MATH 405 - FALL 2006 - MIDTERM EXAM -SOLUTION

Determine whether statements 1 through 10 are true of false. If you belicve a statement is
true, you do not need to justify it. If you believe a statement is false, provide a counterex-
ample. Each problem is worth 2 points and no partial credit will be given.

1. There are no Cauchy sequences of positive rationals that are equivalent to a Cauchy
sequence of negative rationals.

11 11 .
False. 1,3, 3,... and —1, —5, —3, ... are equivalent.

2. If 21,29, ... and yy, yo, ... are Cauchy sequences of real numbers with y; # 0 for all 4, then
o220 is a Cauchy sequence.

v’ ya?
False. If z,, = 1 for all n and y,, = %, then z—z = n which is not Cauchy.
3. All sequences have a convergent subsequence.

False. 1,2,3,...

4. If A and B are sets of real numbers so that sup A < inf B, then the union of all intervals
of the form (a,b) where a € A and b € B is open.

True. Union of any number of open sets is open.
5. If A and B are dense sets in R, then AN B is dense.
False. Let A =Q and B = Q°.

6. If f(z) and g(z) are Holder continuous functions of order «, then f(g(x)) is a Holder
continuous function of order a.

N

False. Let f(z) = 22 and g(z) = 22, then f(g(z)) = z1.
7. If f is a continuous function with domain R and U is open, then f(U) is open.
False. Let f(x) =1. Then f(U) = {1} for any open set U.

8. If f is a continuous function with domain R and I is an open interval, then f~1(I) is an
open interval.



False. Let f(x) = sinz. Then f~'((—1/2,1/2)) is not an open interval. (It is a union of
open intervals.)

9. If A is compact, then sup A € A and inf A € A.
True.

10. If A is bounded but not compact, then sup A ¢ A and inf A ¢ A.
False. Let A =[0,1)U (2, 3].

Prove the statements in 11 through 14. FEach problem is worth 10 points and partial credit
will be given. (*=easy, **=intermediate, ***=challenging)

11. The product of a negative real number and a positive real number is negative.

Let = be negative and y be positive. Then (by Definition 2.2.3) —z is positive and (by
Theorem 2.2.2) (—x)y is positive. By the associative property of real numbers, —(xy) =
(=1)(zy) = (—x)y and hence —(xy) is positive. This implies zy is negative (again by Defi-
nition 2.2.3).

Alternate solution (the long way): Let x be negative and y be positive. Then —z is pos-

itive and there exists N;, m; and a Cauchy sequence of rationals a, as, ... so that a; > N%
for all j > m; (by Definition 2.2.3). Similarly, there exists Ny, my and a Cauchy sequence of

rationals yi,ys, ... so that a; > N% for all j > my. By Definition 2.2.2, (—x)y is represented

by a1y, asys, .... If we let m = max{m;, my}, then a;y; > ﬁ whenever j > m. Thus,

(—x)y is a positive number. Since xy = —(—x)y (by associativity), xy is negative.

12. If f is a bounded, monotone increasing, continuous function defined on the interval [a,b),
then f is uniformly continuous.

First, we claim that f has a limit from the left at b. Let N € N be sufficiently large so
that b — € (a,b) and consider the sequence f(b— 7). f(b — 75), f(b— 53), ... Since
f is monotone increasing and bounded, this sequence is monotone increasing and bounded.
Therefore, it has a limit, say yg. Let n € N be given. Then there exists ky € N so that
0<yo— f(b—3) <= forall k> ko Since f is monotone increasing, 0 < yo — f(z) < +
whenever z € (b— ,b). Thus, |yo — f(z)| < £ whenever —; < z —b < 0. This proves our
claim.

Next, we let g(z) be defined by setting g(z) = f(x) for x € [a,b) and ¢g(b) = yo. Since
f is continuous on the interval [a,b) and lim, ;- g(z) = lim, - f(z) = yo = ¢g(b), g is
continuous on the closed interval [a,b]. By Theorem 4.2.5, g is uniformly continuous and
hence f is also (since f(z) = g(z) on [a,b)).



13. If B is an open covering of a set A, then B has a countable subcover.

See the first paragraph of the proof of Theorem 3.3.2 and note that that portion of the
proof does not need that A is compact.

14. If O = {01, 0,,...} is a countable collection of open sets so that O; is dense in R (for
all i = 1,2,...), then the intersection of all the sets in O is dense in R.

Let O be the intersection of the sets in . Assume O is not dense. Thus, there exists an
open interval J which contains no points of O. Let I be an open interval so that closure(/) C
J. Since O; is open and dense, O; N [ is open and nonempty. Thus, there exists a point
x1 and n; sufficiently small so that I} = (z; — ,%1,371 + 7?11) C O1N1I. Since Oy is open
and dense, Oy N I; is open and nonempty, there exists a point x; and ny > n; so that
I = (z9 — n%, To + n%) C O5 N I;. Continue inductively to construct a sequence

1 1 1 1 1 1

L=t —— 20— —), [h=(ro— —, 20+ —), [s = (x5 — —, 220+ —), ...
nq Ny Mo N9 ns ns

sothat [; CO; and I D I; D Iy D I3... and n; < ng < ng < .... Since z;,x;, € I; whenever
J, k > i, this implies |z; — x| < n% whenever j, k > n; which in turn implies that z, zo, ... is
a Cauchy sequence and converges to a number o € closure(I). Furthermore, xy € NI; C J
and since I; C O;, we have g € NO; = O. This is contradicts that J contains no points of

0.



