Value Theorem and the chain rule to obtain for some τ ∈
(0, 1)

G11(V, v)−G11(V, 0) =

(
∂

∂t
G11(V, tv)

) ∣∣∣
t=τ

=
k∑

m=j+1

vm
∂

∂vm
G11(V, τv).

Since (iii) implies

∂

∂vm
G11(V, 0) = 0, ∀m = j + 1, . . . , k,

we have for some σ ∈ (0, 1)

∂

∂vm
G11(V, τv) =

(
∂

∂s

(
∂

∂vm
G11(V, sτv)

)) ∣∣∣
s=σ

=
k∑

l=j+1

τvl
∂2

∂vl∂vm
G11(V, στv).

Together, we have

G11(V, v)−G11(V, 0) =
k∑

l,m=j+1

τvlvm
∂2

∂vlvm
G11(V, στv)

which implies (27) with C as in (22). To prove (28), we first note that
∂
∂vl

G11(V, 0) = 0 by (ii). Thus, for some τ ∈ (0, 1)

∂

∂vl
G11(V, v) =

(
∂

∂t

(
∂

∂vl
G11(V, tv)

)) ∣∣∣
t=τ

=
k∑

l=j+1

vl
∂2

∂vm∂vl
G11(V, τv)
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which implies (28) with C as in (22). q.e.d.

5 Assumptions

In the subsequent sections, we will analyze a local representation (cf. (17))

u = (V, v) : (Bσ?(x?), g)→ (Rj × Y2
k−j, dG)

of a harmonic map into a DM-complex where the component maps V and
v can be seen as maps into a Riemannian manifold (Rj, H) where H(V ) =
G(V, 0) and an NPC space (Y k−j

2 , dh) respectively. In this section, we sum-
marize all the notation and list the relevant properties that will be used.
On the other hand, the DM-complexes share the same properties with other
important spaces, for example the Weil-Petersson completion of Teichmüller
space which we will study in our forthcoming papers. In other words, we are
interested in applying the results of this paper to a more general setting. For
this reason, we state the properties of the metric space (Rj × Y2

k−j, dG) and
the harmonic map u in a general form (as assumptions) below.

Assumption 1 The metric space (Y k−j
2 , dh) is an NPC space with a homo-

geneous structure with respect to a base point P0 ∈ Y k−j
2 . In other words,

there is a continuous function

R>0 × Y2 → Y2, (λ, P ) 7→ λP

such that λP0 = P0 for every λ > 0 and the distance function d is homoge-
neous of degree 1, i.e.

d(λP, λP ′) = λd(P, P ′), ∀P, P ′ ∈ Y2.

Remark 23 In this paper, we are interested in the case where Y k−j
2 is a

(k− j)-dimensional unbounded conical F-connected complex with vertex P0.
The homogeneous structure is given by the scalar multiplication in Euclidean
space (after identifying the (k − j)-dimensional flat that contains P and P0

with Rk−j such that P0 is identified with the origin).

Recall the estimates of the metrics G and h in Lemma 22. We will state
these estimates in in a general setup below.
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Assumption 2 The metric space (Rj × Y2
k−j, dG) is an NPC space. The

Riemannian metric H of Rj and the metric h of Y k−j
2 is such that on every

DM (Rj × F k−j, G), the metric G is asymptotically the product metric

G0(V, v) = H(V )⊕ h(v).

By this we mean the following. There exist constants C > 0 and ε ∈ (0, 1
2
)

such that if, with respect to the standard coordinates (V 1, . . . , V j) of Rj and
some coordinates (vj+1, . . . , vk) of F k−j, at P0 we have

H(V ) = (HIL(V )), H−1(V ) = (HIL(V )),

h(v) = (hil(v)), h−1(v) = (hil(v)),

G(V, v) =

(
GIL(V, v) GIl(V, v)
GlL(V, v) Gil(V, v)

)
, G−1(V, v) =

(
GIL(V, v) GIl(V, v)
GlL(V, v) Gil(V, v)

)

with I, L = 1, . . . , j and i, l = j + 1, . . . , k then the following estimates hold:

C0-estimates:

|GIJ(V, v)−H(V )IJ | ≤ CH(V )
1
2
IIH(V )

1
2
JJd

2(v, P0)

|GIj(V, v)| ≤ CH(V )
1
2
IIh(v)

1
2
jj d

2(v, P0)

|Gij(V, v)− hij(v)| ≤ Ch(v)
1
2
iih(v)

1
2
jj d

2(v, P0)

(29)

C1-estimates:

| ∂
∂V I

GJK(V, v)| ≤ CH(V )
1
2
IIH(V )

1
2
JJH(V )

1
2
KK

| ∂
∂vl
GIJ(V, v)| ≤ Ch(v)

1
2
llH(V )

1
2
IIH(V )

1
2
JJd(v, P0)

| ∂
∂V I

GJj(V, v)| ≤ CH(V )
1
2
IIH(V )

1
2
JJh(v)

1
2
jj d(v, P0)

| ∂
∂vl
GIj(V, v)| ≤ CH(V )

1
2
IIh(v)

1
2
llh(v)

1
2
jj

| ∂
∂V J

Gij(V, v)| ≤ CH(V )
1
2
JJh(v)

1
2
iih(v)

1
2
jj

| ∂
∂vl

(Gij(V, v)− hij(v)) | ≤ Ch(v)
1
2
llh(v)

1
2
iih(v)

1
2
jj

(30)

C0-estimates of the inverse:

|GIJ(V, v)−HIJ(V )| ≤ CHII(V )
1
2HJJ(V )

1
2d2(v, P0)

|GIj(V, v)| ≤ CHII(V )
1
2hjj(v)

1
2 d2(v, P0)

|Gij(V, v)− hij(v)| ≤ Chii(v)
1
2hjj(v)

1
2 d2(v, P0)

(31)
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Almost diagonal condition for H and h with respect to the coordinates
(V 1, . . . , V j) and (vj+1, . . . , vk):

HIJ(V ) ≤ εHII(V )
1
2HJJ(V )

1
2 (I 6= J), hij(v) ≤ εhii(v)

1
2hjj(v)

1
2 (i 6= j)

HII(V )HII(V ) ≤ C, hii(v)hii(v) ≤ C
(32)

Bounds on the derivatives for H and h:

| ∂
∂V I

HJK(V )| ≤ CHII(V )
1
2HJJ(V )

1
2HKK(V )

1
2

d(v, P0)| ∂
∂vi
hjk| ≤ Chii(v)

1
2hjj(v)

1
2hkk(v)

1
2 .

(33)

Remark 24 In this paper, we are interested in the case where H is the
Riemannian metric G(V, 0), h is the Euclidean metric hij = δij and ∂

∂vk
hij =

∂
∂vl
δij = 0. Thus, the above metric estimates follow immediately by Lemma 22.

Remark 25 If G, H and h satisfy Assumption 2, then we have the following
estimates: ∣∣∣∣H 1

2
II
HΓ

I
JK

∣∣∣∣ ≤ CH
1
2
JJH

1
2
KK ,

∣∣∣∣d(v, P0)h
1
2
ii
hΓ

i
jk

∣∣∣∣ ≤ Ch
1
2
jjh

1
2
kk. (34)

Furthermore,∣∣∣∣H 1
2
II(Γ

I
JK − HΓ

I
JK)

∣∣∣∣ ≤ CH
1
2
JJH

1
2
KK ,

∣∣∣∣h 1
2
ii(Γ

i
jk − hΓ

i
jk)
∣∣∣∣ ≤ Ch

1
2
jjh

1
2
kk∣∣∣∣H 1

2
IIΓ

I
Jk

∣∣∣∣ ≤ CH
1
2
JJH

1
2
kk,

∣∣∣∣H 1
2
IIΓ

I
jk

∣∣∣∣ ≤ Ch
1
2
jjh

1
2
kk∣∣∣∣h 1

2
iiΓ

i
jK

∣∣∣∣ ≤ Ch
1
2
jjH

1
2
KK ,

∣∣∣∣h 1
2
iiΓ

i
JK

∣∣∣∣ ≤ CH
1
2
JJH

1
2
KK .

(35)

Indeed, Cauchy-Schwarz, (32) and (33) imply∣∣∣∣d(v, P0)h
1
2
ii
hΓ

i

jk

∣∣∣∣ = d(v, P0)h
1
2
ii

∣∣∣hil(hlj,k + hlk,j − hjk,l)
∣∣∣

≤ Ch
1
2
ii(h

iihll)
1
2 (hllhjjhkk)

1
2

≤ C(hjjhkk)
1
2 .
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Furthermore, Cauchy-Schwarz, (30), (31) and (32) imply∣∣∣∣H 1
2
II(Γ

I
JK − HΓIJK)

∣∣∣∣
= H

1
2
II

∣∣∣GI∗(G∗J,K +G∗K,J −GJK,∗)−HI∗(H∗J,K +H∗K,J −HJK,∗)
∣∣∣

≤ H
1
2
II

∣∣∣(GIL −HIL)(GLJ,K +GLK,J −GJK,L)
∣∣∣

+H
1
2
II

∣∣∣GIl(GlJ,K +GlK,J −GJK,l)
∣∣∣

+H
1
2
II

∣∣∣HIL(GLJ,K −HLJ,K +GLK,J −HLK,J +HJK,L −GJK,L)
∣∣∣

≤ Cd2(v, P0)H
1
2
II(H

IIHLL)
1
2 (HLLHJJHKK)

1
2

+Cd2(v, P0)H
1
2
II(H

IIhll)
1
2 (hllHJJHKK)

1
2

+CH
1
2
II(H

IIHLL)
1
2 (HLLHJJHKK)

1
2

≤ C(HJJHKK)
1
2 .

The other estimates follow by similar computations.

Assumption 3 Let metrics G and h defined on Rj × Y2
k−j and Y2

k−j sat-
isfying Assumption 2 and

u = (V, v) : (Bσ?(x?), g)→ (Rj × Y2
k−j, dG)

be a harmonic map. By this, we assume that the non-singular component
V of u maps into a smooth Riemannian manifold (Rj, H) and the singular
component v of u maps into the NPC space (Y k−j

2 , dh). The set Sj(u) satisfies
the following:

(i) v(x) = P0 for x ∈ Sj(u)

(ii) dimH((S(u)\Sj(u)) ∩Bσ?
2

(x?)) ≤ n− 2.

Remark 26 For a harmonic map u into a DM-complex as in (17), the fact
that v(x) = P0 for x ∈ Sj(u) follows from the definition of Sj(u). On the
other hand, Assumption 3 (ii) is a part of the inductive hypothesis when we
will prove Theorem 1 by a backward induction on j in Section 11.
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Assumption 4 For Bσ(x0) ⊂ Bσ?
2

(x?) and any harmonic map

w : (Bσ(x0), g)→ (Y k−j
2 , h),

denote R(u,w) as the set of points x with the property that there exists a
DM M of Y k−j

2 and r > 0 such that the interior of a geodesic connecting
two points in v(Br(x)), w(Br(x)) ⊂ M . Then R(u,w) is of full measure in
R(u) ∩Br(x0).

Remark 27 For a harmonic map u into a DM-complex as in (17), Assump-
tion 4 follows from Definition 17 and Corollary 19

Assumption 5 For almost every x ∈ Sj(u), we have

|∇v|2(x) = 0 and |∇V |2(x) = |∇u|2(x).

Remark 28 For a harmonic map u into a DM-complex as in (17), Assump-
tion 5 follows by applying Lemma 29 below to Lemma 21.

By an abuse of notation, we use | · | to denote the norms with respect to
H, h and G for maps into Rj, Y k−j

2 and R × Y k−j
2 respectively. The fact

that G(V, v) is asymptotically a product metric G0(V, v) = H(V ) ⊕ h(v) as
v → P0 yields the following lemma.

Lemma 29 Let metrics G and h defined on Rj × Y2
k−j and Y2

k−j satisfy
Assumption 2 and

û : (V̂ , v̂) : (Bσ?(x?), g)→ (Rj × Y k−j
2 , dG)

be a Lipschitz map. For every x ∈ R̂(û) ∩ Bσ?(x?) and for almost every
x ∈ Bσ?(x?), we have∣∣∣|∇û|2(x)−

(
|∇V̂ |2(x) + |∇v̂|2(x)

)∣∣∣ ≤ Cd2(v̂(x), P0)

where the constant C depends on the Lipschitz constant of û and the constant
in the estimates (29)-(33) for the target metric G.
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Proof. We first prove that for P,Q ∈ Bλ(P0), we have(
1− Cλ2

)
≤ dH⊕h(P,Q)

dG(P,Q)
≤
(
1 + Cλ2

)
. (36)

To see this, for any vector γ′ ∈ TP ′(Rj × F k−j) with P ′ ∈ Bλ(P0), we have

|< γ′, γ′ >H⊕h − < γ′, γ′ >G| ≤ Cλ2 < γ′, γ′ >H⊕h .

Let
γ : [0, dG(P,Q)]→ R2j × Y k−j

be the arclength parameterized geodesic with respect to dG between P ∈
Bλ(P0) and Q ∈ Bλ(P0). Then

d2
H⊕h(P,Q) ≤

(∫ dG(P,Q)

0
< γ′, γ′ >

1
2
H⊕h dt

)2

≤ dG(P,Q)
∫ dG(P,Q)

0
< γ′, γ′ >H⊕h dt

≤ (1 + Cλ2)dG(P,Q)
∫ dG(P,Q)

0
< γ′, γ′ >G dt

≤ d2
G(P,Q)

(
1 + Cλ2

)
.

Next, let
γ : [0, d2

H⊕h(P,Q)]→ Rj × Y k−j
2

be the arclength parameterized geodesic with respect to dH⊕h between P and
Q. Thus

d2
G(P,Q) ≤

(∫ dH⊕h(P,Q)

0
< γ′, γ′ >

1
2
G dt

)2

≤ dH⊕h(P,Q)
∫ dH⊕h(P,Q)

0
< γ′, γ′ >G dt

≤ (1 + Cλ2)dH⊕h(P,Q)
∫ dH⊕h(P,Q)

0
< γ′, γ′ >H⊕h dt

≤ d2
H⊕h(P,Q)

(
1 + Cλ2

)
.

This completes the proof of (36). By the definition of energy density in
[KS1], this immediately implies for almost every x ∈ Bσ?(x?) and for every
x ∈ Bσ?(x?) such that û(Bδ(x)) ⊂M for some DM M ,
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∣∣∣|∇V̂ |2(x) + |∇v̂|2(x)− |∇û|2
∣∣∣ ≤ Cd2(v̂(x), P0)

where C here is as in the assertion of the Lemma. q.e.d.

Assumption 6 For any subdomain Ω compactly contained in

Bσ?
2

(x?)\
(
S(u) ∩ v−1(P0)

)
,

there exists a sequence of smooth functions {ψi} with ψi ≡ 0 in a neighbor-
hood of S(u) ∩ Ω, 0 ≤ ψi ≤ 1, ψi → 1 for all x ∈ Ω\S(u) such that

lim
i→∞

∫
Ω
|∇∇u||∇ψi| dµ = 0.

Remark 30 As is the case for Assumption 3 (ii), Assumption 6 is a part of
the inductive hypothesis in the proof of Theorem 1.

Remark 31 In the sections below, we will use the following notation: Given
a point x ∈ R(u), let Rj × F be a DM that contains a neighborhood of
u(x) = (V (x), v(x)). Then use the coordinates of Assumption 2 to interpret
∂V
∂xα

as a vector in Rj and ∂v
∂xα

as vectors in Rk−j. For any j× j-matrixM11,
j × (k − j)-matrix M12 and (k − j)× (k − j) matrix M22, we write

M11∇V · ∇V, M12∇V · ∇v and M22∇v · ∇v
to denote the inner products defined by

gαβ
(
∂V

∂xα

)T
M11

(
∂V

∂xβ

)
, gαβ

(
∂v

∂xα

)T
M12

(
∂V

∂xβ

)
, gαβ

(
∂v

∂xα

)T
M22

(
∂v

∂xβ

)
respectively. In particular, we use this notation to denote the expressions

G11(V, v)∇V · ∇V,G12(V, v)∇V · ∇v and G22(V, v)∇v · ∇v
where we follow the notation of Lemma 22 and set

G =

(
G11(V, v) G12(V, v)
G21(V, v) G22(V, v)

)
with

G11(V, v) = (GIJ(V, v)) G12(V, v) = (GIl(V, v))

G21(V, v) = (GlI(V, v)) G22(V, v) = (Glm(V, v))

for I, J = 1, . . . , j and l,m = j + 1, . . . , k to be the matrix representation of
G.
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6 The Target Variation

The main goal of this section is to obtain estimates for the target variation
of the singular component map v : Bσ?(x?)→ (Y k−j

2 , dh) of a harmonic map
u = (V, v) : Bσ?(x?)→ (Rj × Y2

k−j, dG) as in (17).

Remark 32 In this section, the properties of u that we need are Assump-
tion 2, Assumption 3 and Assumption 4 of Section 5.

Let r0 > 0 such that Br0(x0) ⊂ Bσ?
2

(x?) and w : Br0(x0) → (Y k−j
2 , dh) be a

harmonic map. For σ ∈ (0, r0), w is Lipschitz continuous in Bσ(x0) by [KS1]
Theorem 2.4.6. For t ∈ [0, 1] and η ∈ C∞c (Bσ(x0)) with 0 ≤ η ≤ 1, define

vtη : Bσ(x0)→ (Y k−j
2 , dh)

by setting
vtη(x) = (1− tη(x))v(x) + tη(x)w(x) (37)

where the sum indicates geometric interpolation. Furthermore, define

utη : Bσ(x0)→ (Rj × Y k−j
2 , dG)

by setting
utη = (V, vtη). (38)

Let x ∈ Bσ(x0) ∩ R(u,w); this means that there exists δ > 0 and a DM
F ⊂ Y k−j

2 that contains v(Bδ(x)) and w(Bδ(x)). Since F is geodesically
convex in Y k−j

2 , it also contains all geodesics from v(x′) to w(x′) for all
x′ ∈ Bδ(x). Hence, F contains vtη(x

′) for all x′ ∈ Bδ(x), t ∈ [0, 1]. In

Lemma 33 below, we interpret ∂vtη
∂xβ

as a section of φ−1(TF ) where φ : [0, 1]×
Bδ(x) → (Y k−j

2 , dh) is the map φ(t, x) = vtη(x). Furthermore, h∇ denotes
the connection on φ−1(TF ) induced by the Levi-Civita connection on F .

Lemma 33 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17). For vtη defined in (37), there exists C > 0 such that for
β = 1, . . . , n and x ∈ Bσ(x0) ∩R(u,w), we have∣∣∣∣∣h∇ d

dt

∂vtη
∂xβ

∣∣∣∣∣ ≤ C. (39)
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Proof. The first step is to prove the assertion under the assumption that
one of the maps v or w are constant identically equal to Q0. We will only
prove the latter case since the argument for the former case is analogous. Fix
x ∈ Bσ(x0) ∩ R(u,w) and t ∈ (0, 1). We are also assuming η ≡ 1. Let F be
a DM that contains v(Bδ(x)) and Q0 and γ be the arclength parameterized
geodesic ray starting at Q0 and ending at v(x). For each r > 0 close to
t, let (θ1, θ2, . . . , θk−j−1) be the normal coordinates centered at γ(r) for the
radius r sphere ∂Br(Q0) in (F, h). We use this to define coordinates in a
neighborhood N of vt(x); more specifically, the coordinates of a point P
close to vt(x) is (r, θ1, . . . , θk−j−1) where r = d(P,Q0) and (θ1, . . . , θk−j−1)
are the coordinates of P as a point in ∂Br(Q0).

Since r is the distance from Q0 and γ intersects ∂Br(Q0) orthogonally,
the components of h with respect to these coordinates satisfy

hrr = 1, hrθi = 0 in all of N .

Furthermore, the choice of (θ1, . . . , θk−j−1) as the normal coordinates of
∂Br(Q0) centered γ(r) implies that

hθiθj = δij along γ in N .

Thus, the Christoffel symbols along γ in the coordinates (r, θ1, . . . , θk−j−1)
satisfy

hΓ
r

rr = hrrhrr,r + hrθ
i

(hθir,r + hθir,r − hrr,θi) = 0,

hΓ
θk

rr = hθ
krhrr,r + hθ

kθi(hθir,r + hrθi,r − hrr,θi) = 0,
hΓ

r

rθl = hrr(hrr,θl + hrθl,r − hrθl,r) + hrθ
j

(hθjr,θl + hθjθl,r − hrθl,θj) = 0,

hΓ
θk

rθl = hθ
kr(hrr,θl + hrθl,r − hrθl,r) + hθ

kθj(hθjr,θl + hθjθl,r − hrθl,θj) = 0.

Using the above identities, we obtain

h∇ d
dt

∂vt
∂xβ

= h∇ d
dt

∂vrt
∂xβ

∂

∂r
+ h∇ d

dt

∂vθ
l

t

∂xβ
∂

∂θl

=
∂2vrt
∂t∂xβ

∂

∂r
+
∂vrt
∂xβ

∂vrt
∂t

h∇ ∂
∂r

∂

∂r
+
∂vθ

l

t

∂xβ
∂vrt
∂t

h∇ ∂
∂r

∂

∂θl

=
∂2vrt
∂t∂xβ

∂

∂r
+
∂vrt
∂xβ

∂vrt
∂t

(
hΓ

r

rr

∂

∂r
+ hΓ

θk

rr

∂

∂θk

)
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+
∂vθ

l

t

∂xβ
∂vrt
∂t

(
hΓ

r

rθl
∂

∂r
+ hΓ

θk

rθl
∂

∂θk

)

=
∂2vrt
∂t∂xβ

∂

∂r

=
∂d(v,Q0)

∂xβ
∂

∂r
.

Thus, the assertion for this case follows with C dependent on the Lipschitz
constant of v.

The second step is to consider the case when v(x) and w(x) are arbitrary
and η(x) ≡ 1. Fix x ∈ R(u,w) and define

ṽt(x
′) := (1− t)v(x′) + tw(x)

and
w̃t(x

′) := (1− t)v(x) + tw(x′)

for x′ close to x and t ∈ [0, 1]. Since ṽt, w̃t and vt are geodesic interpolation
maps,

t 7→ ∂ṽt
∂xβ

(x), t 7→ ∂w̃t
∂xβ

(x) and t 7→ ∂vt
∂xβ

(x)

are Jacobi fields along the geodesic γ(t) = (1 − t)v(x) + tw(x). Since x 7→
w̃t(x) is constant for t = 0, we have

∂ṽt
∂xβ

(x)|t=0 +
∂w̃t
∂xβ

(x)|t=0 =
∂vt
∂xβ

(x)|t=0.

Similarly, since x 7→ ṽt(x) is a constant for t = 1, we have

∂ṽt
∂xβ

(x)|t=1 +
∂w̃t
∂xβ

(x)|t=1 =
∂vt
∂xβ

(x)|t=1.

Thus, the uniqueness of the solution of the Jacobi equation implies that

∂ṽt
∂xβ

(x) +
∂w̃t
∂xβ

(x) =
∂vt
∂xβ

(x), ∀t ∈ [0, 1]. (40)

From the first step, we obtain that∣∣∣∣∣h∇ d
dt

∂ṽt
∂xβ

(x)

∣∣∣∣∣ ,
∣∣∣∣∣h∇ d

dt

∂w̃t
∂xβ

(x)

∣∣∣∣∣ ≤ C. (41)
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Thus, the assertion in the second step follows immediately from (40) and (41).
Finally we come to the general case when η is arbitrary. If ψ : [0, 1]×Bδ(x)→
(Y k−j

2 , dh) is the map ψ(t, x) = vt(x), then φ(t, x) = ψ(tη, x) = vtη(x). From

the second step we know that
∣∣∣h∇ d

dt

∂ψ(x,t)
∂xβ

∣∣∣ ≤ C, hence by the chain rule we

obtain
∣∣∣h∇ d

dt

∂φ(x,t)
∂xβ

∣∣∣ ≤ C. q.e.d.

Remark 34 In the case the target metric hij = δij is Euclidean, which is
the case for DM-complexes, the proof of the Lemma above is simpler. Indeed,∣∣∣∣∣ ddt ∂v

j
tη

∂xβ

∣∣∣∣∣ =

∣∣∣∣∣ ∂∂xβ η(vj − wj)
∣∣∣∣∣

=

∣∣∣∣∣η
(
∂vj

∂xβ
− ∂wj

∂xβ

)
+

∂η

∂xβ
(vj − wj)

∣∣∣∣∣ ≤ C.

Lemma 35 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17). If vtη, utη are as in (37), (38) respectively, then

|∇utη|2(x)− |∇u|2(x) = |∇vtη|2(x)− |∇v|2(x) +O(t2)

for almost every x ∈ S(u) where O(t2) is a term which is quadratic in t.

Proof. For x ∈ Sj(u), we have v(x) = P0 by Assumption 3 (i). Thus,

d(vtη(x), P0) ≤ d(vtη(x), v(x)) + d(v(x), P0) = tηd(v, w)(x).

Furthermore, by Lemma 29 applied with û = u and Assumption 3 (i), we
have for almost every x ∈ Sj(u)

|∇u|2(x) = |∇V |2(x) + |∇v|2(x) +O(d2(v, P0)) = |∇V |2(x) + |∇v|2(x).

Finally, apply Lemma 29 with û = utη implies to obtain for almost every
x ∈ Sj(u),

|∇utη|2(x) = |∇V |2(x) + |∇vtη|2(x) +O(d2(vtη(x), P0))

= |∇V |2(x) + |∇vtη|2(x) +O(t2)

Combining the above two equations, we obtain

|∇utη|2(x)− |∇u|2(x) = |∇vtη|2(x)− |∇v|2(x) +O(t2), ∀x ∈ Sj(u).
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Since Sj(u) is of full measure in S(u) by Assumption 3 (ii), this implies the
assertion. q.e.d.

Remark 36 We are interested in the quantity∫
Bσ(x0)

(
|∇utη|2 − |∇u|2

)
−
(
|∇vtη|2 − |∇v|2

)
dµ.

We write the above integral as the sum of two terms, the first being the
integral over R(u)∩Bσ(x0) and the second being integral over S(u)∩Bσ(x0).
Assumption 4 implies that when we estimate the first term, we need only to
estimate the integrand in the subset R(u,w) of R(u) ∩ Bσ(x0). Lemma 35
implies that the second term is O(t2).

The following is an estimate of the first variation for target variations.

Proposition 37 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a har-

monic map as in (17). If w : Bσ0(x0)→ (Y k−j
2 , dh) is a harmonic map with

Ew(σ0) ≤ A and vtη, utη are as in (37), (38) respectively, then there exists
C > 0 such that

lim sup
t→0+

Ev
x0

(σ)− Evtη
x0

(σ)

t
≤ C

∫
Bσ(x0)

η(d(v, P0) + |∇v|)d(v, w)dµ

for x0 ∈ Sj(u) ∩ Bσ?
2

(x?), σ0 > 0 with Bσ0(x0) ⊂ Bσ?
2

(x?), σ ∈ (0, σ0]
and η ∈ C∞c (Bσ(x0)) with 0 ≤ η ≤ 1. Furthermore, C depends only on
the constant in the estimates (29)-(33) for the target metric G, the domain
metric g, the Lipschitz constant of u in Bσ0(x0) and A.

Proof. Throughout the proof, we will C to denote an arbitrary constant
dependent only on the estimates (29)-(33) for the target metricG, the domain
metric g, the Lipschitz constant of u in Bσ0(x0) and A. Let x ∈ Bσ(x0) ∩
R(u,w). Thus, there exists a DM F that contains vη(Bδ(x)) and M =
Rj × F that contains uη(Bδ(x)). Using coordinates of Rj × F , we have for
x ∈ Bσ(x0) ∩R(u,w), t0 > 0 and τ > 0 small

|∇u(t0+τ)η|2 − |∇ut0η|2

= G11(V, v(t0+τ)η)∇V · ∇V −G11(V, vt0η)∇V · ∇V
+2(G12(V, v(t0+τ)η)∇V · ∇v(t0+τ)η −G12(V, vt0η)∇V · ∇vt0η)
+G22(V, v(t0+τ)η)∇v(t0+τ)η · ∇v(t0+τ)η −G22(V, vt0η)∇vt0η · ∇vt0η.
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Dividing by τ , taking the limit as τ → 0, subtracting d
dt

∣∣∣
t=t0
|∇vtη|2 from both

sides and noting that R(u,w) is of full measure in R(u) by Assumption 4,
we conclude that at almost every x ∈ Bσ(x0) ∩R(u) and for t0 > 0 small

d

dt

∣∣∣
t=t0

(
|∇utη|2 − |∇vtη|2

)
=

d

dt

∣∣∣
t=t0

G11(V, vtη)∇V · ∇V + 2
d

dt

∣∣∣
t=t0

G12(V, vtη)∇V · ∇vtη

+
d

dt

∣∣∣
t=t0

2(V, vtη)∇vtη · ∇vtη (42)

where
2(V, v) = G22(V, v)− h(v).

Since u is harmonic, we have

d

dt

∣∣∣
t=0+

∫
Bσ(x0)

|∇utη|2dµ ≥ 0 (43)

where for a function f(t) defined for t > 0 small we set

d

dt

∣∣∣
t=0+

f := lim inf
t→0+

f(t)− f(0)

t
.

By Lemma 35,∫
S(u)∩Bσ(x)

|∇utη|2 − |∇u|2dµ =
∫
S(u)∩Bσ(x)

|∇vtη|2 − |∇v|2dµ+O(t2),

and hence
d

dt

∣∣∣
t=0+

∫
S(u)∩Bσ(x)

|∇utη|2 − |∇vtη|2dµ = 0. (44)

Furthermore,

Claim 38 For t0 > 0 small, there exists a constant C0 > 0 depending only
on the estimates (29)-(33) for the target metric G, the domain metric g, on
the Lipschitz constants of u and w in the support of η,∣∣∣∣∣ ddt

∣∣∣
t=t0

(
|∇vtη|2 − |∇utη|2

)∣∣∣∣∣ ≤ C0, ∀x ∈ R(u,w) ∩Bσ(x0).
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Proof of Claim. In the proof of the claim, we will use C0 to denote a
constant dependent only on the estimates (29)-(33) for the target metric G,
the domain metric g, on the Lipschitz constants of u and w in the support
of η. For x ∈ R(u,w), we use a DM to compute

d

dt
G11(V, vtη)∇V · ∇V = gαβ

∂

∂vi
GIJ(V, vtη)

dvitη
dt

∂V I

∂xα
∂V J

∂xβ
, (45)

d

dt
G12(V, vtη)∇V · ∇vtη = gαβ

∂

∂vi
GIj(V, vtη)

dvitη
dt

∂V I

∂xα
∂vjtη
∂xβ

+gαβGIj(V, vtη)
∂V I

∂xα
d

dt

∂vjtη
∂xβ

, (46)

d

dt
2(V, vtη)∇vtη · ∇vtη = gαβ

∂

∂vi
2lj(V, vtη)

dvitη
dt

∂vltη
∂xα

∂vjtη
∂xβ

+2gαβ2lj(V, vtη)lj
∂vltη
∂xα

d

dt

∂vjtη
∂xβ

. (47)

By the Lipschitz estimate of u and (32) of Assumption 2,∣∣∣∣∣H(V )
1
2
II

∂V I

∂xα

∣∣∣∣∣ ,
∣∣∣∣∣h(v)

1
2
jj

∂vj

∂xα

∣∣∣∣∣ ≤ C. (48)

Since τ 7→ vτη(x) is a constant speed geodesic, we also have∣∣∣∣∣h(vtη)
1
2
jj

dvjtη
dt

∣∣∣∣∣ ≤ ηd(v, w). (49)

Thus, ∣∣∣∣∣h(vtη)
1
2
jj

dvjtη
dt

∣∣∣∣∣ ≤ C0. (50)

Additionally, since

h∇ d
dt

∂vtη
∂xβ

=

(
d

dt

∂vitη
∂xβ

+
∂vjtη
∂xβ

∂vktη
∂t

hΓ
i

jk

)
∂

∂vi

Lemma 33, (32) and the Christoffel symbols estimates (34) imply

d(v, P0)

∣∣∣∣∣h 1
2
ii

d

dt

∂vitη
∂xβ

∣∣∣∣∣ ≤ C0. (51)
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Thus, the metric estimates (29), (30) along with (48), (50) and (51) imply
that the absolute value of the right hand side of (45), (46) and (47) is uni-
formly bounded above. Combined with (42), this implies the assertion of the
claim. q.e.d.

We now continue with the proof of the Proposition. Since R(u,w) is
of full measure in R(u) ∩ Bσ(x0) by Assumption 4, Claim 38 immediately
implies by letting t0 → 0+

∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

(
|∇utη|2 − |∇vtη|2

)
dµ

=
d

dt

∣∣∣
t=0+

∫
R(u)∩Bσ(x0)

|∇utη|2 − |∇vtη|2dµ. (52)

Therefore we conclude

− d

dt

∣∣∣
t=0+

∫
Bσ(x0)

|∇vtη|2dµ

≤ d

dt

∣∣∣
t=0+

∫
Bσ(x0)

|∇utη|2 − |∇vtη|2dµ (by (43))

=
d

dt

∣∣∣
t=0+

∫
R(u)∩Bσ(x0)

|∇utη|2 − |∇vtη|2dµ (by (44))

=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

(
|∇utη|2 − |∇vtη|2

)
dµ (by (52))

=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

G11(V, vtη)∇V · ∇V dµ

+
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

G12(V, vtη)∇V · ∇vtηdµ

+
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

2(V, vtη)∇vtη · ∇vtηdµ (by (42))

=: (I) + (II) + (III). (53)

Thus, it suffices to prove the appropriate bounds for (I), (II) and (III).
First, the metric derivative estimates (30) along with (45), (48) and (49)

imply

(I) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

G11(V, vtη)∇V · ∇V dµ
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=
∫
R(u)∩Bσ(x0)

gαβ
∂

∂vi
GIJ(V, v)

dvitη
dt

∣∣∣
t=0

∂V I

∂xα
∂V J

∂xβ
dµ

≤ C
∫
R(u)∩Bσ(x0)

ηd(v, P0)d(v, w)dµ. (54)

Next, by (46), we can write

(II) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

G12(V, vtη)∇V · ∇vtηdµ

=
∫
R(u)∩Bσ(x0)

gαβ
∂

∂vi
GIj(V, v)

dvitη
dt

∣∣∣
t=0

∂V I

∂xα
∂vj

∂xβ
dµ

+
∫
R(u)∩Bσ(x0)

gαβGIj(V, v)
∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ

=: (II)1 + (II)2. (55)

The metric derivative estimates (30) along with (45), (48) and (49) imply

(II)1 :=
∫
R(u)∩Bσ(x0)

gαβ
∂

∂vi
GIj(V, v)

dvitη
dt

∣∣∣
t=0

∂V I

∂xα
∂vj

∂xβ
dµ

≤ C
∫
R(u)∩Bσ(x0)

ηd(v, w)|∇v|dµ. (56)

Before we proceed to (II)2, we will show

∃εj → 0 such that εjHn−1(∂A+
εj
∩Bσ(x0))→ 0 (57)

where
A+
ε = {x ∈ Bσ(x0) : d(v, P0) > ε}.

Indeed, if (57) is not true, then εHn−1(∂A+
ε ∩ Bσ(x0)) ≥ δ > 0 for ε < ε0.

This in turn implies∫ ε0

0
Hn−1(∂A+

ε ∩Bσ(x0))dε ≥ δ
∫ ε0

0

1

ε
dε =∞.

On the other hand, the co-area formula and the fact that d(v, P0) is Lipschitz
imply that∫ ∞

0
Hn−1(∂A+

ε ∩Bσ(x0))dε =
∫
A+

0

|∇d(v, P0)|dµ <∞.
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This is a contradiction and this proves (57).
Let x ∈ (Bσ(x0)\A+

εj
)∩R(u,w). Using the metric estimates (29), we have

at x
|GIj(V, v)| ≤ Cd2(v, P0)H(V )

1
2
IIh(v)

1
2
jj.

SinceR(u,w) is of full measure inR(u) by Assumption 4, together with (48),
(51) and the fact that d(v, P0) ≤ εj in (R(u) ∩Bσ(x0))\A+

εj
implies

∫
(R(u)∩Bσ(x0))\A+

εj

gαβGIj(V, v)
∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ = O(εj),

and hence

(II)2 :=
∫
R(u)∩Bσ(x0)

gαβGIj(V, v)
∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ (58)

=
∫
A+
εj

gαβGIj(V, v)
∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ+O(εj).

We now apply integration by parts for the integral over A+
εj

above. In order to
do so, let % > 0. By [GS] Theorem 6.4, dimH(S(w)) ≤ n− 2. Combined with
Assumption 3 (ii), we have that dimH(S(u)\Sj(u) ∪ S(w)) ≤ n − 2. Thus,
there exists a cover {Brl(xl) : l = 1, 2, . . .} of the set (S(u)\Sj(u)∪S(w))∩A+

εj

such that
∑∞
l=1 r

n−1
l < %. Let ϕl be a Lipschitz cut-off function which is zero

in ∪∞l=1Brl(xl) and identically one in Bσ(x0)\∪∞l=1B2rl(xl) with |∇ϕl| ≤ 2r−1
l

in Brl(xl). Thus, with ϕ% = Π∞l ϕl, we have

∫
A+
εj

gαβGIj(V, v)
∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ

= lim
%→0

∫
A+
εj

ϕ%g
αβGIj(V, v)

∂V I

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ

= lim
%→0

[
−
∫
A+
εj

ϕ%
1
√
g

∂

∂xβ
(
√
ggαβ

∂V I

∂xα
)GIj(V, v)

dvjtη
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

ϕ%g
αβ ∂

∂xβ
GIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

gαβGIj(V, v)
∂V I

∂xα
∂ϕ%
∂xβ

dvjtη
dt

∣∣∣
t=0
dµ
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+
∫
∂A+

εj

ϕ%g
αβGIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

]
=: lim

%→0
[(II)21 + (II)22 + (II)23 + (II)24]. (59)

As a component function of a harmonic map u, V I satisfies the equation

1
√
g

∂

∂xβ

(
√
ggαβ

∂V I

∂xα

)
∂

∂V I

= −gαβ
(

ΓIJK(V, v)
∂V J

∂xα
∂V K

∂xβ
+ ΓIJi(V, v)

∂V J

∂xα
∂vi

∂xβ
+ ΓIij(V, v)

∂vi

∂xα
∂vj

∂xβ

)
∂

∂V I

in a neighborhood of a regular point x ∈ A+
ε ∩ R(u). By the Christoffel

symbols estimates (34), (35) and the Lipschitz estimates (48), we obtain∣∣∣∣∣ 1
√
g

∂

∂xβ

(
√
ggαβ

∂V I

∂xα

)
H

1
2
II

∣∣∣∣∣ ≤ C. (60)

Thus, the metric estimates (29) and (49) imply

(II)21 := −
∫
A+
εj

ϕ%
1
√
g

∂

∂xβ
(
√
ggαβ

∂V I

∂xα
)GIj(V, v)

dvjtη
dt

∣∣∣
t=0
dµ

≤ C
∫
Bσ(x0)

ηd(v, P0)d(v, w)dµ. (61)

By the metric derivative estimates (30) and the Lipschitz estimates (48) we
obtain ∣∣∣∣∣ ∂∂xβGIj(V, v)

∣∣∣∣∣ =

∣∣∣∣∣ ∂

∂V J
GIj(V, v)

∂V J

∂xβ
+

∂

∂vk
GIj(V, v)

∂vk

∂xβ

∣∣∣∣∣
≤ C(d(v, P0) + |∇v|)H(V )

1
2
IIh(v)

1
2
jj. (62)

Combined with (48) and (49), this implies

(II)22 := −
∫
A+
εj

ϕ%g
αβ ∂

∂xβ
GIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0
dµ

≤ C
∫
Bσ(x0)

η(d(v, P0) + |∇v|)d(v, w)dµ. (63)
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By the properties of the set of cut-off functions {ϕl}, we have

(II)23 := −
∫
A+
εj

gαβGIj(V, v)
∂V I

∂xα
∂ϕ%
∂xβ

dvjtη
dt

∣∣∣
t=0
dµ

≤ C
L∑
l=1

∫
Brl (xl)

|∇ϕl|dµ

≤ C
L∑
l=1

1

rl
Vol(Brl(xl))

≤ C
L∑
l=1

rn−1
l = O(%). (64)

Furthermore, |GIi(V, v)| ≤ Cε2jH(V )
1
2
IIh(v)

1
2
ii on ∂A+

εj
by the metric esti-

mates (29), and hence∣∣∣∣∣
∫
∂A+

εj
∩Bσ(x0)

ϕ%g
αβGIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

∣∣∣∣∣
≤ Cε2jHn−1(∂A+

εj
∩Bσ(x0)) = O(εj)

where we have used (57) for the last equality. Lastly, the fact that η has

compact support in Bσ(x0) implies
dvjtη
dt

∣∣∣
t=0

= 0 on ∂Bσ(x0). Thus,

∫
A+
εj
∩∂Bσ(x0)

ϕ%g
αβGIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ = 0.

The above two inequalities imply

(II)24 :=
∫
∂A+

εj

ϕ%g
αβGIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

=
∫
A+
εj
∩∂Bσ(x0)

+
∫
∂A+

εj
∩Bσ(x0)

ϕ%g
αβGIj(V, v)

∂V I

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

= O(εj). (65)

Combining (58), (59), (61), (63), (64), (65), and letting εj, %→ 0, we obtain

(II)2 ≤ C
∫
Bσ(x0)

η(d(v, P0) + |∇v|)d(v, w) dµ. (66)
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Combining (55), (56), (66), we have

(II) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

G12(V, vtη)∇V · ∇vtηdµ

≤ C
∫
Bσ(x0)

η(d(v, P0) + |∇v|)d(v, w) dµ. (67)

Finally, by (47), we can write

(III) =
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

2(V, vtη)∇vtη · ∇vtηdµ

=
∫
R(u)∩Bσ(x0)

gαβ
∂

∂vi
2lj(V, v)

dvitη
dt

∣∣∣
t=0

∂vl

∂xα
∂vj

∂xβ
dµ

+
∫
R(u)∩Bσ(x0)

gαβ2lj(V, v)
∂vl

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ

=: (III)1 + (III)2. (68)

We derive an estimate for (III)1 in a similar way as in (I) comparing the
metric derivative estimates (30) for G11(V, v) and 2(V, v). We obtain

(III)1 :=
∫
R(u)∩Bσ(x0)

gαβ
∂

∂vl
2ij(V, v)

dvltη
dt

∣∣∣
t=0

∂vi

∂xα
∂vj

∂xβ
dµ

≤ C
∫
R(u)∩Bσ(x0)

η|∇v|d(v, w)dµ. (69)

To estimate (III)2, we write similarly to (II)2

(III)2 =
∫
A+
εj

gαβ2ij(V, v)
∂vi

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ+O(εj)

= lim
%→0

∫
A+
εj

ϕ%g
αβ2ij(V, v)

∂vi

∂xα
d

dt

∣∣∣
t=0

∂vjtη
∂xβ

dµ+O(εj)

= lim
%→0

[
−
∫
A+
εj

ϕ%
1
√
g

∂

∂xβ
(
√
ggαβ

∂vi

∂xα
)2ij(V, v)

dvjtη
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

ϕ%g
αβ ∂

∂xβ
2ij(V, v)

∂vi

∂xα
dvjtη
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

gαβ2ij(V, v)
∂vi

∂xα
∂ϕ%
∂xβ

dvjtη
dt

∣∣∣
t=0
dµ
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+
∫
∂A+

εj

ϕ%g
αβ2ij(V, v)

∂vi

∂xα
dvjtη
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

]
+O(εj)

=: lim
%→0

[(III)21 + (III)22 + (III)23 + (III)24] +O(εj).

We obtain the estimates for (III)22, (III)23 and (III)24 in exactly the same
way as for (II)22, (II)23 and (II)24 after noting the similarity of the the
metric estimates (29) and (30) for G12(V, v) and 2(V, v) = G22(V, v)− h(v).
Furthermore, we obtain the estimates for (III)21 analogously to (II)21. In-
deed, as a component function of a harmonic map u, vi satisfies the equation

1
√
g

∂

∂xβ

(
√
ggαβ

∂vi

∂xα

)
∂

∂vi

= −gαβ
(

ΓiJK(V, v)
∂V J

∂xα
∂V K

∂xβ
+ ΓiJi(V, v)

∂V J

∂xα
∂vi

∂xβ
+ Γijk(V, v)

∂vj

∂xα
∂vk

∂xβ

)
∂

∂vi

in a neighborhood of a regular point x ∈ A+
ε ∩ R(u). By the Christoffel

symbols estimates (34), (35) and the Lipschitz estimates (48), we obtain

d(v, P0)

∣∣∣∣∣ 1
√
g

∂

∂xβ

(
√
ggαβ

∂vi

∂xα

)
h

1
2
ii

∣∣∣∣∣ ≤ C. (70)

Hence,

(III) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0+

2(V, vtη)∇vtη · ∇vtη dµ

≤ C
∫
Bσ(x0)

η(d(v, P0) + |∇v|)d(v, w) dµ. (71)

Thus, the assertion of the lemma follows from (53), (54), (67) and (71).
q.e.d.

Corollary 39 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17) and Q ∈ Y2
k−j. There exists C > 0 such that

−C
∫
Bσ(x0)

ηd(v,Q)(d(v, P0) + |∇v|)dµ+ 2
∫
Bσ(x0)

η|∇v|2dµ

≤ −
∫
Bσ(x0)

∇η · ∇d2(v,Q) dµ
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for x0 ∈ Sj(u) ∩ Bσ?
2

(x?), σ0 > 0 with Bσ0(x0) ⊂ Bσ?
2

(x?), σ ∈ (0, σ0]
and η ∈ C∞c (Bσ(x0)) with 0 ≤ η ≤ 1. Furthermore, C depends only on
the constant in the estimates (29)-(33) for the target metric G, the domain
metric g and the Lipschitz constant of u in Bσ0(x0).

Proof. From [GS] Section 2,

Evtη
x0

(σ) ≤
∫
Bσ(x0)

(1− tη)2|∇v|2dµ− t
∫
Bσ(x0)

∇η · ∇d2(vtη(x), Q)dµ+ 0(t2).

Hence rearranging terms, dividing by t and letting t→ 0, we obtain

2
∫
Bσ(x0)

η|∇v|2dµ (72)

≤ −
∫
Bσ(x0)

∇η · ∇d2(v(x), Q) dµ+ lim inf
t→0+

Ev
x0

(σ)− Evtη
x0

(σ)

t
.

Proposition 37 with w = Q implies

lim inf
t→0+

Ev
x0

(σ)− Evtη
x0

(σ)

t
≤ C

∫
Bσ(x0)

ηd(v,Q)(d(v, P0) + |∇v|)dµ.

Combining the above two, we obtain the assertion of the Proposition. q.e.d.

The following is the analogue of the target variation formula in [GS].

Proposition 40 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic

map as in (17) and Q ∈ Y2
k−j. There exists C > 0 such that

2Ev
x0

(σ) ≤
∫
∂Bσ(x0)

∂

∂r
d2(v,Q)dΣ+C

∫
Bσ(x0)

d(v,Q)(d(v, P0)+ |∇v|)dµ (73)

for x0 ∈ Sj(u) ∩ Bσ?
2

(x?), σ0 > 0 with Bσ0(x0) ⊂ Bσ?
2

(x?) and σ ∈ (0, σ0].
Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of u in
Bσ0(x0).

Proof. Follows immediately from letting η approximate the character-
istic function of Bσ(x0) in Corollary 39. q.e.d.

Remark 41 When (73) is compared with [GS] inequality (2.2), we note the
additional error term of C

∫
Bσ(x0) d(v,Q)(d(v, P0) + |∇v|)dµ. Furthermore,

Corollary 39 says that the function d2(v,Q) is almost subharmonic up to the
same error term.
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7 Lower Order Bound

The main goal of this section is to prove that harmonic maps satisfy a
Poincare type inequality (cf. Proposition 43).

Remark 42 In this section, the properties of u that we need are Assump-
tion 1, Assumption 2, Assumption 3 and Assumption 4 of Section 5 which
we will implicitly assume throughout the section.

Proposition 43 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic

map as in (17). Then for any ε0 > 0, there exists R0 > 0 depending only
on ε0, the constant in the estimates (29)-(33) for the target metric G, the
domain metric g and the Lipschitz constant of u such that

1− ε0 ≤
σEv

xi
(σ)

Ivxi(σ)
,∀xi ∈ Sj(u) ∩Bσ?

2
(x?), σ ∈ (0, R0). (74)

Before we proceed with the proof of Proposition 43, we need some pre-
liminary material. Let u = (V, v) : Bσ?(x?)→ (Rj × Y2

k−j, dG) be as in (17),
x ∈ Sj(u) and σ > 0 sufficiently small such that Bσ(x) ⊂ Bσ?

2
(x?). Note that

x ∈ Sj(u) implies v(x) = P0 (cf. Assumption 3 (i)). Use normal coordinates
to identify the σ-ball about x with (Bσ(0), gx) where Bσ(0) ⊂ Rn. We define
the restriction maps

x,σv : (Bσ(0), gx)→ Y k−j
2 , σ,xv = v|Bσ(0),

the harmonic maps

x,σw : (Bσ(0), gx)→ (Y2
k−j, d) with σ,xw|∂Bσ(0) = σ,xv|∂Bσ(0)

and set

νσ,x =

(
Iσ,x

v
0 (σ)

σn−1

)1/2

. (75)

Let gσ,x(y) = gx(σy) be the rescaled metric on B1(0). Using the homogeneous
structure of Y2

k−j (cf. Assumption 1), define the rescaled maps

vσ,x, wσ,x : (B1(0), gσ,x)→ (Y2
k−j, d)
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by setting

vσ,x(y) = ν−1
σ,x σ,xv(σy) and wσ,x(y) = ν−1

σ,x σ,xw(σy).

We will denote by dµσ,x, dΣσ,x the volume forms onB1(0), ∂Br(0) respectively
with respect to the metric gσ,x. The normalization by νσ,x implies that

I
vσ,x
0 (1) = 1.

Definition 44 The maps {vσ,x}σ>0 are called the blow-up maps of v at x
and the maps {wσ,x} are called the approximating harmonic maps of v at x.
We will drop the subscript x from vσ,x, wσ,x, σ,xv, σ,xw, gσ,x, dµσ,x and dΣσ,x

above when it is clear at which point we are taking the blow ups. Note that
in this notation vσ may be different from the second component π2 ◦ uσ of uσ
as the blow-up factors µ, ν for u, v respectively may be different. Hopefully,
this will not cause any confusion to the reader since it will be clear from the
context which one we are using. Furthermore, we will drop the subscript x
from Ex and Ix when the point is understood.

Lemma 45 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17) and σv, σw, vσ, wσ as in Definition 44. Then there exists a
constant C > 0 depending only on the domain metric g such that∫

Bσ(0)
d2(v, σw)dµ ≤ Cσ2 (Ev(σ)− Eσw(σ)) (76)

∫
B1(0)

d2(vσ, wσ)dµσ ≤ C (Evσ(1)− Ewσ(1))∫
Bσ(0)

|∇d(v, σw)|2dµ ≤ Ev(σ)− Eσw(σ) (77)∫
B1(0)
|∇d(vσ, wσ)|2dµσ ≤ Evσ(1)− Ewσ(1)∫
Bσ(0)

d2(σw,P0) dµ ≤ CσIv(σ) (78)∫
B1(0)

d2(wσ, P0) dµσ ≤ C∫
Bσ(0)

d2(v, P0) dµ ≤ C
(
σIv(σ) + σ2Ev(σ)

)
(79)∫

B1(0)
d2(vσ, P0) dµσ ≤ C (1 + Evσ(1)) .
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Proof. It suffices to prove (76), (77), (78) and (79) since the other
inequalities will then follow after a change of variables x = σy and a multi-
plication by ν−2

σ . Let σw 1
2

: Bσ → (Y k−j
2 , dh) be the map defined by setting

σw 1
2
(x) to be the midpoint of the geodesic between v(x) and σw(x). Then

by (2.2iv) of [KS2], we have

2 E
σw 1

2 (σ) ≤ Ev(σ) + Eσw(σ)−
∫
Bσ(0)

|∇d(v, σw)|2dµ.

The harmonicity of σw implies Eσw(σ) ≤ E
σw 1

2 (σ) which in turn implies
(77). Let C > 0 be a generic constant depending only on the domain metric
g. The Poincare inequality then implies that∫

Bσ(0)
d2(v, σw)dµ ≤ Cσ2

∫
Bσ(0)

|∇d(v, σw)|2dµ.

Combining the above two inequality, we obtain (76). Since σw is a harmonic
map (cf. [GS], last formula on p. 195),

Iσw(s) ≤ eCσ
2 Iσw(σ)

σn+1
sn+1, for s ≤ σ.

Integrating over s ∈ (0, σ), there exists a constant C > 0 depending only on
g such that∫

Bσ(0)
d2(σw,P0) dµ ≤ Cσ

∫
∂Bσ(0)

d2(σw,P0) dΣ = Cσ Iv(σ)

which proves (78). The inequality (79) follows immediately from the triangle
inequality and (76). q.e.d.

Lemma 46 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17), vσ, wσ be as in Definition 44 and assume there exists A > 0 such
that Evσ(1) ≤ A. Then there exists a constant C > 0 such that

Evσ(1)− Ewσ(1) ≤ Cσ2.

Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g, the Lipschitz constant of u and A.

44



Proof. Let û = (V, σw). By Lemma 29,

|∇v|2 ≤ |∇u|2 − |∇V |2 + Cd2(v, P0)

−|∇σw|2 ≤ −|∇û|2 + |∇V |2 + Cd2(σw,P0),

and thus

|∇v|2 − |∇σw|2 ≤ |∇u|2 − |∇û|2 + Cd2(v, P0) + Cd2(σw,P0). (80)

Integrating over Bσ(x0), we obtain

Ev(σ)− Eσw(σ) ≤ Eu(σ)− Eû(σ) + C
∫
Bσ(x0)

d2(v, P0) + d2(σw,P0)dµ.

Harmonicity of u and scaling immediately implies

Evσ(1)− Ewσ(1) ≤ Cσ2
∫
B1(0)

d2(vσ, P0) + d2(wσ, P0)dµσ

≤ Cσ2(1 + Evσ(1)) (by Lemma 45)

where dµσ is the volume form with respect to metric gσ. Since Evσ(1) ≤ A,
the proof is complete. q.e.d.

Lemma 47 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17), x0 = 0 ∈ Bσ?
2

(x?) ∩ Sj(u), Bσ0(0) ⊂ Bσ?
2

(x?) and vσ be the blow
up map of v at x0 = 0 (cf. Definition 44). For σ ∈ (0, σ0), ϑ ∈ (0, 1], define

vϑσ : (B1(0), gϑσ)→ Y k−j
2 , vϑσ(x) = θ−1vσ(θx) = ϑ−1ν−1

σ v(σθx)

and assume Evϑσ (1) ≤ A. For r ∈ (0, 1), there exists a constant C > 0 such
that

sup
Br(0)

d2(vϑσ , P0) ≤ C.

Furthermore, C depends only on r, the constant in the estimates (29)-(33)
of the target metric G, the domain metric g and the Lipschitz constant of u
in Bσ0(x0) and A.
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Proof. Corollary 39 says

−C
∫
Bσ0 (0)

ηd(v, P0)(d(v, P0) + |∇v|)dµ+ 2
∫
Bσ0 (0)

η|∇v|2dµ

≤ −
∫
Bσ0 (0)

∇η · ∇d2(v, P0) dµ.

Since for any ε > 0,∫
Bσ0 (0)

d(v, P0)|∇v|dµ ≤ 1

2ε

∫
Bσ0 (0)

d2(v, P0)dµ+
ε

2

∫
Bσ0 (0)

|∇v|2dµ, (81)

we obtain

−C
∫
Bσ0 (0)

ηd2(v, P0) dµ ≤ −
∫
Bσ0 (0)

∇η · ∇d2(v, P0) dµ,

in other words, 4d2(v, P0) ≥ −Cd2(v, P0) weakly in Bσϑ(0). This immedi-
ately implies 4d2(vϑσ , P0) ≥ −C(σϑ)2d2(vϑσ , P0) weakly in B1(0). Standard
inequality together with (79) implies that

sup
B 3

4
(0)

d2(vϑσ , P0) ≤ C
∫
B1(0)

d2(vϑσ , P0)dΣσ ≤ C(1 + A).

q.e.d.

Lemma 48 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17), x0 = 0 ∈ Bσ?
2

(x?) ∩ Sj(u), Bσ0(0) ⊂ Bσ?
2

(x?) and vσ be the blow
up map of v at x0 = 0 (cf. Definition 44). For σ ∈ (0, σ0), ϑ ∈ (0, 1], let
vϑσ : (B1(0), gϑσ) → Y k−j

2 be as in Lemma 47 and assume Evϑσ (1) ≤ A. For
r ∈ (0, 1), there exists a constant C > 0 depending only on r, the constant
in the estimates (29)-(33) for the target metric G, the domain metric g, the
Lipschitz constant of u and A such that for any harmonic map

w : (B1(0), gϑσ)→ Y k−j
2

with Ew(1) ≤ Evϑσ (1), we have

sup
Br(0)

d2(vϑσ , w
ϑ) ≤ C

∫
∂B1(0)

d2(vϑσ , w
ϑ)dΣσ + Cσϑ. (82)
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Proof. Let ŵ : Bσϑ(0) → Y2
k−j be ŵ(x) = νσϑw((σϑ)−1x). By [KS1]

Theorem 2.4.2,

E
vtη
0 (σ)− Ev

0 (σ) ≤ −t
∫
Bσ(0)

∇η · ∇d2(vtη(x), w)dµ+ 0(t2)

where η ∈ C∞c (Bσϑ(0)), 0 ≤ η ≤ 1 and vtη(x) = (1 − tη(x))v(x) + tηŵ(x) is
the interpolation map between v and w. Hence rearranging terms, dividing
by t and letting t→ 0, we obtain

lim inf
t→0+

E
vtη
0 (σ)− Ev

0 (σ)

t
≤ −

∫
Bσ(0)

∇η · ∇d2(v, ŵ) dµ.

Thus, Proposition 37 implies

−C
∫
Bσϑ(0)

η(d(v, P0) + |∇v|)d(v, ŵ)dµ ≤ −
∫
Bσϑ(0)

∇η · ∇d2(v, ŵ) dµ.

Let x ∈ Brσϑ(0) and η approximate the characteristic function of Bs(x) ⊂
Bσϑ(0) to obtain

−C
∫
Bs(x)

(d(v, P0) + |∇v|)d(v, ŵ)dµ ≤
∫
∂Bs(x)

∂

∂s
d2(v, ŵ) dΣ

for s ∈ (0, (1− r)σϑ). By a standard computation,

−Cs−n+1
∫
Bs(x)

(d(v, P0) + |∇v|)d(v, ŵ)dµ ≤ d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(v, ŵ)dΣ

)
.

(83)
For any ε > 0,

2
∫
Bs(x)

|∇v|d(v, ŵ)dµ ≤ sε
∫
Bs(x)

|∇v|2dµ+
1

sε

∫
Bs(x)

d2(v, ŵ)dµ

and

2
∫
Bs(x)

|∇v|d(v, P0)dµ ≤ sε
∫
Bs(x)

|∇v|2dµ+
1

sε

∫
Bs(x)

d2(v, P0)dµ.

Additionally, Proposition 40 with Q = P0 implies

2
∫
Bs(x)

|∇v|2dµ

≤
∫
∂Bs(x)

∂

∂s
d2(v, P0) dµ+ C

∫
Bs(x)

d(v, P0)(d(v, P0) + |∇v|)dµ

≤ sn−1 d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(v, P0) dµ

)
+ C

∫
Bs(x)

d2(v, P0)dΣ +
∫
Bs(x)

|∇v|2dµ,
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(notice that by use of the arithmetic-geometric mean inequality we can make
the coefficient in front of

∫
Bs(x) |∇v|2dµ equal to 1), or in other words,∫

Bs(x)
|∇v|2dµ

≤ sn−1 d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(v, P0) dµ

)
+ C

∫
Bs(x)

d2(v, P0)dΣ.

Thus, (83) implies

d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(v, ŵ)dΣ

)

≥ −s d
ds

(
eCs

sn−1

∫
∂Bs(x)

d2(v, P0) dµ

)

−Cs−n
∫
Bs(x)

d2(v, P0)dµ− Cs−n
∫
Bs(x)

d2(ŵ, P0)dµ (84)

for s ∈ (0, (1− r)σϑ) and x ∈ Brσϑ(0). Multiplying the above by ϑ−1ν−1
σ and

rescaling the domain by σϑ, we obtain (denote dΣ = dΣσϑ, dµ = dµσϑ)

d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(vϑσ , w)dΣ

)

≥ −Cσϑs d
ds

(
eCs

sn−1

∫
∂Bs(x)

d2(vϑσ , P0) dµ

)

−Cσϑs−n
∫
Bs(x)

d2(vϑσ , P0)dµ− Cσϑs−n
∫
Bs(x)

d2(w,P0)dµ (85)

for s ∈ (0, (1− r)) and and x ∈ Br(0). To estimate the integral with respect
to s of the first term on the right hand side of (85), we apply integration by
parts and the boundedness of d2(vϑσ , P0) (cf. Lemma 47) to obtain

−Cσϑ
∫ β

α
s
d

ds

(
eCs

sn−1

∫
∂Bs(x)

d2(vϑσ , P0) dµ

)
ds

= Cσϑ
∫ β

α

eCs

sn−1

∫
∂Bs(x)

d2(vϑσ , P0) dµ ds− Cσϑ
(
eCs

sn−2

∫
∂Bs(x)

d2(vϑσ , P0) dµ

)∣∣∣∣∣
β

α

≥ −Cσϑ e
Cβ

βn−2

∫
∂Bβ(x)

d2(vϑσ , P0) dµ

≥ −Cσϑβ.
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To estimate the integral with respect to s of the second term on the right
hand side of (85), again use the boundedness of d2(vϑσ , P0) to obtain

−Cσϑ
∫ β

α
s−n

∫
Bs(x)

d2(vϑσ , P0)dµ ds ≥ −Cσϑβ.

Since w is harmonic and hence d2(w,P0) is subharmornic, we can similarly
estimate the integral with respect to s of the third term on the right hand
side of (85). Thus, integrating (85) with respect to s over the interval (0, t)
with t ∈ (0, (1− r)) and applying the above estimates with α = 0 and β = t,
we obtain

1

Cn
d2(vϑσ(x), w(x)) ≤ eCt

tn−1

∫
∂Bt(x)

d2(vϑσ , w)dΣ + Cσϑt

where Cn is a constant depending only on the domain dimension n. Thus,

tn−1d2(vϑσ(x), w(x)) ≤ C
∫
∂Bt(x)

d2(vϑσ , w)dΣ + Cσϑtn.

Integrating this over t ∈ (0, (1− r)), we obtain

d2(vϑσ(x), w(x)) ≤ C
∫
B(1−r)(x)

d2(vϑσ , w)dµ+ Cσϑ.

Since x ∈ Br(0), we have B(1−r)(x) ⊂ B1(0). Thus,

d2(vϑσ(x), w(x)) ≤ C
∫
B1(0)

d2(vϑσ , w)dµ+ Cσϑ. (86)

Next, let x = 0 in (85) and integrate over s ∈ (t, 1). Noting the above
estimates with α = t and β = 1, we obtain

eCt

tn−1

∫
∂Bt(0)

d2(vϑσ , w)dΣ ≤ eC
∫
∂B1(0)

d2(vϑσ , w)dΣ + Cσϑ.

Furthermore, multiplying this by tn−1 and integrating over t ∈ (0, 1), we
obtain ∫

B1(0)
d2(vϑσ , w)dµ ≤ C

∫
∂B1(0)

d2(vϑσ , w)dΣ + Cσϑ.

Combining this with (86), we obtain

sup
Br(0)

d2(vϑσ(x), w(x)) ≤ C
∫
∂B1(0)

d2(v, w)dΣ + Cσϑ. (87)

q.e.d.
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Corollary 49 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17), x0 ∈ Bσ?
2

(x?)∩Sj(u) and Bσ0(0) ⊂ Bσ?
2

(x?). For σ ∈ (0, σ0)
let vσ, wσ and gσ be as in Definition 44 at x = x0 and assume Evσ(1) ≤ A.
Then, for r ∈ (0, 1), there exists a constant C > 0 depending only on r, the
constant in the estimates (29) and (30) for the target metric G, the domain
metric g, the Lipschitz constant of u and A such that

sup
Br(0)

d2(vσ, wσ) ≤ Cσ.

Proof. Apply the Proposition above for ϑ = 1 and w = wσ. q.e.d.

For u as in Proposition 43, σi > 0 and xi ∈ Sj(u) ∩ Bσ?
2

(x?), use normal
coordinates to write the unit ball centered at xi = 0 as (B1(0), g). (Here,
by rescaling if necessary, we can assume without the loss of generality that
B1(0) ⊂ Bσ?(x?).) Denote the σi-blow up map and the approximating har-
monic σi-blow up map at xi as in Definition 44 as

vi, wi : (B1(0), gi)→ (Y k−j
2 , dh) where gi(x) = g(σix). (88)

Furthermore, set

νi :=

(
Ivxi(σi)

σn−1
i

)1/2

.

Lemma 50 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17), xi ∈ Sj(u) ∩Bσ?
2

(x?), σi → 0 and vi be as in (88). If there exists
A > 0 such that

σiE
v
xi

(σi)

Ivxi(σi)
≤ A (89)

then there exists a subsequence of {i} (which we denote again by {i} by abuse
of notation) and a non-constant harmonic map v0 : (B1(0), δ) → Y0 into an
NPC space such that vi → v0, wi → v0 locally uniformly in the pullback sense.
(Here, δ is the Euclidean metric.) Furthermore, (after identifying xi = 0 via
normal coordinates)

Iv00 (1) = lim
i→∞

Ivi0 (1) = 1 and Ev0
0 (1) ≤ lim

i→∞
Evi

0 (1). (90)
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Proof. Let wi as in (88), identify xi = 0 via normal coordinates and
write E = E0, I = I0 for simplicity. By Assumption (89) and the energy
minimizing property of wi, we have

Ewi(1) ≤ Evi(1) =
Evi(1)

Ivi(1)
≤ A. (91)

Therefore, wi is a family of harmonic maps with uniformly bounded energy.
For any r ∈ (0, 1), the Lipschitz constant of wi in Br(0) depends only the
energy bound and r and is independent of i (cf. [KS1] Theorem 2.4.6).
Thus, wi has a locally uniform Lipschitz constant and, by [KS2] Proposition
3.7, there exists a subsequence (which we still denote by {i} by an abuse of
notation) such that wi converges locally uniformly in the pullback sense to
a map v0. By [KS2] Theorem 3.11, v0 is energy minimizing on Br(0) for any
r ∈ (0, 1). The fact that v0 is energy minimizing on every compact subset
of B1(0) immediately implies v0 is energy minimizing on B1(0) by the same
argument as in (5).

We now claim
d(vi, wi)→ 0 in W 1,2. (92)

To prove (92), first note that by Lemma 46 and (91),

Evi(1)− Ewi(1) ≤ Cσ2
i . (93)

Hence, Lemma 45 implies∫
B1(0)
|∇d(vi, wi)|2 dµi ≤ Cσ2

i

and ∫
B1(0)

d2(vi, wi) dµi ≤ Cσ2
i . (94)

Since dµi is uniformly close to the Euclidean volume form dµ0 it follows that
d(vi, wi) → 0 in W 1,2 as claimed in (92). It now follows from Corollary 49
that d(vi, wi)→ 0 uniformly in Br(0), and hence

lim
i→∞

vi = v0 uniformly in the pullback sense in Br(0). (95)

The harmonicity of wi implies the subharmonicity of d2(wi, P0), and hence∫
∂Br(0)

d2(wi, P0)dΣi ≤ Crn−1
∫
∂B1(0)

d2(wi, P0)dΣi ≤ C, ∀r ∈ (0, 1).
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Since d(P0, wi(0)) = d(vi(0), wi(0))→ 0 by Corollary 49, we have

lim
i→0

∫
∂Br(0)

d2(wi, P0)dΣi = lim
i→0

∫
∂Br(0)

d2(wi, wi(0))dΣi

=
∫
∂Br(0)

d2(v0, v0(0))dΣ0

where dΣ0 is the volume form with respect to the Euclidean metric. Thus,
by the Dominated Convergence Theorem,

lim
i→0

∫
B1(0)

d2(wi, P0)dµi =
∫ 1

0
lim
i→0

∫
∂Br(0)

d2(wi, P0)dΣidr

=
∫ 1

0

∫
∂Br(0)

d2(v0, v0(0))dΣ0dr

=
∫
B1(0)

d2(v0, v0(0))dµ0.

Thus, the L2 convergence of d(vi, wi) to 0 implies,

lim
i→0

∫
B1(0)

d2(vi, P0)dµi =
∫
B1(0)

d2(v0, v0(0))dµ0.

Finally, since ∫
B1(0)
|∇d(vi, P0)|2dµi ≤

∫
B1(0)
|∇vi|2dµi ≤ A,

we conclude by standard W 1,2-trace theory that

1 = lim
i→∞

∫
∂B1(0)

d2(vi, P0)dµi =
∫
∂B1(0)

d2(v0, v0(0))dµ0

which is the first assertion of (90). By uniform Lipschitz continuity of wi and
the lower semicontinuity of energy [KS2] Lemma 3.8, we have

Ev0
0 (1) ≤ lim

i→∞
Ewi

0 (1).

Combined with (93), we obtain the second assertion of (90). q.e.d.
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Proof of Proposition 43. If (74) is not true, then there exist se-
quences xi ∈ Sj(u) ∩Bσ?

2
(x?) and σi → 0 such that

σi E
v
xi

(σi)

Ivxi(σi)
< 1− ε0

which is equivalent to
Evi(1)

Ivi(1)
< 1− ε0.

By (90),
Ev0(1)

Iv0(1)
≤ lim

i→0

Evi(1)

Ivi(1)
≤ 1− ε0.

On the other hand, since v0 is a nonconstant harmonic map with respect to
the Euclidean metric, it follows that

1 ≤ Ev0(1)

Iv0(1)
.

The contradiction proves the assertion of the Proposition. Note that the fact
that R0 is independent of u follows by taking a sequence of maps satisfying
the assumptions of the proposition and applying the same argument for the
sequence. q.e.d.

8 The Domain variation

The main goal of this section is to obtain estimates for the domain variation of
the singular component map v : Bσ?(x?)→ (Y k−j

2 , dh). We start by showing
a regularity result for the non-singular component map.

Lemma 51 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17). If x0 ∈ Bσ?
2

(x?) and σ ∈ (0, σ?
2

), then V I ∈ W 2,p(Bσ(x0)) for any
p > 1.

Proof. For a smooth η = (η1, . . . , ηj) with compact support in Bσ(x0),
let Vt = V +tη and ut = (Vt, v). Assumption 5 states |∇v|2(x) = 0 for almost
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every x ∈ Sj(u), and hence

|∇ut|2(x) = |∇Vt|2(x)

= G11(Vt, v)∇Vt · ∇Vt(x)

= G11(Vt, v)∇V · ∇V (x) + 2tG11(Vt, v)∇V · ∇η(x)

+t2G11(Vt, v)∇η · ∇η(x).

In R(u),

|∇ut|2

= G11(Vt, v)∇Vt · ∇Vt + 2G12(Vt, v)∇Vt · ∇v + G22(Vt, v)∇v · ∇v
= G11(Vt, v)∇V · ∇V + 2tG11(Vt, v)∇V · ∇η + t2G11(Vt, v)∇η · ∇η

+2G12(Vt, v)∇V · ∇v + 2tG12(Vt, v)∇η · ∇v + G22(Vt, v)∇v · ∇v.

Thus, |∇ut|2(x) is an integrable function in the variables x, t and, for almost
every x ∈ Bσ(x0), |∇ut|2(x) is a smooth function in t. Furthermore, d

dt
|∇ut|2

is bounded independently of t by an L1 function by the metric estimates and
the Lipschitz continuity of u. We can thus conclude that t 7→ E(ut) is a
smooth function in t, and its derivatives can be computed by differentiation
under the integral sign. In particular, since d

dt
E(ut)|t=0 = 0, we obtain

0 =
∫
Bσ(x0)

d

dt

∣∣∣
t=0

G11(Vt, v)∇V · ∇V + 2G11(V, v)∇V · ∇η dµ

+2
∫
Bσ(x0)∩R(u)

d

dt

∣∣∣
t=0

G12(Vt, v)|t=0∇V · ∇v + G12(V, v)∇η · ∇v dµ

+2
∫
Bσ(x0)∩R(u)

d

dt

∣∣∣
t=0

G22(Vt, v)|t=0∇v · ∇v dµ

=
∫
Bσ(x0)

ηI
∂

∂V I
G11(V, v)∇V · ∇V + 2G11(V, v)∇V · ∇η dµ

+2
∫
Bσ(x0)∩R(u)

ηI
∂

∂V I
G12(V, v)∇V · ∇v + G12(V, v)∇η · ∇v dµ

+
∫
Bσ(x0)∩R(u)

ηI
∂

∂V I
G22(V, v)∇v · ∇v dµ. (96)

By applying integration by parts in the same way as the term (II)2 of Propo-
sition 37, we obtain∫

Bσ(x0)∩R(u)
G12(V, v)∇η · ∇v dµ =

∫
Bσ(x0)∩R(u)

gαβGIk(V, v)
∂ηI

∂xα
∂vk

∂xβ
dµ
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=
∫
Bσ(x0)

ηIfIkdµ (97)

where fIk is a bounded function. Thus, (96) implies that

−
∫
Bσ(x0)

gαβGIJ(V, v)
∂V I

∂xα
∂ηJ

∂xβ
dµ =

∫
Bσ(x0)

η · Fdµ (98)

for some bounded vector field F . Let

ηJ =
∑
K

GJK(V, v)ϕ

for ϕ ∈ C∞c (Bσ(x0)). Then

∂ηJ

∂xβ
=

∑
K

(
ϕ

∂

∂V L
GJK(V, v)

∂V L

∂xβ
+ ϕ

∂

∂vl
GJK(V, v)

∂vl

∂xβ

+GJK(V, v)
∂ϕ

∂xβ

)
and hence

GIJ(V, v)
∂ηJ

∂xβ
= ϕ

∑
K

(
GIJ(V, v)

∂

∂V L
GJK(V, v)

∂V L

∂xβ

+GIJ(V, v)
∂

∂vl
GJK(V, v)

∂vl

∂xβ

)
+

∂ϕ

∂xβ
.

Since H is a smooth Riemannian metric, H
1
2
II , H

− 1
2

KK are uniformly bounded.
Thus, (29), (30), (31) and (48) imply∣∣∣∣∣GIJ

∂

∂V L
GJK ∂V

L

∂xβ

∣∣∣∣∣ =

∣∣∣∣∣GIJG
JM ∂

∂V L
GMNG

NK ∂V
L

∂xβ

∣∣∣∣∣
≤ H

1
2
IIH

− 1
2

KK

∣∣∣∣∣H 1
2
LL

∂V L

∂xβ

∣∣∣∣∣
≤ C

and ∣∣∣∣∣GIJ(V, v)
∂

∂vl
GJK(V, v)

∂vl

∂xβ

∣∣∣∣∣ =

∣∣∣∣∣GIJG
JM ∂

∂vl
GMNG

NK ∂vl

∂xβ

∣∣∣∣∣
≤ H

1
2
IIH

− 1
2

KK

∣∣∣∣∣h 1
2
ll

∂vl

∂xβ

∣∣∣∣∣
≤ C.
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Thus, (98) implies

−
∫
Bσ(x0)

gαβ
∂V I

∂xα
∂ϕ

∂xβ
dµ =

∫
Bσ(x0)

ϕ · fdµ

for some bounded function f . By elliptic regularity, V I ∈ W 2,p(Bσ(x0)).
q.e.d.

We now prove the following weaker version of the Lemma 51 for u and
the singular component map v.

Lemma 52 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17). If x0 ∈ Bσ?
2

(x?) and σ ∈ (0, σ?
4

), then there exists a constant
C > 0 depending only on the dimension of the domain, the metric g and the
total energy of u such that∫

Bσ(x0)\{d(v,P0)=0}
d(v, P0)|∇∇u|dµ ≤ C

and ∫
Bσ(x0)\{d(v,P0)=0}

d(v, P0)|∇∇v|dµ ≤ C.

Proof. Let
dε = max{d(v, P0)− ε, 0}

and ϕ ∈ C∞c (Bσ?
2

(x0)) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on Bσ(x0), ϕ = 0 outside

B 3σ?
8

(x0) and |∇ϕ| ≤ 16
σ?

. Let Ω1 be the support of the function d2
εϕ

2 which

is compactly contained in Bσ?
2

(x0)\{d(v, P0) = 0} ⊂ Bσ?
2

(x0)\Sj(u). By the
proof of [GS] Lemma 6.6, Assumption 6 implies that the inequality

1

2
4|∇u|2 ≥ |∇∇u|2 − c|∇u|2

holds distributionally in Ω1. Thus by using d2
εϕ

2 as a the test function

−
∫
Bσ?

2
(x0)

dεϕ∇(dεϕ) · ∇|∇u|2dµ ≥
∫
Bσ?

2
(x0)

d2
εϕ

2(|∇∇u|2 − c|∇u|2)dµ.

After an application of the arithmetic-geometric means inequality, we obtain

1

2

∫
Bσ?

2
(x0)
|∇(dεϕ)|2|∇u|2dµ+c

∫
Bσ?

2
(x0)

d2
εϕ

2|∇u|2dµ ≥ 1

2

∫
Bσ?

2
(x0)

d2
εϕ

2|∇∇u|2dµ.
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Noting that d2
εϕ

2, ϕ2|∇dε|2 are bounded by the Lipschitz constant of v (and
hence of u) in Bσ?

2
(x0), we obtain,(∫

Bσ(x0)
dε|∇∇u|dµ

)2

≤ C
∫
Bσ(x0)

d2
ε |∇∇u|2dµ

≤ C
∫
Bσ?

2
(x0)

d2
εϕ

2|∇∇u|2dµ

≤ C

∫
Bσ?

2
(x0)
|∇(dεϕ)|2|∇u|2dµ+ 2c

∫
Bσ?

2
(x0)

d2
εϕ

2|∇u|2dµ


≤ C.

By letting ε → 0, the first inequality follows. The second inequality follows
from the first. q.e.d.

Let u = (V, v) : (Bσ?(x?), g) → (Rj × Y2
k−j, dG) be a harmonic map

satisfying the assumptions of Section 5, x0 ∈ Sj(u) ∩ Bσ?
2

(x?) and let r0 ∈
(0, σ?

4
). Define the map vt : Br0(x0)→ (Y k−j

2 , dh) by setting

vt(x) = v ◦ Ft(x)

where Ft is a diffeomorphism given by

Ft(x) = (1 + tξ(x))x, ξ ∈ C∞c (Br0(x0)), 0 ≤ ξ ≤ 1.

Define
ut : Br0(x0)→ (Rj × Y k−j

2 , dG)

by setting
ut := (V, vt).

Since u = ut on ∂Bσ(x0), ut is a competitor.

Lemma 53 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17). There exists C > 0 such that for x0 ∈ Sj(u) ∩ Bσ?
2

(x?) and
σ ∈ (0, r0), we have

lim
t→0

Ev
x0

(σ)− Evt
x0

(σ)

t
≤ C

∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ
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Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of u.

Proof. First note that since v ∈ W 1,2, the same argument as in [GS]
p.192 implies that the limit on the left hand side of the inequality above
exists. Moreover, we can take the limit under the integral sign to obtain

lim
t→0

Ev
x0

(σ)− Evt
x0

(σ)

t
(99)

=
∫
Bσ(x0)

lim
t→0

|∇v|2 − |∇vt|2

t
dµ

=
∫
R(u)∩Bσ(x0)

lim
t→0

|∇v|2 − |∇vt|2

t
dµ+

∫
S(u)∩Bσ(x0)

lim
t→0

|∇v|2 − |∇vt|2

t
dµ.

Next, we claim

lim
t→0

1

t

∫
Bσ(x0)

|∇ut|2 − |∇u|2dµ =
∫
Bσ(x0)

lim
t→0

|∇ut|2 − |∇u|2

t
dµ. (100)

We now prove this claim. For almost every x ∈ F−1
t (Sj(u)), by the chain

rule (cf. [KS1] (2.3iv)) and Assumption 5, we have

|∇vt|2(x) = 0 and |∇ut|2(x) = |∇V |2(x). (101)

By Assumption 3 (ii), this implies that for almost every x ∈ F−1
t (Sj(u)), we

can write by letting y = Ft(x)

|∇ut|2(x) = |∇V |2(x) (102)

= G11(V (x), vt(x))∇V · ∇V (x)

= gαβ(F−1
t (y))G11(V (F−1

t (y)), v(F−1
t (y)))IJ

∂V I

∂xα
(F−1

t (y))
∂V J

∂xβ
(F−1

t (y)).

For x ∈ F−1
t (R(u)), again let y = Ft(x) and write

|∇ut|2(x) (103)

= G11(V (x), vt(x))∇V · ∇V (x)

+2G12(V (x), vt(x))∇V · ∇vt(x) + G22(V (x), vt(x))∇vt · ∇vt

= gαβ(F−1
t (y))G11(V (F−1

t (y)), v(y))IJ
∂V I

∂xα
(F−1

t (y))
∂V J

∂xβ
(F−1

t (y))
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+2gαβ(F−1
t (y))G12(V (F−1

t (y)), v(y))Il
∂V I

∂xα
(F−1

t (y)) · ∂v
l

∂yγ
(y)

∂yγ

∂xβ
(F−1

t (y))

+gαβ(F−1
t (y))G22(V (F−1

t (y)), v(y))lm
∂vl

∂yγ
(y)

∂yγ

∂xα
(F−1

t (y))
∂vm

∂yδ
(y)

∂yδ

∂xβ
(F−1

t (y)).

Thus, |∇ut|2(x) is an integrable function in the variables x, t and, for al-
most every x ∈ Bσ(x0), |∇ut|2(x) is a smooth function in t. Furthermore,
d
dt
|∇ut|2 involves only second derivatives of V and first derivatives of v.

Hence, d
dt
|∇ut|2 is bounded independently of t by an L1 function by the

metric estimates (29), (30), the Lipschitz continuity of u and Lemma 51.
We can thus conclude that the derivative of t 7→ E(ut) can be computed by
differentiation under the integral sign. This proves (100).

Since u is harmonic,

0 = lim
t→0

Eu
x0

(σ)− Eut
x0

(σ)

t

= lim
t→0

1

t

∫
Bσ(x0)

|∇u|2 − |∇ut|2 dµ (104)

=
∫
Bσ(x0)

lim
t→0

|∇u|2 − |∇ut|2

t
dµ by (100)

=
∫
R(u)∩Bσ(x0)

lim
t→0

|∇u|2 − |∇ut|2

t
dµ+

∫
S(u)∩Bσ(x0)

lim
t→0

|∇u|2 − |∇ut|2

t
dµ.

To address the integral over Sj(u)∩Bσ(x0) on the right hand side above, we
consider the following two sets Sj(u) ∩ F−1

t (Sj(u)) and Sj(u) ∩ F−1
t (Rj(u)).

By Lemma 29 and (101),

|∇u|2(x)− |∇ut|2(x)

t
= 0 =

|∇v|2(x)− |∇vt|2(x)

t

for almost every x ∈ Sj(u) ∩ F−1
t (Sj(u)). For x ∈ Sj(u) ∩ F−1

t (R(u)),

d(vt(x), P0) = d(vt(x), v(x)) ≤ C|Ft(x)− x| ≤ Ctξ(x)|x|,

and hence the metric estimates (29) imply

|∇ut|2(x)

= G11(V, vt)∇V · ∇V + 2G12(V, vt)∇V · ∇vt + G22(V, vt)∇vt · ∇vt
= |∇V |2(x) + |∇vt|2(x) +O(t2).
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Thus, for almost every x ∈ Sj(u), we have∣∣∣∣∣ |∇ut|2(x)− |∇u|2(x)

t
− |∇vt|

2(x)− |∇v|2(x)

t

∣∣∣∣∣ ≤ O(t). (105)

Since Sj(u) is of full measure in S(u) by Assumption 3 (ii), (104) and (105)
imply∫
S(u)∩Bσ(x0)

lim
t→0

|∇v|2 − |∇vt|2

t
dµ =

∫
R(u)∩Bσ(x0)

lim
t→0

|∇ut|2 − |∇u|2

t
dµ.

Combined with (99), we obtain

lim
t→0

Ev
x0

(σ)− Evt
x0

(σ)

t
(106)

= −
∫
R(u)∩Bσ(x0)

lim
t→0

d

dt

∣∣∣
t=0
|∇vt|2dµ+

∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0
|∇ut|2dµ.

For x ∈ R(u) and t sufficiently small such that Ft(x) ∈ R(u),

|∇ut|2 − |∇u|2 = G11(V, vt)∇V · ∇V −G11(V, v)∇V · ∇V
+2(G12(V, vt)∇V · ∇vt −G12(V, v)∇V · ∇v)

+G22(V, vt)∇vt · ∇vt −G22(V, v)∇v · ∇v.

Divide the above by t and take the limit as t→ 0. Integrating the resulting
inequality and combining with (106)

lim
t→0

Ev
x0

(σ)− Evt
x0

(σ)

t
=

∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G11(V, vt)∇V · ∇V dµ

+2
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G12(V, vt)∇V · ∇vtdµ

+
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

2(V, vt)∇vt · ∇vtdµ

=: (i) + (ii) + (iii) (107)

where 2(V, v) = G22(V, v)− h(v). We claim that

(i) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G11(V, vt)∇V · ∇V

≤ C
∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ2
∫
Bσ(x0)

ξ|∇v|2dµ, (108)
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(ii) := 2
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G12(V, vt)∇V · ∇vtdµ

≤ C
∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2. (109)

and

(iii) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

2(V, vt)∇vt · ∇vtdµ

≤ C
∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ. (110)

Combined with (107), the estimates (108), (109) and (110) prove the Lemma.
Thus, our goal now is to prove these estimates.

We first prove (i). Let x ∈ R(u) ∩Bσ(x0). Then with

yα = (1 + tξ(x))xα and
∂yα

∂t
= ξ(x)xα,

we have∣∣∣∣∣ ddt
∣∣∣
t=0

G11(V, vt)IJ∇V I · ∇V J

∣∣∣∣∣ ≤ C

∣∣∣∣∣∣
k−j∑
i=1

∂

∂vi
G11(V, v)

∑
α

∂vi

∂yα
(x)

∂yα

∂t

∣∣∣∣∣∣
≤ Cσξd(v, P0)|∇v|

which in turn implies

(i) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G11(V, vt)∇V · ∇V

≤ Cσ
∫
Bσ(x0)

ξd(v, P0)|∇v|

≤ C
∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ2
∫
Bσ(x0)

ξ|∇v|2dµ.

This proves (108).
Next, we prove (ii). First, we write

(ii) := 2
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G12(V, vt)∇V · ∇vtdµ

= 2
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G12(V, vt)∇V · ∇vdµ

+2
∫
R(u)∩Bσ(x0)

G12(V, v)
d

dt

∣∣∣
t=0
∇V · ∇vtdµ

=: (ii)1 + (ii)2. (111)
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We can estimate (ii)1 in similar way as (i) to obtain

(ii)1 := 2
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

G12(V, vt)∇V · ∇vdµ

≤ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ. (112)

We now estimate (ii)2. First, note that since

∂vit
∂xβ

(x) =
∂vi

∂yγ
(y)

(
(1 + tξ(x))δβγ + txγ

∂ξ

∂xβ
(x)

)
,

we also have

d

dt

∂vit
∂xβ

∣∣∣
t=0

=
∂2vi

∂xβ∂xδ
ξxδ +

∂vi

∂xβ
ξ +

∂vi

∂xγ
xγ

∂ξ

∂xβ

hence Lemma 52 implies

∫
Bσ(x0)\{d(v,P0)=0}

d(v, P0)

∣∣∣∣∣gαβ ddt ∂v
i
t

∂xβ

∣∣∣
t=0
h

1
2
ii

∣∣∣∣∣ dµ ≤ C.

Thus, by the metric estimates (29), the Lipschitz property of V I and with
A+
εi

defined as in the proof of Proposition 37, we have

∫
Bσ(x0)\(A+

εi
∪Sj(u))

∣∣∣∣∣gαβGIi(V, v)
∂V I

∂xα
d

dt

∂vit
∂xβ

∣∣∣
t=0

∣∣∣∣∣ dµ
≤ C

∫
Bσ(x0)\(A+

εi
∪Sj(u))

d2(v, P0)

∣∣∣∣∣ ddt ∂v
i
t

∂xβ

∣∣∣
t=0

∣∣∣∣∣ dµ
≤ Cεi

∫
Bσ(x0)\{d(v,P0)=0}

d(v, P0)

∣∣∣∣∣ ddt ∂v
i
t

∂xβ

∣∣∣
t=0

∣∣∣∣∣ dµ
≤ Cεi.

Thus,

(ii)2 ≤
∫
A+
εi

gαβGIi(V, v)
∂V I

∂xα
d

dt

∂vit
∂xβ

∣∣∣
t=0
dµ+ Cεi.
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Integrating by parts as in (59), we write∫
A+
εi

gαβGIi(V, v)
∂V I

∂xα
d

dt

∂vit
∂xβ

∣∣∣
t=0
dµ

= lim
%→0

[
−
∫
A+
εj

ϕ%
1
√
g

∂

∂xβ
(
√
ggαβ

∂V I

∂xα
)GIi(V, v)

dvit
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

ϕ%g
αβ ∂

∂xβ
GIi(V, v)

∂V I

∂xα
dvit
dt

∣∣∣
t=0
dµ

−
∫
A+
εj

gαβGIi(V, v)
∂V I

∂xα
∂ϕ%
∂xβ

dvit
dt

∣∣∣
t=0
dµ

+
∫
∂A+

εj

ϕ%g
αβGIi(V, v)

∂V I

∂xα
dvit
dt

∣∣∣
t=0

(
~n · ∂

∂xβ

)
dΣ

]
=: lim

%→0
[(ii)21 + (ii)22 + (ii)23 + (ii)24]. (113)

By following the proof of estimate (II)2, we obtain

(ii)2 ≤ Cσ
∫
Bσ(x0)

ξd(v, P0)|∇v|dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ.

≤ C
∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ. (114)

Note that we have
dvit
dt

∣∣∣
t=0

= ξ ∂v
i

∂xε
xε in (113) instead of

dvjtη
dt

∣∣∣
t=0

= ηd(v, w) in

the corresponding expression (59) for (II)2. This accounts for the difference
of d(v, w) and |∇v| in the two estimates. We obtain (109) by combining
(111), (112) and (114) and Cauchy-Schwartz.

Finally, we estimate (iii). We have

(iii) :=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

2(V, vt)∇vt · ∇vt dµ

=
∫
R(u)∩Bσ(x0)

d

dt

∣∣∣
t=0

2(V, vt)∇v · ∇v dµ

+2
∫
R(u)∩Bσ(x0)

2(V, v)
d

dt

∣∣∣
t=0
∇vt · ∇v dµ (115)

= (iii)1 + (iii)2.

We derive an estimate for (iii)1 in a similar way as in (III)1 to account for
the difference in the C1 estimates for 2(V, v) from that of G12(V, v). We
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obtain

(iii)1 :=
∫
Bσ(x0)\Sj(u)

gαβ
∂

∂vl
2ij(V, v)

dvlt
dt

∣∣∣
t=0

∂vi

∂xα
∂vj

∂xβ
dµ

≤ C
∫
Bσ(x0)\Sj(u)

∣∣∣∣∣ξh 1
2
ll

∂vl

∂xε
xε
∣∣∣∣∣ |∇v|2dµ

≤ Cσ
∫
Bσ(x0)\Sj(u)

ξ|∇v|2dµ. (116)

(Note that again we used the Lipschitz property of v in order to bound one
term of |∇v|.) Next, we derive an estimate for (iii)2 in a similar way as in
(III)2 and (ii)2 to account for the difference in the C1 estimates of 2(V, v)
and G12(V, v). We obtain

(iii)2 ≤ C
∫
Bσ(x0)

ξd2(v, P0) + Cσ
∫
Bσ(x0)

ξ|∇v|2dµ. (117)

Combining inequalities (115), (116) and (117) proves (110) and finishes the
proof. q.e.d.

Lemma 53 implies the following analogue of the domain variation formula
(2.3) of [GS].

Proposition 54 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic

map satisfying the assumptions of Section 5. There exist R0 > 0 and C > 0
such that for x0 ∈ Sj(u) ∩Bσ?

2
(x?) and σ ∈ (0, R0), we have

d

dσ
Ev
x0

(σ)

Ev
x0

(σ)
+

2− n+ Cσ

σ
≥

2
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

Ex0(σ)
. (118)

Furthermore, C depends only on the constant in the estimates (29)-(33) for
the target metric G, the domain metric g and the Lipschitz constant of u.

Proof. We will write E = Ev
x0

and I = Ivx0 for simplicity. By Lemma 53,

− d

dt

∣∣∣
t=0
E(σ) ≤ C

∫
Bσ(x0)

ξd2(v, P0)dµ+ Cσ
∫
Bσ(x0)

ξ|∇v|2dµ.
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As in [GS] p.192-193, after letting ξ approximate the characteristic function,
we obtain

(2− n+ Cσ)E(σ) + σ
∫
∂Bσ(x0)

|∇v|2dΣ− 2σ
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≥ −C
∫
Bσ(x0)

d2(v, P0)dµ.

Combining the above with (79) and dividing by σE(σ), we obtain

E ′(σ)

E(σ)
+

2− n+ Cσ

σ
≥

2
∫
∂Bσ(x0)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

E(σ)
− Cσ I(σ)

σE(σ)
.

Proposition 43 asserts that there exists R0 > 0 such that

−σ I(σ)

σE(σ)
≥ −2σ, ∀σ ∈ (0, R0).

The assertion immediately follows from combining the above two inequali-
ties. q.e.d.

9 Order Function

The main result of this section is to prove the following existence property
of the order for the singular component of a harmonic map.

Proposition 55 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic

map as in (17). For x ∈ Sj(u)∩Bσ?
2

(x?) and 0 < σ < σ0 =: sup{σ : Bσ(x) ⊂
Bσ?(x?)}, assume that v is not constant in any neighborhood of x and define

Ordv(x, σ) :=
σ Ev

x(σ)

Ivx(σ)
. (119)

Then, there exist constants C > 0, C1 > 0 and R0 > 0 such that for any
x ∈ Sj(u) ∩Bσ?

2
(x?), there exists a function σ 7→ Jx(σ) with the properties

e−C1σIvx(σ) ≤ Jx(σ) ≤ Ivx(σ)eC1σ, ∀σ ∈ (0, R0) (120)
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and

σ 7→ eCσ
σ Ev

x(σ)

Jx(σ)
is non-decreasing in (0, R0). (121)

Thus,
Ordv(x) := lim

σ→0
Ordv(x, σ)

exists and

Ordv(x) ≤ e(C+C1)σσE
v
x(σ)

Ivx(σ)
, ∀σ ∈ (0, R0). (122)

The constants C1, C and R0 depend only on the constant in the estimates
(29)-(33) for the target metric G, the domain metric g and the Lipschitz
constant of u.

Proof. Fix x ∈ Sj(u). For notational simplicity, let I(σ) = Ivx(σ) and
E(σ) = Ev

x(σ). Recall (cf. [GS] p.193) the equality

I ′(σ)

I(σ)
=

∫
∂Bσ(x)

∂

∂r
d2(v, P0)dΣ

I(σ)
+
n− 1 +O(σ2)

σ
(123)

where O(σ) depends only on g. Combining (123) with (118), we obtain

I ′(σ)

I(σ)
− E ′(σ)

E(σ)
− 1

σ
(124)

≤

E(σ)
∫
∂Bσ(x)

∂

∂r
d2(v, P0)dΣ− 2I(σ)

∫
∂Bσ(x)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ


E(σ)I(σ)

+ C.

Now note that (123) implies∫
∂Bσ(x)

∂

∂r
d2(v, P0)dΣ ≤ I ′(σ)

for σ > 0 sufficiently small. Furthermore, Lemma 45 (cf. (79)) and Proposi-
tion 43 imply that∫

Bσ(x)
d2(v, P0)dµ ≤ C(σI(σ) + σ2E(σ)) ≤ Cσ2E(σ) (125)
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for σ > 0 sufficiently small. Thus, Proposition 40 implies that

E(σ)
∫
∂Bσ(x)

∂

∂r
d2(v, P0)dΣ− 2I(σ)

∫
∂Bσ(x)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 1

2

(∫
∂Bσ(x)

∂

∂r
d2(v, P0)dΣ + C

∫
Bσ(x)

d(v, P0)(d(v, P0) + |∇v|)dµ
)

×
(∫

∂Bσ(x)

∂

∂r
d2(v, P0)dΣ

)
− 2I(σ)

∫
∂Bσ(x)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ

≤ 2I(σ)
∫
∂Bσ(x)

∣∣∣∣∣ ∂∂rd(v, P0)

∣∣∣∣∣
2

dΣ− 2I(σ)
∫
∂Bσ(x)

∣∣∣∣∣∂v∂r
∣∣∣∣∣
2

dΣ.

+Cσ2E(σ)I ′(σ)

≤ Cσ2E(σ)I ′(σ). (126)

Combining (124) with (126), we conclude that there exists R0 > 0 such that

0 ≤ E ′(σ)

E(σ)
+

1

σ
− (1− Cσ2)

I ′(σ)

I(σ)
+ C, for a.e. σ ∈ (0, R0). (127)

Note that C and R0 depend only on the constant in the estimates (29)-(33)for
the target metric G, the domain metric g and the Lipschitz constant of u,
and thus can be chosen to depend continuously on x.

Inequality (127) was first considered in [Me] formula (15) and subse-
quently in [DM1] formula (3.22). The existence of the limit follows as a
special case of [DM1] Corollary 3.1. Note that since v is Lipschitz, we
have by [GS] p. 200-201 that in the definition of the order we can take
I(σ) = I(σ, v(0)) instead of I(σ,Qσ). Therefore, if we set

Jx(σ) = I(σ) exp

(
C
∫ σ

0
s2 d

ds
log I(s)ds

)

(note that the error terms in [DM1] are O(σ) and not O(σ2), and this ac-
counts for the difference in the definition of J(σ)), then (120) follows from
[DM1] formula 3.32 and (121) follows from [DM1] Lemma 3.7. Inequality
(122) follows immediately from (120) and (121). q.e.d.
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Remark 56 The above Proposition works in great generality, and it implies
that if a Lipschitz map satisfies the domain, the target variation formulas
and the lower order bound, then it also satisfies the monotonicity formula
(127) and has a well defined order. Formulas (120) - (122) follow as a formal
consequence of (127).

Several corollaries of Proposition 55 are listed below.

Corollary 57 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17) and x0 ∈ Sj(u) ∩ Bσ?
2

(x?). If {vσ} is as in Definition 44
at x = x0, then for any sequence σi → 0, there exists a subsequence of
{vσi} converging locally uniformly in the pullback sense to a harmonic map
v0 : B1(0) → Y0 from the Euclidean ball unit ball into an NPC space and
Ordv(x0) ≥ 1.

Proof. By Proposition 55, the quantity
σEvx0 (σ)

Ivx0 (σ)
is bounded above for

σ > 0 small. Hence the first assertion follows from Lemma 50. Furthermore,
combining (90) with the monotonicity property of the harmonic map v0 and
Proposition 55, we obtain

Ordv(x0) = lim
σi→0

σiE
v
x0

(σi)

Ivx0(σi)
= lim

σi→0

E
vσi
0 (1)

I
vσi
0 (1)

≥ Ev0
0 (1)

Iv00 (1)
≥ Ordv0(1) ≥ 1.

q.e.d.

Definition 58 The harmonic map v0 : B1(0)→ Y0 in Corollary 57 is called
a tangent map of v at x0. A map v0 : (B1(0), δ)→ Y0 into an NPC space is
said to be homogeneous map of degree α if

d(v0(λx), v0(0)) = λαd(v0(x), v0(0)), ∀x ∈ ∂B1(0).

and λ ∈ [0, 1] 7→ v0(λx) is a geodesic for all x ∈ ∂B1(0). We shall prove be-
low (cf. Lemma 62) that v0 is a homogeneous map of degree α = Ordv0(0) =
Ordv(x0).

Corollary 59 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17). If v ≡ P0 on any open subset of Bσ?
2

(x?), then v ≡ P0 in
Bσ?

2
(x?).
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Proof. If v is not constant in Bσ?
2

(x?) but identically equal to P0 on
an open subset of Bσ?

2
(x?), then there exists a ball B ⊂ Bσ?

2
(x?) such that

v ≡ P0 in the interior of B, but for some x0 ∈ ∂B, v is not constant in any
neighborhood of x0. Let v0 : B1(0)→ Y0 be the tangent map of v at x0. Then
v0 is identically constant on half of B1(0) and this contradicts Proposition
3.4 of [GS]. q.e.d.

Corollary 60 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17). Then there exists A > 0 such that for x ∈ Sj(u) ∩ Bσ?
2

(x?),
we have

Ordv(x) ≤ A.

Proof. Since∫ σ0

σ
s
d

ds
log Ivx(s)ds = σ0 log Ivx(σ0)− σ log Ivx(σ)−

∫ σ0

σ
log Ivx(s)ds,

the map x 7→ Jx(σ) is a continuous map and Jx(σ) 6= 0 by Corollary 59.

Thus the map x 7→ σEvx(σ)
Jx(σ)

is continuous, and the result follows from the fact
that a non-increasing limit of continuous functions is upper semicontinuous.
q.e.d.

Corollary 61 Let u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) be a harmonic

map as in (17). Then there exist C > 0 and R0 > 0 such that for any
x ∈ Sj(u) ∩Bσ?

2
(x?), we have

σ 7→ eCσ
Ivx(σ)

σn−1+2α
and σ 7→ eCσ

Ev
x(σ)

σn−2+2α

are monotone non-decreasing in (0, R0) where α = Ordv(x0) ≥ 1. The con-
stants C1, C and R0 can be chosen to depend continuously on x and depend
only on the constant in the estimates (29)-(33) for the target metric G, the
domain metric g and the Lipschitz constant of u.

Proof. Let I(σ) = Ivx(σ), E(σ) = Ev
x(σ) and J(σ) = Jx(σ). Combining

Proposition 40 with (125) and Corollary 60, we obtain

2E(σ) ≤
∫
∂Bσ(x)

∂

∂r
d2(v, P0)dµ+ σI(σ) + CσE(σ)

≤ I ′(σ)− n− 1

σ
I(σ) + CI(σ).
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Since Proposition 55 implies

e−CσαI(σ) ≤ e−CσαJ(σ) ≤ σE(σ), ∀σ ∈ (0, R0),

we obtain

2αI(σ) ≤ σI ′(σ)− (n− 1)I(σ) + CσI(σ), ∀σ ∈ (0, R0).

In the above the constant C depends as before on the constant in the esti-
mates (29)-(33) for the target metric G, the domain metric g and the Lips-
chitz constant of u. By rearranging, we obtain

d

dσ
log

(
I(σ)

σn−1+2

)
=
I ′(σ)

I(σ)
− n− 1 + 2α

σ
≥ −C, ∀σ ∈ (0, R0)

Combining this with inequality (127), we obtain

d

dσ
log

(
E(σ)

σn−2+2

)
=
E ′(σ)

E(σ)
− n− 2 + 2α

σ
≥ −C, ∀σ ∈ (0, R0).

The above two inequalities immediately imply the assertion of the Corollary.
q.e.d.

Lemma 62 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17). A tangent map v0 of v at x0 ∈ Sj(u)∩Bσ?
2

(x?) is a homogeneous
map and Ordv0(0) = Ordv(x0).

Proof. Assume {vσi} converges locally uniformly in the pullback sense
to a tangent map map v0 : B1(0)→ Y0. Fix R ∈ (0, 1

4
). For each i, we choose

ri ∈ (R
2
, R) such that

∫
∂Briσi (x0)

|∇v|2dΣ ≤ 2

Rσi

∫ Rσi

Rσi
2

∫
∂Br(x0)

|∇v|2dΣdr ≤ 2

Rσi
Ev(Rσi).

Combined with Corollary 57 and Corollary 61, we thus obtain

∫
∂Briσi (x0)

|∇v|2dΣ ≤ CRn−1

σi
Ev(σi). (128)

70



Here and henceforth, C will denote an arbitrary constant independent of
i. Now note that the map v is not a competitor of the harmonic map σiw
in the domain Briσi(x0) because σiw does not necessarily agree with v on
∂Briσi(x0). Therefore, we “bridge” the gap between v and σiw using [KS2]
Lemma 3.12 to define a map σiw̄ with the same boundary value as v. More
precisely, for ρ > 0 small, we let F : Briσi−ρ(x0) → Briσi(x0) be the scaling
map F (x) = x0 + riσi

riσi−ρ(x− x0) and set

v̄(x) =

{
v ◦ F (x) for x ∈ Briσi−ρ(x0),
W (x) for x ∈ Briσi(x0)\Briσi−ρ(x0)

where
W : Briσi(x0)\Briσi−ρ(x0) ' ∂Briσi(x0)× [0, ρ]→ Y k−j

2 (129)

is the interpolation map between σiw|∂Briσi (x0) and v|∂Briσi (x0)

W (y, s) = (1− s

ρ
)v(y, ρ) +

s

ρ
σiw(y, ρ).

Thus, W = v◦F on ∂Briσi−ρ(x0) and W = σiw on ∂Briσi(x0). The energy of v̄
is close to that of v inside the ball Briσi(x0); more precisely, since v̄|Briσi−ρ(x0)

and v|Briσi (x0) differ only by scaling, we can bound the difference by

E v̄(riσi)− Ev(riσi)

≤
(

riσi
riσi − ρ

)2

Ev(riσi)− Ev(riσi) + EW

≤ Cρ

riσi
Ev(riσi) + EW

≤ CρRn−1

σi
Ev(σi) + EW (130)

provided ρ small compared to σi (in fact, later we set ρ = σ
3
2
i ). Furthermore,

by [KS2] (3.23)

EW ≤ Cρ

2

∫
∂Briσi (x0)

|∇v|2 + |∇σiw|2dΣ +
C

ρ

∫
∂Briσi (x0)

d2(v, σiw)dΣ. (131)
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(The constant C comes from the fact that the metric in the annulus does
not correspond with the product metric via (129).) Since σiw is a harmonic
map, ∫

∂Briσi (x0)
|∇σiw|2dΣ ≤ CRn−1

σi
Ev(σi). (132)

Applying (128) and (132) in (131), we obtain

EW ≤ CRn−1ρ

σi
Ev(σi) +

C

ρ

∫
∂Briσi (x0)

d2(v, σiw)dΣ. (133)

The fact that v̄ is a competitor for σiw, (130) and (133) imply

Eσiw(riσi)− Ev(riσi)

≤ Eσiw(riσi)− E v̄(riσi) + E v̄(riσi)− Ev(riσi)

≤ CRn−1ρ

σi
Ev(σi) + CEW

≤ CRn−1ρ

σi
Ev(σi) +

C

ρ

∫
∂Briσi (x0)

d2(v, σiw)dΣ.

Thus, by rescaling and applying Corollary 49 and the uniform bound Evσi (1) ≤
2α, we obtain

Ewσi (ri)− Evσi (ri) ≤
CRn−1ρ

σi
Evσi (1) +

Cσi
ρ

∫
∂Bri (x0)

d2(vσi , wσi)dΣ

≤ CRn−1ρ

σi
+
CRn−1σ2

i

ρ
.

Thus, by choosing ρ = σ
3
2
i , we have

Ewσi (ri)− Evσi (ri) ≤ CRn−1σ
1
2
i . (134)

We can similarly define

σiw̄(x) =

{
σiw ◦ F (x) for x ∈ Briσi−ρ(x0),
W (x) for x ∈ Briσi(x0)\Briσi−ρ(x0)

where W is the interpolation map between σiw and v so that W = σiw◦F on
∂Briσi−ρ(x0) and W = v on ∂Briσi(x0). The energy of û = (V, σiw) is close
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to that of ū = (V, σiw̄) inside the ball Briσi ; more precisely, we can bound
the difference using Lemma 29 by

Eū(riσi)− Eû(riσi)

≤
(

riσi
riσi − ρ

)2

Eσiw(riσi)− Eσiw(riσi) + EW

+C
∫
Briσi (x0)

d2(v, P0) + d2(σiw,P0)dµ

≤ CRn−1ρ

σi
Eσiw(riσi) + EW + C

∫
Briσi (x0)

d2(v, P0) + d2(σiw,P0)dµ.

Integrating inequality (80) over Briσi(x0) and using the fact that ū is a com-
petitor for the harmonic map u, we obtain

Ev(riσi)− Eσiw(riσi) (135)

≤ Eu(riσi)− Eû(riσi) + C
∫
Briσi (x0)

d2(v, P0) + d2(σiw,P0)dµ

≤ Eu(riσi)− Eū(riσi) + Eū(riσi)− Eû(riσi)

+C
∫
Briσi (x0)

d2(v, P0) + d2(σiw,P0)dµ

≤ CRn−1ρ

σi
Eσiw(riσi) + CEW + C

∫
Briσi (x0)

d2(v, P0) + d2(σiw,P0)dµ.

We can bound EW in an analogous way as EW , hence by scaling, applying
Lemma 45 and Lemma 46, noting that Ewσi (1) ≤ Evσi (1) ≤ 2α and letting

ρ = σ
3
2
i , we obtain

Evσi (ri)− Ewσi (ri)

≤ CRn−1ρ

σi
+
CRn−1σ2

i

ρ
+ C

∫
Bri (x0)

d2(vσi , P0) + d2(wσi , P0)dµ

≤ CRn−1ρ

σi
+
CRn−1σ2

i

ρ
+ CRnσ2

i

≤ CRn−1σ
3
2
i . (136)

Combining (134) and (136),

|Evσi (ri)− Ewσi (ri)| ≤ CRn−1σ
1
2
i , (137)
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and we can deduce

ri(E
vσi (ri)− Cσ

1
2
i )

Iwσi (ri)
≤ riE

wσi (ri)

Iwσi (ri)
≤ ri(E

vσi (ri) + Cσ
1
2
i )

Iwσi (ri)
. (138)

Recall that wσi is a sequence of harmonic maps with uniformly bounded
Lipschitz constant in B1(0) (cf. (132)). Thus, after passing to a subsequence,

ri → r0 ∈ (
R

2
, R)

and by [KS2] Proposition 3.7 and Theorem 3.11 Iwσi (ri) → Iv0(r0) and
Ewσi (ri)→ Ev0(r0). Furthermore, Ivσi (ri)→ Iv0(r0) by Corollary 49. There-
fore

lim
i→∞

ri(E
vσi (ri)± Cσ

1
2
i )

Iwσi (ri)
= lim

i→∞

 Ivσi (ri)
Iwσi (ri)

riE
vσi (ri)

Ivσi (ri)
± Criσ

1
2
i

Iwσi (ri)


= lim

i→∞

riE
vσi (ri)

Ivσi (ri)

= lim
i→∞

riσiE
v(riσi)

Iv(riσi)

= Ordv(x0),

and we conclude by taking limits as i→∞ of (138) that

Ordv(x0) =
r0E

v0(r0)

Iv0(r0)
. (139)

On the other hand R was arbitrary and r0 ∈ (R
2
, R). This implies that on

the one hand that Ordv(x0) = Ordv0(x0) and that v0 is a homogeneous map
of degree α = Ordv(x0) by the monotonicity properties of the harmonic map
v0 and [GS] Lemma 3.2. q.e.d.

Lemma 63 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic map

as in (17), x0 = 0 ∈ Bσ?
2

(x?) ∩ Sj(u) and Bσ0(0) ⊂ Bσ?
2

(x?). For σ ∈ (0, σ0)
let vσ, wσ and gσ be as in Definition 44. If σi → 0 is a sequence such that
vσi converges locally uniformly in the pullback sense to a tangent map v0,
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then there exists C > 0 such that for any sequence {xi} ⊂ σ−1
i S ∩B 1

2
(0) and

R ∈ (0, 1
4
), there exists ri ∈ [R

2
, R] such that∣∣∣Evσi

xi (ri)− E
wσi
xi (ri)

∣∣∣ ≤ CRn−1σ
1
2
i .

Proof. This assertion can be proven by a similar argument as the proof
of inequality (137). q.e.d.

10 The Gap Theorem

First recall the ε-gap Theorem 6.3 of [GS] which states that if X is a F-
connected complex and K a bounded subset of X, then there exists ε0 > 0
such that for any harmonic map u : (B1(0), g) → X with u(B1(0)) ⊂ K,
either

Ordu(0) = 1 or Ordu(0) ≥ 1 + ε0. (140)

This gap property also holds for a DM-complex.

Theorem 64 If (Y, dG) is a NPC DM-complex, K is a bounded subset of Y ,
there exists ε0 > 0 depending only on K and n such that for any harmonic
map u : (B1(0), g)→ (Y, dG) with u(0) ⊂ K,

Ordu(0) = 1 or Ordu(0) ≥ 1 + ε0.

Proof. On the contrary, assume there exists a sequence of harmonic
maps {ui} with ui(0) ⊂ K and

1 < Ordui(0) < 1 +
1

i
. (141)

Let uiσ be the σ-blow up map of ui. By the monotonicity properties of u, we
can choose σi → 0 such that

Euiσi (1) < 1 +
1

i
and Iuiσi (1) = 1.

Since K is compact, by taking a subsequence if necessary, we may assume
that uiσi maps into a single tangent cone at P ∈ K, i.e.

uiσi = (Vi, vi) : B1(0)→ (Rj × Y k−j
2 , Gi).
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Here, the metric Gi is the appropriate blow up metric at ui(0) as in (10). We
may also assume (by taking a subsequence if necessary) that ui(0)→ Q0 ∈ K.
Since G is a smooth metric up to its boundary on each simplex and σi → 0,
Gi converges smoothly to a Euclidean metric G0. Finally, we may assume
that j is the maximal integer such that uiσi can be represented in the above

form; i.e. there does not exist j′ > j and σ ∈ (0, 1] such that uiσi

∣∣∣
Bσ(0)

maps into a cone Rj′ × Zk−j′ . Let ui∗ = (Vi∗, vi∗) be a tangent map of ui at
0. Here, Vi∗ : B1(0) → Rj is a harmonic map into Euclidean space. Since
1 < Ordui∗(0) = Ordui(0) < 1 + 1

i
, we conclude that Vi∗ ≡ 0.

The maps {uiσi} are uniformly Lipschitz with respect to G0 and the en-
ergy of uiσi with respect to G0 is within εi of minimizing where εi → 0
as i → ∞. Thus, (after taking a subsequence if necessary) we can as-
sume that uiσi converges locally uniformly to a non-constant harmonic map
u0 = (V0, v0) : B1(0)→ (Rj×Y k−j

2 , G0) and the energy of uiσi |Br(0) converges
to that of u0|Br(0) for all r ∈ (0, 1) (cf. [KS2] Theorem 3.11). Thus,

rEu0(r)

Iu0(r)
= lim

i→∞

rEuiσi (r)

Iuiσi (r)
= 1, ∀r ∈ (0, 1).

This implies that u0 = (V0, v0) is a homogeneous map of degree 1 (cf. [GS]
Lemma 3.2). We claim that v0 is a constant map. Indeed, if v0 is not a con-
stant, then v0 is effectively contained a subcomplex Rl×Y k−j−l

3 of Rj×Y k−j
2

(cf. [GS] Proposition 3.1 and Lemma 6.2). By [GS] Theorem 5.1, there exists
r0 > 0 such that uiσi(Br0(0)) ⊂ Rj+l × Y k−j−l

3 for i sufficiently large. This
contradicts the maximality of j proving the claim. Since v0 is a constant
map, V0 is a non-constant map. The proof of Lemma 51 implies that the
C1,β norm of Vi is uniformly bounded in B 1

2
(0). Hence (by Arzela-Ascoli and

taking a subsequence if necessary), we may assume that ∂Vi∗
∂xα

converges to
∂V0
∂xα

. Thus, Vi∗ is not a constant map for sufficiently large i, a contradiction
to the conclusion in the previous paragraph. q.e.d.

As a consequence of Theorem 64, we have the following

Proposition 65 If u : (Ω, g) → (Y, dG) is a harmonic map from a Rie-
mannian domain into a DM-complex and u = (V, v) : (Bσ?(x?), g) → (Rj ×
Y2

k−j, dG) a local representation as in (17), then there exists ε0 > 0 such that

Ordu(x0) ≥ 1 + ε0, ∀x0 ∈ S0(u) ∩Bσ?
2

(x?)

76



and
dimH

(
S0(u) ∩Bσ?

2
(x?)

)
≤ n− 2.

Proof. By the interior Lipschitz continuity of u, we can choose a
bounded set K such that u(Bσ?

2
(x?)) ⊂ K. The first assertion follows from

Theorem 64. A tangent map u∗ of u maps into an F-connected complex, so
dim (S0(u∗)) ≤ n − 2 by [GS] Theorem 6.4. Combining this with the first
assertion, we can apply Theorem 82 of Appendix 2 with S := S0(u)∩Bσ?

2
(x?)

to prove the second assertion. q.e.d.

Additionally, we need an analogous statement for the singular component
map.

Proposition 66 Under the same assumptions as in Proposition 65 and un-
der the assumptions of Section 5, there exists ε0 > 0 such that

Ordv(x0) ≥ 1 + ε0, ∀x0 ∈ Sj(u) ∩Bσ?
2

(x?)

and
dimH

(
Sj(u) ∩Bσ?

2
(x?)

)
≤ n− 2.

Proof. By Corollary 57, Ordv(x0) ≥ 1. As in the proof of Theorem 65,
choose a bounded set K such that u(Bσ?

2
(x?)) ⊂ K. The proof closely

follows that of Theorem 64, and we assume to the contrary that there exists
a sequence of points xi ∈ Sj(u) ∩Bσ?

2
(x?) such that

1 < Ordv(xi) < 1 +
1

i
.

On the other hand, the proof here differs from that of Theorem 64 in that
instead of using a σi-blow up map of ui (as done in Theorem 64), we use the
σi-blow up map vi := vσi,xi and the σi-approximate harmonic blow up map
wi = wσi,xi of v at xi (cf. Definition 44). Indeed, by Proposition 55, we can
choose σi → 0 such that

Ewi(1) ≤ Evi(1) < 1 +
1

i
and ,

∫
∂B1(0)

d2(wi, P0)dΣi = 1.

We can thus argue as in the proof of Theorem 64 to obtain a homogeneous
degree 1 harmonic map v0 : B1(0)→ (Y k−j

2 , dh) into a F-connected complex
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as a limit (under uniform convergence on compact sets) of the sequence {wi},
and hence of {vi} (by Corollary 49). Furthermore, the space (Y k−j

2 , dh) is
essentially regular by [GS] Theorem 6.3. Therefore, if Ordv0(0) = 1 then
applying Proposition 72 of Appendix 1 with l = v0, we conclude that for any
i sufficiently large

sup
Bs(0)

d(vi, P0) > λs for s > 0 sufficiently small

or equivalently,

sup
Bs(0)

d(v(σix), P0) > λνσis for s > 0 sufficiently small. (142)

Fix i > 0 sufficiently large, identify xi = 0 and let νσi =
√

Iv(σi)

σn−1
i

, κ =
λνσi
σi

.

Multiply equation (142) by µ−1
σσi

. Then, by the monotonicity property of the
harmonic map u, we then have for σ > 0 sufficiently small,

sup
B1(0)

d(vσσi(x), P0) = µ−1
σσi
d(v(σσix), P0)

> µ−1
σσi
λνσiσ

=
λνσi
σi

√√√√(σσi)n+1

Iu(σσi)

≥ κ

√
1

ecIu(1)
.

Thus, there exists a sequence σl → 0 and a tangent map u∗ = (V∗, v∗) of u
at xi such that by replacing σ by σl in the above inequality, we obtain

d(v∗(x), P0) ≥ κ

√
1

ecIu(1)
> 0

which contradicts Lemma 20 and the fact that xi ∈ Sj(u). We can thus
conclude that there exists ε0 > 0 such that Ordv(x0) ≥ 1 + ε0 for x0 ∈
Sj(u) ∩Bσ?

2
(x?).

For the second assertion, let S := Sj(u) ∩ Bσ?
2

(x?). The map v and the
set S satisfy Properties (P1) and (P2) of Appendix 2. Indeed, (P1) follows
from Proposition 55 and (P2) follows from Corollary 49, Corollary 57 and
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Lemma 63. Furthermore, Proposition 66 implies that the order gap prop-
erty of Definition 77 in Appendix 2 is satisfied. Since a tangent map v0 is a
harmonic map into an F-connected complex, [GS] Theorem 6.4 implies that
v satisfies the codimension 2 property of the tangent map with respect to S
of Definition 81 in Appendix 2. Thus, the first assertion and Theorem 82
implies dimH

(
Sj(u) ∩Bσ?

2
(x?)

)
≤ n− 2. q.e.d.

11 Proof of Theorems 1 - 4

We now turn to the proof of Theorem 1. Fix a j ∈ {k0, . . . , 1} and let

u = (V, v) : (Bσ?(x?), g)→ (Rj × Y2
k−j, dG)

be a local representation of a harmonic map into a DM-complex (cf. (17)).
Define the following:

Statement 1[j]: dimH
(
S(u) ∩Bσ?

2
(x?)

)
≤ n− 2.

Statement 2[j]: For any compactly contained subdomain Ω of Bσ?
2

(x?),
there exists a sequence of smoth functions {ψi} with ψi ≡ 0 in a neighbor-
hood of S(u) ∩ Ω, 0 ≤ ψi ≤ 1, ψi → 1 for all x ∈ Ω\S(u) such that

lim
i→∞

∫
Ω
|∇∇u||∇ψi| dµ = 0. (143)

Our strategy is to prove Statement 1[j] for all j ∈ {k0 + 1, . . . , 1}
which immediately proves Theorem 1. Similarly Statement 2[j] for all
j ∈ {k0 + 1, . . . , 1} proves Theorem 2. We proceed with backwards induction
on j. In order to use the results of the previous sections, we have to satisfy
all the Assumptions of Section 5 and thus we have to prove both statements
at the same time. The initial step is the case when j = k0 + 1. Since
Sk0+1(u) = ∅, Proposition 65 immediately implies Statement 1[k0 + 1].
Furthermore, using order gap property for u asserted in Proposition 65, we
can apply the same proof as in [GS] Lemma 6.4 (with S replaced by S0(u))
to prove Statement 2[k0 + 1].

For the inductive step when j ∈ {k0, . . . , 1}, we assume that Statement
1[l] and Statement 2[l] hold for l > j. Now, the assumptions of Section 5
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are always satisfied except Assumption 3 (ii) and Assumption 6. However,
by combining Statement 1[j + 1] and Proposition 65 we obtain that As-
sumption 3 (ii) holds. Furthermore, by combining Statement 2[j + 1] and
a partition of unity argument Assumption 6 also holds.

Under these assumptions, we now verify Statement 1[j] and State-
ment 2[j].

Proof of Statement 1[j]. Proposition 65, Proposition 66 and State-
ment 1[j + 1] immediately imply Statement 1[j]. q.e.d.

Before we prove Statement 2[j], we need some preliminary results. Let
Ω be as in Statement 2[j]. First, we define the sequence of functions {ξi}
as follows: For i ∈ {1, 2, . . .}, Statement 1[j] implies that we can choose
a finite covering {BrJ (xJ) : J = 1, . . . , l′} of the compact set Sj(u) ∩ Ω
satisfying

l′∑
J=1

rn−2+D
J <

1

2i
.

Furthermore, let
S0j(u) = S0(u) ∩ v−1(P0).

Proposition 65 implies that we can choose a finite covering {BrJ (xJ) : J =
l′ + 1, . . . , l} of S0j(u) ∩ Ω0 such that

l∑
J=l′+1

rn−2+D
J <

1

2i
.

Thus,
l∑

J=1

rn−2+D
J <

1

i
. (144)

Let ξi,J be a smooth function such that ξi,J ≡ 0 on BrJ (xJ), ξi,J ≡ 1 on
Ω\B2rJ (xJ), 0 ≤ ξi,J ≤ 1, |∇ξi,J | ≤ 2

rJ
and |∇∇ξi,J | ≤ 2

r2J
. Define ξi by

setting
ξi = min{ξi,1, . . . , ξi,l}. (145)

Thus, ξi ≡ 0 in
⋃l
J=1BrJ (xJ) (which contains (Sj(u) ∪ S0j(u)) ∩ Ω), ξi ≡ 1

outside
⋃l
J=1B2rJ (xJ) and 0 ≤ ξi ≤ 1. Since |∇ξi,I | ≤

∑l
J=1 |∇ξi,J | for all
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I = 1, . . . , l, we have

|∇ξi| ≤
l∑

J=1

|∇ξi,J |. (146)

Lemma 67 For {ξi} defined by (145) and any η ∈ C∞c (Ω),

lim
i→∞

∫
Ω
η∇ξi · ∇|∇u|2 dµ = 0.

Proof. Let ε0 > 0 be smaller than the ε0 that appears in Proposition 65
and Proposition 66. Fix constants q < 2, p > 2 and D > 0 satisfying

1

p
+

1

q
= 1, −2 +D < −q and D < ε0. (147)

We can write the gradient of the energy density function on the regular
set (thus outside the singular set which we already know to be Hausdorff
codimension at least 2 by Statement 1[j]) as

∇|∇u|2 = ∇
(
gαβ

(
GIJ(u)

∂V I

∂xα
∂V J

∂xβ
+ 2GIj(u)

∂V I

∂xα
∂vj

∂xβ
+Gij(u)

∂vi

∂xα
∂vj

∂xβ

))

= ∇
(
gαβGIJ(u)

∂V I

∂xα
∂V J

∂xβ

)
+∇

(
gαβ2GIj(u)

∂V I

∂xα

)
∂vj

∂xβ

+2gαβGIj(u)
∂V I

∂xα
∇
(
∂vj

∂xβ

)
+∇

(
gαβGij(u)

∂vi

∂xα
∂vj

∂xβ

)
. (148)

The first three terms on the right hand side above can be bounded by∣∣∣∣∣∇
(
gαβGIJ(u)

∂V I

∂xα
∂V J

∂xβ

)∣∣∣∣∣
≤

∣∣∣∇ (gαβGIJ(u)
)∣∣∣ |∇V |2 + 2

∣∣∣gαβGIJ(u)
∣∣∣ |∇V | |∇∇V |

≤ C + C|∇∇V |, (149)

∣∣∣∣∣∇
(
gαβ2GIj(u)

∂V I

∂xα

)
∂vj

∂xβ

∣∣∣∣∣
≤

∣∣∣∇ (gαβ2GIj(u)
)∣∣∣ |∇V | |∇v|+ ∣∣∣gαβ2GIj(u)

∣∣∣ |∇∇V ||∇v|
≤ C + C|∇∇V | (150)
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and, using the metric estimates (29),∣∣∣∣∣2gαβGIj(u)
∂V I

∂xα
∇
(
∂vj

∂xβ

)∣∣∣∣∣ ≤ Cd2(v, P0)|∇V | |∇∇v|

≤ Cd2(v, P0)|∇∇u|. (151)

Thus,

(Bi) := −
∫

Ω
η∇ξi · ∇|∇u|2 dµ

≤ C
∫

Ω
|∇ξi| dµ+ C

∫
B3rJ

(xJ )
|∇ξi| |∇∇V | dµ

+C
∫

Ω
|∇ξi|d2(v, P0)|∇∇u| dµ

−
∫

Ω
∇ξi · ∇

(
Gij(u)

∂vi

∂xα
∂vj

∂xβ

)
dµ

≤ C
∫

Ω
|∇ξi| dµ+ C

∫
Ω
|∇ξi| |∇∇V | dµ

+C
∫

Ω
|∇ξi|d2(v, P0)|∇∇u| dµ+ C

∫
Ω
|4ξi| |∇v|2 dµ

=: (Bi,1) + (Bi,2) + (Bi,3) + (Bi,4). (152)

The first term on the right hand side of (152) can be estimated using (144)
and (146) as

(Bi,1) ≤ C
l∑

J=1

∫
B2rJ

(xJ )
|∇ξi,J | dµ ≤ C

l∑
J=1

∫
B2rJ

(xJ )
rn−1
J ≤ C

i
.

The second term can be estimated using Lemma 51, (147) and (144) as

(Bi,2) =
∫

Ω
|∇ξi||∇∇V | dµ

≤ C
(∫

Ω
|∇∇V |p

) 1
p
(∫

Ω
|∇ξi|q dµ

) 1
q

≤ C
(∫
|∇∇V |p dµ

) 1
p

(
l∑

J=1

∫
B2rJ

(xJ )
|∇ξi,J |q

) 1
q

≤ C
(∫
|∇∇V |p dµ

) 1
p

(
l∑

J=1

rn−q
) 1
q
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≤ C
(

1

i

) 1
q

.

The third term can be estimated using Lemma 52 and (146) as

(Bi,3) = C
∫

Ω
|∇ξi|d2(v, P0)|∇∇u| dµ

≤ C
(∫

Ω
|∇ξi|2d2(v, P0)dµ

) 1
2
(∫

Ω
d2(v, P0)|∇∇u|2 dµ

) 1
2

≤ C

(
l∑

J=1

∫
B2rJ

(xJ )
|∇ξi,J |2d2(v, P0)dµ

) 1
2 (∫

Ω
d2(v, P0)|∇∇u|2 dµ

) 1
2

≤ C

(
l∑

J=1

rnJ

) 1
2 (∫

Ω
d2(v, P0)|∇∇u|2 dµ

) 1
2

≤ C

(
l∑

J=1

rnJ

) 1
2

(by Lemma 52)

≤ C
(

1

i

) 1
2

.

The fourth term can be estimated as follows.

(Bi,4) =
∫

Ω
|∇v|2|4ξi| dµ

≤ C
∫

Ω
|∇v||4ξi| dµ

≤ C
∫

Ω
|∇v| |∇∇ξi| dµ

≤ C
∫

Ω
|∇v|

∣∣∣∣∣
l∑

J=1

|∇∇ξi,J |
∣∣∣∣∣ dµ

≤ C
l∑

J=1

∫
B2rJ

(xJ )
|∇v||∇∇ξi,J | dµ

≤ C
l∑

J=1

(∫
B2rJ

(xJ )
|∇v|2dµ

) 1
2
(∫

B2rJ
(xJ )
|∇∇ξi,J |2 dµ

) 1
2

≤ C
l′∑
J=1

(∫
B2rJ

(xJ )
|∇v|2dµ

) 1
2
(∫

B2rJ
(xJ )
|∇∇ξi,J |2 dµ

) 1
2
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+C
l∑

J=l′+1

(∫
B2rJ

(xJ )
|∇u|2dµ

) 1
2
(∫

B2rJ
(xJ )
|∇∇ξi,J |2 dµ

) 1
2

≤ C
l∑

J=1

r
n+ε0

2
J r

n−4
2

J = C
l∑

J=1

rn−2+ε0
J ≤ C

i

where we have used monotonicity property (2) for the harmonic map u and
Corollary 61 for the component map v to estimate the energies of u and v in
the balls {B2rJ (xJ)}. Thus, combining the estimates for (Bi,1), (B12), (Bi,3)
and (Bi,4), we obtain

(Bi) ≤ C
(

1

i

) 1
q

and completes the proof. q.e.d.

Lemma 68 The functions |∇∇u| and |∇u|2 are in L2
loc and W 1,2

loc respec-
tively.

Proof. By following the proof of Gromov-Schoen Lemma 6.6 and us-
ing the inductive hypothesis Statement 2[l] for l > j, the Eells-Sampson
inequality holds distributionally on Ω\⋃lJ=1BrJ (xJ). Thus, for η ∈ Cc(Ω),
η ≥ 0 and {ξi} as in (145), we have∫

η2ξ2
i |∇∇u|2dµ (153)

≤ −
∫
∇(η2ξ2

i ) · ∇|∇u|2dµ+ c
∫
η2ξ2

i |∇u|2dµ

≤ −2
∫
η2ξi∇ξi · ∇|∇u|2dµ+ 2c

∫
ξ2
i η∇η · ∇|∇u|2dµ+ c

∫
η2|∇u|2dµ.

Applying Cauchy-Schwartz, for any ε > 0,∫
ξ2
i η∇η · ∇|∇u|2 dµ

≤ 2
∫
ξ2
i η|∇u|∇η · ∇|∇u| dµ

≤ 1

ε

∫
ξ2
i |∇η|2|∇u|2dµ+ ε

∫
η2ξ2

i |∇∇u|2dµ.
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Thus, combining the above two inequalities,

(1− ε)
∫
η2ξ2

i |∇∇u|2dµ

≤ −2
∫
η2ξi∇ξi · ∇|∇u|2dµ+

1

ε

∫
|∇η|2|∇u|2dµ+ c

∫
η2|∇u|2dµ.

Let B2r(x) ⊂ Ω. Let η be such that η ≡ 1 in Br(x) and η ≡ 0 in Ω\Br(x).
Letting i→∞, applying Fatou’s Lemma and the left hand side of (153) and
Lemma 67 to the first term on the right hand side of (153), we obtain∫

Br(x)
|∇∇u|2dµ ≤

∫
η2|∇∇u|2dµ

≤ C

ε

∫
|∇η|2|∇u|2dµ+ C

∫
η2|∇u|2dµ.

Thus, we obtain a local L2 bound of |∇∇u|. Since |∇|∇u|2| ≤ |∇u||∇|∇u|| ≤
C|∇u||∇∇u|, we conclude that |∇u|2 ∈ W 1,2

loc . q.e.d.

Lemma 69 If u : (Ω, g)→ (Y, d) is a harmonic map, then the inequality

1

2
4|∇u|2 ≥ |∇∇u|2 − c|∇u|2

holds distributionally.

Proof. By Lemma 68, |∇|∇u|2|, |∇∇u| ∈ L2
loc. Thus, the Dominated

Convergence Theorem implies

lim
i→∞

∫
η2ξ2

i |∇∇u|2dµ = 0

and
lim
i→∞

∫
ξ2
i∇η2 · ∇|∇u|2dµ =

∫
Ω
∇η2 · ∇|∇u|2 dµ.

Combining this with Lemma 67 and letting i → ∞ in (153) proves the de-
sired differential inequality. q.e.d.
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Proof of Statement 2[j]. Let ε0 > 0 be smaller than the ε0 that
appears in Proposition 65 and Proposition 66. Fix constants q < 2, p > 2,
δ > 0 and D > 0 satisfying

1

p
+

1

q
= 1, D < δ < ε0 and − 2 +D < −q − qδ. (154)

Let Ω be a subdomain compactly contained in Bσ?
2

(x?). For a fixed i ∈ N,
we define the function ψi as follows. Below, we will use C to denote any
generic constant that depends only on the dimension of n of the domain, the
Lipschitz constant of u in Ω, and the L1 norms of |∇∇V |p and d(v, P0)|∇∇v|2
(cf. Lemma 51 and Lemma 52). Let {BrJ (xJ) : J = 1, . . . , l} be the cover
defined in the the proof of Lemma 48 satisfying (144) and let ϕJ be a smooth
function such that ϕJ ≡ 0 on BrJ (xJ), ϕJ ≡ 1 on Ω\B2rJ (xJ), 0 ≤ ϕJ ≤ 1,
|∇ϕJ | ≤ 2

rJ
and |∇∇ϕJ | ≤ 2

r2J
. Define ϕ by setting

ϕ = min{ϕ1, . . . , ϕl}.

Thus, ϕ ≡ 0 in
⋃l
J=1 BrJ (xJ) (which contains (Sj(u) ∪ S0j(u)) ∩ Ω), ϕ ≡ 1

outside
⋃l
J=1B2rJ (xJ) and 0 ≤ ϕ ≤ 1. Let

Ω1 := Ω\
l′⋃
J=1

BrJ (xJ).

By the inductive assumption Statement [2(j-1)] with the choice Ω = Ω1,
there exists ψ̂ satisfying∫

Ω1

|∇∇u| |∇ψ̂|dµ < 1

i
. (155)

We define ψi := ϕ2ψ̂2.
We will now prove that {ψi} satisfies the assertion of Statement 2[j].

To see this, we need to estimate∫
Ω
|∇∇u||∇ψi|dµ = 2

∫
Ω
ϕ2ψ̂|∇∇u||∇ψ̂|dµ+ 2

∫
Ω
ψ̂2ϕ|∇∇u||∇ϕ|dµ

≤ 2
∫

Ω
|∇∇u||∇ψ̂|dµ+ 2

∫
Ω
|∇∇u||∇ϕ|dµ

=: (A) + (B)
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where (A) < 2
i

by (155).
We next estimate (B). To do so, we define a smooth function such that

ΛJ(x) =


0 |x− xJ | < rJ

2

r−δJ rJ < |x− xJ | < 2rJ
0 |x− xJ | > 3rJ

and
|∇ΛJ | < 4r−1−δ

J and |∇∇ΛJ | < 4r−2−δ
J . (156)

In B2rJ (xJ)\BrJ (xJ) (and hence in the support of |∇ϕ|),

Λ−1
J ≤ rδJ .

Define
Λ = max{Λ1, . . . ,ΛJ}.

Then

Λ−1 = min{Λ−1
1 , . . . ,Λ−1

l } ≤ Λ−1
J ≤ rδJ , ∀J = 1, . . . , l. (157)

Since |∇ΛI |q ≤
∑l
J=1 |∇ΛJ |q for any I = 1, . . . , l, we have∫
Ω
|∇Λ|q ≤

l∑
J=1

∫
Ω
|∇ΛJ |q

≤ C
l∑

J=1

rn−δq−qJ (by (156))

<
C

i
. (158)

Similarly, |∇ϕI |2 ≤
∑l
J=1 |∇ϕJ |2 for any I = 1, . . . , l, we have∫

Ω
|∇ϕ|2Λ−1 ≤

l∑
J=1

∫
Ω
|∇ϕJ |2Λ−1

=
l∑

J=1

∫
B2rJ

(xJ )\BrJ (xJ )
|∇ϕJ |2Λ−1

≤ C
l∑

J=1

rn−2+δ
J (by (157))

<
C

i
. (159)
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The last inequalities of (158) and (159) use (154) and (144). Since the func-
tion Λ is with compact support, we obtain by Lemma 69 and (159) that

(B) = 2
∫

Ω
|∇∇u||∇ϕ| dµ

≤ 2
(∫

Ω
|∇∇u|2Λ dµ

) 1
2
(∫

Ω
|∇ϕ|2Λ−1 dµ

) 1
2

≤ 2
(
−1

2

∫
Ω
∇Λ · ∇|∇u|2 dµ+ c

∫
Ω

Λ|∇u|2 dµ
) 1

2
(
C

i

) 1
2

=: 2 ((B1) + (B2))
1
2

(
C

i

) 1
2

.

We will now estimate (B1) and (B2). First,

(B2) = c
∫

Ω
Λ|∇u|2 dµ

= C
∫

Ω
Λ dµ

= C
∫

Ω

l∑
J=1

ΛJ dµ

= C
l∑

J=1

∫
B3rJ

(xJ )
ΛJ dµ

≤ C
l∑

J=1

rn−δJ dµ ≤ C

i
.

The estimate of (B1) is very similar to the estimate of (Bi) in Lemma 69.
Indeed, using (148), (149), (150) and (151),

(B1) = −1

2

∫
Ω
∇Λ · ∇|∇u|2 dµ

≤
l∑

J=1

(
C
∫
B3rJ

(xJ )
|∇Λ| dµ+ C

∫
B3rJ

(xJ )
|∇Λ| |∇∇V | dµ

+C
∫
B3rJ

(xJ )
|∇Λ|d2(v, P0)|∇∇u| dµ

−1

2

∫
B3rJ

(xJ )
∇Λ · ∇(Gij(u)

∂vi

∂xα
∂vj

∂xβ
) dµ

)
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≤ C
l∑

J=1

(∫
B3rJ

(xJ )
|∇Λ| dµ+

∫
B3rJ

(xJ )
|∇Λ| |∇∇V | dµ

+
∫
B3rJ

(xJ )
|∇Λ|d2(v, P0)|∇∇u| dµ

+
∫
B3rJ

(xJ )
|4Λ| |∇v|2 dµ

)
=: (B11) + (B12) + (B13) + (B14). (160)

The first term on the right hand side of (160) can be estimated using (154)
and (144) as

(B11) = C
l∑

J=1

∫
B3rJ

(xJ )
|∇Λ| dµ ≤ C

l∑
J=1

∫
B3rJ

(xJ )
rn−1−δ
J ≤ C

i
.

The second term can be estimated using Lemma 51, (154) and (144) as

(B12) = C
l∑

J=1

∫
B3rJ

(xJ )
|∇Λ||∇∇V | dµ

≤ C
l∑

J=1

(∫
|∇∇V |p

) 1
p
(∫

Ω
|∇Λ|q dµ

) 1
q

≤ C
(∫
|∇∇V |p dµ

) 1
p

(
l∑

J=1

∫
B3rJ

(xJ )
|∇Λ|q

) 1
q

≤ C
(∫
|∇∇V |p dµ

) 1
p

(
l∑

J=1

rn−q−qδ
) 1
q

≤ C
(

1

i

) 1
q

.

The third term can be estimated using Lemma 52 (or the fact that we have
already shown that |∇∇u| ∈ L2), (144), (146) and (154) as

(B13) = C
∫

Ω
|∇Λ|d2(v, P0)|∇∇u| dµ

≤ C
(∫

Ω
|∇Λ|2d2(v, P0)dµ

) 1
2
(∫

Ω
d2(v, P0)|∇∇u|2 dµ

) 1
2
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≤ C

(
l∑

J=1

∫
B3rJ

(xJ )
|∇Λ|2d2(v, P0)dµ

) 1
2 (∫

Ω
d2(v, P0)|∇∇u|2 dµ

) 1
2

≤ C

(
l∑

J=1

rn−2δ
J

) 1
2

≤ C
(

1

i

) 1
2

.

The fourth term can be estimated as,

(B14) =
∫

Ω
|∇v|2|4Λ| dµ

≤ C
∫

Ω
|∇v| |∇∇Λ| dµ

≤ C
∫

Ω
|∇v|

l∑
J=1

|∇∇Λ|dµ

≤ C
l∑

J=1

∫
B3rJ

(xJ )
|∇v||∇∇ΛJ | dµ

≤ C
l∑

J=1

(∫
B3rJ

(xJ )
|∇v|2dµ

) 1
2
(∫

B3rJ
(xJ )
|∇∇ΛJ |2 dµ

) 1
2

≤ C
l′∑
J=1

(∫
B3rJ

(xJ )
|∇v|2dµ

) 1
2
(∫

B3rJ
(xJ )
|∇∇ΛJ |2 dµ

) 1
2

+C
l∑

J=l′+1

(∫
B3rJ

(xJ )
|∇u|2dµ

) 1
2
(∫

B3rJ
(xJ )
|∇∇ΛJ |2 dµ

) 1
2

≤ C
l∑

J=1

r
n+2ε0

2
J r

n−4−2δ
2

J = C
l∑

J=1

rn−2+ε0−δ
J ≤ C

i
.

where we have used monotonicity property (2) for the harmonic map u and
Corollary 61 for the component map v to estimate the energies of u and v in
the balls {B3rJ (xJ)}. Thus, combining the estimates for (B11), (B12), (B13)
and (B14), we obtain

(B1) = −1

2

∫
Ω
∇|∇u|2 · ∇Λ−δ dµ ≤ C

(
1

i

) 1
q

.
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Combining this with the estimate for (B2), we obtain

(B) ≤ C
(

1

i

) 1
q

.

Combining the estimates for (A) and (B), we obtain

∫
Ω
|∇∇u||∇ψi|dµ ≤ C

(
1

i

) 1
q

which proves Statement 2[j]. q.e.d.

The above completes the proof of Theorem 1 and Theorem 2. The in-
ductive process also yields Theorem 3 as a consequence of Proposition 55.
Similarly, Theorem 4 is an immediately consequence of Proposition 66. Fur-
thermore, from Corollary 61, we can immediately deduce the following:

Corollary 70 If u = (V, v) : Bσ?(x?) → (Rj × Y2
k−j, dG) is a harmonic

map, then there exist C > 0, c > 0, R0 > 0 and ε0 > 0 such that

1 + ε0 ≤ ecσ
2 σEv

x0
(σ)

Ivx0(σ)
≤ C,

Ivx0(σ)

σn+1+2ε0
≤ C and

Ev
x0

(σ)

σn+2+2ε0
≤ C

for all x0 ∈ Sj(u) ∩Bσ?
2

(x?) and σ ∈ (0, R0).

12 Appendix 1

The goal of this Section is to establish Proposition 72 below which is an
analogue of [GS] Theorem 5.1. Recall that in Section 11, Proposition 72 was
applied to the singular component map v of a harmonic map into a DM-
complex and x0 ∈ Sj(u). The main difference from [GS] is that the map v
is not necessarily harmonic but only approximately harmonic. We first need
the following preliminary lemma.

Lemma 71 Let B1(0) ⊂ Rn, v1 : B1(0) → Y2
k−j be a map, l1 : B1(0) →

Y k−j
2 a homogeneous degree 1 map and v1(0) = l1(0). For ϑ ∈ (0, 1], define

vϑ : B1(0)→ Y k−j
2 , v(x) = ϑ−1v1(ϑx)
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and
lϑ : B1(0)→ Y k−j

2 , lϑ(x) = ϑ−1l1(ϑx).

Assume the following conditions:

(i) For ϑ ∈ (0, 1] and the harmonic map

w : B1(0)→ Y k−j
2 with w|∂B1(0) = vϑ|∂B1(0),

we have
sup
B 1

4
(0)

d(vϑ(x), w(x)) ≤ cϑ
1
2 . (161)

(ii) For w : B1(0)→ Y k−j
2 as in (i), there exist constants C ≥ 1, β > 0 and

a homogeneous degree 1 map l̂ : B1(0)→ Y k−j
2 such that

sup
Br(0)

d(w, l̂) ≤ Cr1+β inf
L

sup
B 1

4
(0)

d(w,L), ∀r ∈ (0,
1

8
) (162)

where the infimum is taken over all homogeneous maps L of degree 1.

(iii) The constants C > 1, θ ∈ (0, 1
8
), β and c ∈ (0, 1) satisfy

Cθβ <
1

8
, (163)

and

c < θ
D0

4
. (164)

For a natural number i, assume il : B1(0)→ Y k−j
2 is a homogeneous map of

degree 1. Then we have the following implication:
sup
B1(0)

d(vθ
i

, il) <
D0

2i

sup
B1(0)

d(vθ
i
, lθ

i
)dµ < iδ

(165)

implies that there exists a homogeneous degree 1 map i+1l : B1(0)→ Y k−j
2 so

that 
sup
B1(0)

d(vθ
i+1

, i+1l) <
D0

2i+1

sup
B1(0)

d(vθ
i+1

, lθ
i+1

) < i+1δ := 2θ−1D0

2i
+ iδ.

(166)

.
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Proof. We first give the proof of the first inequality of (166). With
w : B1(0)→ Y k−j

2 as in (i) with ϑ = θi, we have

sup
B 1

4
(0)
d(vθ

i

, w) ≤ cθ
i
2 (by (161))

≤ θ
D0

4

1

2i
(by (164) and θ < 1

8
)

<
D0

2i+2
. (167)

By Assumption (ii) inequality (162), there exists a homogeneous degree 1
harmonic map l̂ : B1(0)→ Y k−j

2 such that

sup
Bθ(0)

d(w, l̂) ≤ Cθ1+β sup
B 1

4
(0)
d(w, il). (168)

With

i+1l : B1(0)→ Y k−j
2 defined by i+1l(x) = θ−1l̂(θx)

and
wθ : B1(0)→ Y k−j

2 defined by wθ(x) = θ−1w(θx),

we obtain

sup
B1(0)

d(wθ, i+1l) ≤ θ−1 sup
Bθ(0)

d(w, l̂)

≤ Cθβ sup
B 1

4
(0)
d(w, il) (by (168))

≤ Cθβ

 sup
B 1

4
(0)

d(w, vθ
i

) + sup
B 1

4
(0)

d(vθ
i

, il)


< Cθβ

(
θ

4

D0

2i
+
D0

2i

)
(by (167) and (165))

< Cθβ
D0

2i−1

<
D0

2i+2
(by (163)).

Combined with (167), we obtain

sup
B1(0)

d(vθ
i+1

, i+1l) ≤ sup
B1(0)

d(vθ
i+1

, wθ) + sup
B1(0)

d(wθ, i+1l) <
D0

2i+1
.
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This completes the proof of the first inequality of (166).
We now prove the second inequality of (166). Since lθ

i
(0) = vθ

i
(0), we

have

d(lθ
i

(0), il(0)) = d(vθ
i

(0), il(0)) <
D0

2i
(by (165)).

By the NPC condition, we obtain for any x ∈ B1(x) that

d(lθ
i

(θx), il(θx)) ≤ (1− θ)d(lθ
i

(0), il(0)) + θd(lθ
i

(x), il(x)).

Thus,

d(lθ
i

(θx), il(θx)) < (1− θ)D0

2i
+ θd(lθ

i

(x), il(x))

≤ (1− θ)D0

2i
+ θ(d(lθ

i

(x), vθ
i

(x)) + d(vθ
i

(x), il(x)))

< (1− θ)D0

2i
+ θ(iδ +

D0

2i
) (by (165))

≤ D0

2i
+ θ iδ.

Combining this with (165), we obtain

d(vθ
i+1

(x), lθ
i+1

(x)) < 2θ−1D0

2i
+ iδ.

This proves the second inequality of (166) and completes the proof. q.e.d.

Proposition 72 Let u = (V, v) : Bσ?(x?)→ (Rj × Y2
k−j, dG) be a harmonic

map as in (17), 0 ∈ Bσ?
2

(x?)∩Sj(u), Bσ0(0) ⊂ Bσ?
2

(x?) and {vσ} be the blow
up maps of v at 0 (cf. Definition 44). Given a homogeneous degree 1 map
l : B1(0) → Y k−j

2 with l(0) = vσ(0), there exist λ > 0 and D0 > 0 such that
if

sup
B 1

2
(0)
d(vσ, l) < D0,

then
sup
Bs(0)

d(vσ, P0) > λs

for s > 0, σ > 0 sufficiently small.
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Proof. Let λ > 0 be such that

sup
Bs(0)

d(l, P0) > 4λs.

By [GS] Theorem 6.3, there exist constants C ≥ 1, β > 0 such that condition
(ii) of Lemma 71 is satisfied. Next choose θ ∈ (0, 1

8
) such that (163) is

satisfied; i.e.

Cθβ <
1

8
.

Finally, let D0 satisfy
2θ−2D0 + θ−1D0 = λ (169)

and assume
sup
B 1

2
(0)
d(vσ, l) < D0.

Define v† : B1(0) → Y k−j
2 and l† : B1(0) → Y k−j

2 by setting v†(x) = vσ(x
2
)

and l†(x) = l(x
2
). Thus,

sup
B1(0)

d(v†, l†) < D0

and
sup
Bs(0)

d(l†, P0) > 2λs.

Furthermore, let vθ
i

† (x) = θ−iv†(θ
ix) and lθ

i

† (x) = θ−il†(θ
ix). Lemma 48

implies

sup
B 1

4
(0)

d(vθ
i

† , w) ≤ cθ
i
2 (with c2 = Cσ)

for any harmonic map w : (B1(0), gθiσ) → Y k−j
2 with w = v† on ∂B1(0).

Choose σ > 0 such that (164) is satisfied for c =
√
Cσ. Therefore, conditions

(i) and (iii) of Lemma 71 are satisfied.
Inductively apply Lemma 71 to obtain

sup
B1(0)

d(vθ
i

† , l
θi

† ) < iδ

= θ−1 D0

2i−1
+ i−1δ

≤ θ−1
i−1∑
j=0

D0

2j
+ 0δ

≤ 2θ−1D0 +D0.
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Thus,
sup
Bθi (x)

d(v†, l†) < 2θi−1D0 + θiD0.

For s > 0, let j such that θj+1 ≤ s < θj. Then by (169),

sup
Bs(0)

d(v†, l†) < 2θj−1D0 + θjD0 < (2θ−2D0 + θ−1D0)s = λs.

This in turn implies that for s ∈ (0, θ),

sup
Bs(0)

d(v†, P0) ≥ sup
Bs(0)

d(l†, P0)− sup
Bs(0)

d(v†, l†) ≥ 2λs− λs = λs,

hence
sup
Bs(0)

d(vσ, P0) ≥ 2λs ≥ λs.

q.e.d.

13 Appendix 2

The purpose of this Appendix is provide a proof of the crucial codimension
2 property for a set of higher order points needed in the proof of Theorem 1.
As described in the proof of Theorem 1, we need two separate statements:
one for the original harmonic map u and one for the singular component
v. In addition, a more general statement is needed in future applications.
Thus, we will prove a general codimension 2 statement that covers all cases at
once. We start with lemma regarding the upper semicontinuity of Hausdorff
dimension.

Lemma 73 If Si be a sequence of closed subsets of B1(0) satisfying a prop-
erty that

xi ∈ Si and xi → x0 ∈ B1(0) ⇒ x0 ∈ S0 (170)

for some closed subset S0 of B1(0), then

lim sup
i→∞

dimH(Si) ≤ dimH(S0). (171)

96



Proof. Following [GS], define Ĥs(·) by

Ĥs(S) = inf

{ ∞∑
l=1

rsl : all coverings {Brl(xl)}∞l=1 of S by open balls

}
.

Called the rough outer Hausdorff measure, Ĥs is not precisely the Hausdorff
measure Hs, but its importance is in the fact that the Hausdorff dimension
of any set S is given by

dimH(S) = inf{s : Hs(S) = 0} = inf{s : Ĥs(S) = 0}.

We now come to the proof of (171). First, fix s > 0 and let r ∈ (0, 1). Given
ε1 > 0, let {Brl(xl)}Nl=1 be a finite covering of S0 ∩ Br(0) such that xl ∈ S0

and

Ĥs(S0 ∩Br(0)) + ε1 ≥
N∑
l=1

rsl .

Note here that it is enough to consider finite coverings since S0 is compact.
By (170), {Brl(xl)}Nl=1 is a covering of Si∩Br(0) for i sufficiently large. Hence,
for i sufficiently large,

Ĥs(S0 ∩Br(0)) + ε1 ≥
N∑
l=1

rsl ≥ Ĥs(Si ∩Br(0)).

Since ε1 is arbitrary, this proves (171). q.e.d.

Recall that we are interested in maps that are not necessarily harmonic.
More precisely, we are interested in maps given in the following:

Definition 74 Let v : Bσ?(x?) → (Y, d) be a finite energy continuous map
from a Riemannian domain into an NPC space and let S be a closed subset
of Bσ?

2
(x?). We say v satisfies (P1) and (P2) with respect to S if it satisfies

the properties below.

(P1) At any x0 ∈ S, we require that v has a well defined order at x0 in
the sense that it satisfies the following property: Assume that v is not con-
stant in any neighborhood of x0 and that there exist constants c > 0 and
R0 > 0 such that for any x0 ∈ S,

lim
σ→0

Ordv(x0) := lim
σ→0

Ordv(x0, σ) exists
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and

Ordv(x0) ≤ ecσ
σEv

x0
(σ)

Ivx0(σ)
, ∀σ ∈ (0, R0).

(P2) For any x0 ∈ S, define blow-up maps {vσ} and approximating harmonic
maps {wσ} at x0 as follows: Identify x0 = 0 via normal coordinates, let

νσ =

(
Iv0 (σ)

σn−1

)1/2

(172)

and gσ(y) = g(σy) be the rescaled metric on B1(0). For σ > 0 sufficiently
small, vσ is the rescaled map

vσ : (B1(0), gσ)→ (Y, ν−1
σ d), vσ(y) = v(σy)

and wσ is the harmonic map

wσ : (B1(0), gσ)→ (Y, ν−1
σ d), wσ|∂B1(0) = vσ|∂B1(0).

We require that given a sequence σi → 0, there exists a subsequence (which
we call again σi by a slight abuse of notation) such that the blow up maps
{vσi} and {wσi} converge locally uniformly in the pullback sense to a homo-
geneous harmonic map v0 : (B1(0), δ) → (Y0, d0) for some NPC space. For
any r ∈ (0, 1),

lim
i→∞

sup
Br(0)

d(vσi , wσi) = 0.

Furthermore, for any sequence {xi} ⊂ σ−1
i S ∩B 1

2
(0), R ∈ (0, 1

4
), there exists

{ri} ⊂ [R
2
, R] such that

lim
i→∞

∣∣∣Evσi
xi (ri)− E

wσi
xi (ri)

∣∣∣ = 0.

Remark 75 A harmonic map u : B1(0) → Y into an NPC space satisfies
properties (P1) and (P2) with respect to S = Bσ?

2
(x?) (cf. [GS]). Also, a

singular component v of a harmonic map u = (V, v) : B1(0)→ (Rj, Y2) into
a DM-complex satisfies properties (P1) and (P2) respect to S = Sj(u) by
Proposition 55, Corollary 49, Corollary 57 and Lemma 63.
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Lemma 76 Let v : Bσ?(x?) → (Y, d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S ⊂ Bσ?

2
(x?). Let x = 0 ∈ S, {vσi}

the blow-up maps of v at x and v0 as in (P2). If xi ∈ σ−1
i S converges to

x0 ∈ B1(0), then
lim inf
i→∞

Ordvσi (xi) ≤ Ordv0(x0).

Proof. Let wσi be as in (P2). For i sufficiently large,

E
wσi
0 (1) ≤ E

vσi
0 (1) =

E
vσi
0 (1)

I
vσi
0 (1)

=
σiE

v
x(σi)

Ivx(σi)
< 2Ordv(x).

Thus, for R ∈ (0, 1
4
), [KS1] Theorem 2.4.6 implies that {wσi|BR(0)} has a

uniform Lipschitz bound. We can therefore apply lower semicontinuity of
energy (cf. [KS2] Lemma 3.8) to conclude that, for any x0 ∈ B1(0) and
any r ∈ (R

2
, R), we have Ev0

x0
(r) ≤ lim infi→∞E

wσi
x0 (r). On the other hand, by

[KS2] Theorem 3.9 there is no loss of energy, i.e Ev0
x0

(r) = limi→∞E
wσi
x0 (r). By

the uniform Lipschitz continuity and the convergence xi → x0, we also have
|Ewσi

x0 (r) − Ewσi
xi (r)| ≤ C|xi − x0| for some C indepedent of i. Furthermore,

(P2) implies there exists ri ∈ (R
2
, R) such that

∣∣∣Evσi
xi (ri)− E

wσi
xi (ri)

∣∣∣ ≤ Cσi
1
2 .

By taking a subsequence if necessary, we can assume ri → r0 ∈ [R
2
, R]. Hence

Ev0
x0

(r0) = lim
l→∞

E
vσi
xi (ri), r0 ∈ [

R

2
, R].

Furthermore,
Iv0x0(r0) = lim

i→∞
I
vσi
xi (ri)

by the local uniform convergence in the pullback sense. Combining the above
two equalities, we obtain

lim
i→∞

rE
vσi
xi (ri)

I
vσi
xi (ri)

=
rEv0

x0
(r0)

Iv0x (r0)
, r0 ∈ [

R

2
, R]. (173)

Now we apply the monotonicity property of (P1), namely

Ordvσi (xi) ≤ ecri
riE

vσi
xi (ri)

I
vσi
xi (ri)

.
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This implies that for any ε > 0, there exists i0 such that

Ordvσi (xi) ≤ ecr0
rEv0

x0
(r0)

Iv0x (r0)
+ ε, ∀i ∈ {i0, i0 + 1, . . .}.

Taking liminf as i→∞ in the above inequality and noting ε is arbitrary, we
obtain

lim inf
i→∞

Ordvσi (xi) ≤ ecr0
r0E

v0
x0

(r0)

Iv0x0(r0)
r0 ∈ [

R

2
, R].

Finally, we let R→ 0 (and hence r0 → 0), we obtain

lim inf
i→∞

Ordvσi (xi) ≤ Ordv0(x0).

q.e.d.

Definition 77 We say that a map v : Bσ?(x?)→ (Y, d) satisfying properties
(P1) and (P2) with respect to closed subset S ⊂ Bσ?

2
(x?) satisfies an order

gap property with respect to S if there exists ε0 > 0 such that for any x ∈ S,
either Ordv(x) = 1 or Ordv(x) ≥ 1 + ε0 (or equivalently, Ordv0(0) = 1 or
Ordv0(0) ≥ 1 + ε0 for v0 as in (P2).)

Definition 78 A higher order point of v is a point x such that Ordv(x)
exists and is > 1. We denote the set of higher order points of v by S0(v).

Lemma 79 Let v : Bσ?(x?) → (Y, d) be a map satisfying properties (P1)
and (P2) with respect to S ⊂ B1(0). If v satisfies the order gap property with
respect to S as in Definition 77 and x ∈ S, {vσi} and v0 are as in (P2), then

lim sup
i→∞

dimH(σ−1
i (S0(v) ∩ S)) ≤ dimH(S0(v0)).

Proof. Identify x = 0 via normal coordinates. By Lemma 73, it suffices
to prove

xi ∈ σ−1
i (S0(v) ∩ S) and xi → x0 ⇒ x0 ∈ S0(v0).

Since 1 + ε0 ≤ Ordv(σixi) = Ordvσi (xi) by the order gap assumption, we
have 1 + ε0 ≤ Ordv0(x0) by Lemma 76. Hence x0 ∈ S0(v0). q.e.d.
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Lemma 80 Let v : Bσ?(x?) → (Y, d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S ⊂ Bσ?

2
(x?). If v satisfies the order

gap property with respect to S as in Definition 77, then for every x ∈ S0(v)

dimH (S0(v) ∩ S) ≤ dimH(S0(v0))

where v0 is the limit of the blow-up maps of v at x as in (P2).

Proof. Suppose on the contrary that dimH (S0(v) ∩ S) > dimH(S0(v0)∩
S) and choose

dimH (S0(v) ∩ S) > s > dimH(S0(v0)).

Since Hs(S0(v)∩S) > 0, [Fe] 2.10.19 implies that there exists x ∈ S0(v) such
that (after identifying x = 0 via normal coordinates)

lim
i→∞
Hs(σ−1

i (S0(v) ∩ S)) = lim
i→∞

Hs(S0(v) ∩ S ∩Bσi(0))

σsi
≥ 2−s.

Thus, dimH(σ−1
i (S0(v) ∩ S)) ≥ s for i sufficiently large. By Lemma 79,

dimH(S0(v0)) ≥ s which is a contradiction. q.e.d.

Definition 81 Let v : Bσ?(x?)→ (Y, d) be a map satisfying properties (P1)
and (P2) with respect to closed subset S ⊂ Bσ?

2
(x?). The map v is said to

satisfy the codimension 2 property of the tangent map with respect to S if
for any x ∈ S and for v0 the limit of the blow-up maps of v at x as in (P2),
we have

dimH(S0(v0)) ≤ n− 2.

Theorem 82 Let v : Bσ?(x?) → (Y, d) be a map satisfying properties (P1)
and (P2) with respect to S ⊂ Bσ?

2
(x?). If v also satisfies the order gap

property with respect to S as in Definition 77 and the codimension 2 property
of the tangent map with respect to S as in Definition 81, then

dimH(S0(v) ∩ S) ≤ n− 2.

Proof. Since v satisfies the order gap property, we can choose x ∈ S0(v)
as in Lemma 80 such that

dimH (S0(v) ∩ S) ≤ dimH(S0(v0))

where v0 as (P2). The assumption that v satisfies the codimension 2 property
of the tangent map implies dimH(S0(v0)) ≤ n− 2. q.e.d.
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