
SOLUTIONS FOR MIDTERM FOR 110 405
FALL 2004

Answer all five questions. The first two questions are short answer. Fully justify your
answer for the last three questions.

Question 1. (10 points; True/False). Every bounded sequence has a convergent subse-
quence; no proof is required.

True. For example, the sup is a limit point.

Question 2. (10 points; Short answer). Give an example of a set that is both open and
closed; no proof is required.

Either R or the empty set ∅.

Question 3. (25 points). Suppose that E is a non-empty compact set. Show that sup(E)
is contained in E.

• First, note that sup(E) exists (and is finite) since E is bounded.
• Claim: For any bounded set, we always have that sup E is either in E or a limit point

of E.
Proof of claim: Suppose that sup(E) /∈ E. Since sup(E) is the least upper bound,

for every j, we get a point yj ∈ E with

sup(E) − 1/j < yj < sup(E) .

(Otherwise sup(E)− 1/j would be a lower upper bound.) The sequence yj converges
to sup(E), proving the claim.

• Finally, since E is closed, it contains all of its limit points.

Question 4. (25 points). Suppose that for each λ in a set Λ, we have a positive real number
aλ > 0. Suppose also that for any natural number n and any λ1, . . . , λn ∈ Λ we have

n∑
i=1

aλi
< 1 .

Prove that the set Λ is at most countable (i.e, is either countable or finite).

• For each natural number n, define a set Λn by

Λn = {λ ∈ Λ | aλ > 1/n} .

Prof. Minicozzi.
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• The condition on the sums implies that Λn has less than n elements – in particular,
each Λn is finite.

• Notice that, by the axiom of Archimedes, we can write Λ as the countable union of
finite sets:

Λ = ∪∞n=1Λn .

This means that Λ is also at most countable.

Question 5. (30 points). Suppose that a sequence yn is defined iteratively by y0 = 1 and
then

yn+1 =
1

2 + yn

.

(a) Compute the next three terms y1, y2, and y3.
(b) Prove that the sequence yn converges.

The first part is easy: 1/3, 3/7, and 7/17.

To see the convergence, notice that

yn+1 − yn =
1 − yn(yn + 2)

yn + 2
.

Similarly, using that yn−1 = −2 + 1/yn, we get

yn − yn−1 =
yn(yn + 2) − 1

yn

.

Since the yn’s are always positive (prove this by induction if you are really conscientious),
it follows that each yi < 1/2 for i > 0.

Combining things, we get that

|yn+1 − yn|
|yn − yn−1|

=
|yn|

|yn + 2|
<

1

4
.

Since this ratio is less than one, the sequence must converge. See the solution of exercise 3
from page 54 for the proof of this last part (this was on problem set 3).


