
MATH 405 - FALL 2006 - MIDTERM EXAM -SOLUTION

Determine whether statements 1 through 10 are true of false. If you believe a statement is
true, you do not need to justify it. If you believe a statement is false, provide a counterex-
ample. Each problem is worth 2 points and no partial credit will be given.

1. There are no Cauchy sequences of positive rationals that are equivalent to a Cauchy
sequence of negative rationals.

False. 1, 1
2
, 1

3
, ... and −1,−1

2
,−1

3
, ... are equivalent.

2. If x1, x2, ... and y1, y2, ... are Cauchy sequences of real numbers with yi 6= 0 for all i, then
x1

y1
, x2

y2
, ... is a Cauchy sequence.

False. If xn = 1 for all n and yn = 1
n
, then xn

yn
= n which is not Cauchy.

3. All sequences have a convergent subsequence.

False. 1,2,3,...

4. If A and B are sets of real numbers so that sup A < inf B, then the union of all intervals
of the form (a, b) where a ∈ A and b ∈ B is open.

True. Union of any number of open sets is open.

5. If A and B are dense sets in R, then A ∩B is dense.

False. Let A = Q and B = Qc.

6. If f(x) and g(x) are Hölder continuous functions of order α, then f(g(x)) is a Hölder
continuous function of order α.

False. Let f(x) = x
1
2 and g(x) = x

1
2 , then f(g(x)) = x

1
4 .

7. If f is a continuous function with domain R and U is open, then f(U) is open.

False. Let f(x) = 1. Then f(U) = {1} for any open set U .

8. If f is a continuous function with domain R and I is an open interval, then f−1(I) is an
open interval.
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False. Let f(x) = sin x. Then f−1((−1/2, 1/2)) is not an open interval. (It is a union of
open intervals.)

9. If A is compact, then sup A ∈ A and inf A ∈ A.

True.

10. If A is bounded but not compact, then sup A /∈ A and inf A /∈ A.

False. Let A = [0, 1) ∪ (2, 3].

Prove the statements in 11 through 14. Each problem is worth 10 points and partial credit
will be given. (*=easy, **=intermediate, ***=challenging)

11. The product of a negative real number and a positive real number is negative.

Let x be negative and y be positive. Then (by Definition 2.2.3) −x is positive and (by
Theorem 2.2.2) (−x)y is positive. By the associative property of real numbers, −(xy) =
(−1)(xy) = (−x)y and hence −(xy) is positive. This implies xy is negative (again by Defi-
nition 2.2.3).

Alternate solution (the long way): Let x be negative and y be positive. Then −x is pos-
itive and there exists N1, m1 and a Cauchy sequence of rationals a1, a2, ... so that aj ≥ 1

N1

for all j ≥ m1 (by Definition 2.2.3). Similarly, there exists N2, m2 and a Cauchy sequence of
rationals y1, y2, ... so that aj ≥ 1

N2
for all j ≥ m2. By Definition 2.2.2, (−x)y is represented

by a1y1, a2y2, .... If we let m = max{m1, m2}, then ajyj ≥ 1
N1N2

whenever j ≥ m. Thus,

(−x)y is a positive number. Since xy = −(−x)y (by associativity), xy is negative.

12. If f is a bounded, monotone increasing, continuous function defined on the interval [a,b),
then f is uniformly continuous.

First, we claim that f has a limit from the left at b. Let N ∈ N be sufficiently large so
that b− 1

N
∈ (a, b) and consider the sequence f(b− 1

N+1
), f(b− 1

N+2
), f(b− 1

N+3
), .... Since

f is monotone increasing and bounded, this sequence is monotone increasing and bounded.
Therefore, it has a limit, say y0. Let n ∈ N be given. Then there exists k0 ∈ N so that
0 ≤ y0 − f(b − 1

k
) ≤ 1

n
for all k ≥ k0. Since f is monotone increasing, 0 ≤ y0 − f(x) ≤ 1

n

whenever x ∈ (b − 1
k
, b). Thus, |y0 − f(x)| ≤ 1

n
whenever − 1

k
< x − b < 0. This proves our

claim.
Next, we let g(x) be defined by setting g(x) = f(x) for x ∈ [a, b) and g(b) = y0. Since

f is continuous on the interval [a, b) and limx→b− g(x) = limx→b− f(x) = y0 = g(b), g is
continuous on the closed interval [a, b]. By Theorem 4.2.5, g is uniformly continuous and
hence f is also (since f(x) = g(x) on [a, b)).



13. If B is an open covering of a set A, then B has a countable subcover.

See the first paragraph of the proof of Theorem 3.3.2 and note that that portion of the
proof does not need that A is compact.

14. If O = {O1, O2, ...} is a countable collection of open sets so that Oi is dense in R (for
all i = 1, 2, ...), then the intersection of all the sets in O is dense in R.

Let O be the intersection of the sets in O. Assume O is not dense. Thus, there exists an
open interval J which contains no points of O. Let I be an open interval so that closure(I) ⊂
J . Since O1 is open and dense, O1 ∩ I is open and nonempty. Thus, there exists a point
x1 and n1 sufficiently small so that I1 = (x1 − 1

n1
, x1 + 1

n1
) ⊂ O1 ∩ I. Since O2 is open

and dense, O2 ∩ I1 is open and nonempty, there exists a point x1 and n2 > n1 so that
I2 = (x2 − 1

n2
, x2 + 1

n2
) ⊂ O2 ∩ I1. Continue inductively to construct a sequence

I1 = (x1 −
1

n1

, x2 −
1

n2

), I2 = (x2 −
1

n2

, x2 +
1

n2

), I3 = (x3 −
1

n3

, x2 +
1

n3

), ...

so that Ii ⊂ Oi and I ⊃ I1 ⊃ I2 ⊃ I3... and n1 < n2 < n3 < .... Since xj, xk ∈ Ii whenever
j, k ≥ i, this implies |xj − xk| < 2

ni
whenever j, k ≥ ni which in turn implies that x1, x2, ... is

a Cauchy sequence and converges to a number x0 ∈ closure(I). Furthermore, x0 ∈ ∩Ii ⊂ J
and since Ii ⊂ Oi, we have x0 ∈ ∩Oi = O. This is contradicts that J contains no points of
O.


