HOMEWORK PROBLEM SET 6: DUE MARCH 13, 2019

AS.110.211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN

- Question 1. Prove that the curl of a vector field in \mathbb{R}^3 is incompressible. That is, given a C^2 -vector field $\mathbf{F}: X \subset \mathbb{R}^3 \to \mathbb{R}^3$, show that $\nabla \cdot (\nabla \times \mathbf{F}) = 0$.
- Question 2. An important (second-order, partial differential) operator on real-valued functions on \mathbb{R}^n is the *Laplacian Operator*, denoted ∇^2 . It is defined by

$$\nabla^2 = \frac{\partial^2}{\partial x_1^2} + \ldots + \frac{\partial^2}{\partial x_n^2} = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}.$$

- (a) Show that another way to write ∇^2 is $\nabla \cdot \nabla$.
- (b) Show that if f and g are C^2 -functions on \mathbb{R}^n , then

$$\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2\left(\nabla f \cdot \nabla g\right).$$

(c) Show that $\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla^2 f$.

Question 3. Demonstrate whether the following is true or false:

- (a) The vector field $\mathbf{G} = 2xy \cos z \mathbf{i} y^2 \cos z \mathbf{j} + e^{xy} \mathbf{k}$ is incompressible.
- (b) The vector field $\mathbf{G} = 2xy \cos z \mathbf{i} y^2 \cos z \mathbf{j} + e^{xy} \mathbf{k}$ is irrotational.
- (c) For any C²-vector field, if $\nabla \cdot \mathbf{F} = 0$ and $\nabla \times \mathbf{F} = \mathbf{0}$, then $\mathbf{F} = \mathbf{0}$.
- (d) There exists a C²-vector field **H** on \mathbb{R}^3 such that $\nabla \times \mathbf{H} = x \cos^2 y \mathbf{i} + 3y \mathbf{j} xyz^2 \mathbf{k}$.
- (e) The vector field $\mathbf{V} = 2x \sin y \cos z \mathbf{i} + x^2 \cos y \cos z \mathbf{j} x^2 \sin y \sin z \mathbf{k}$ is the gradient of a C^2 -function f on \mathbb{R}^3 .
- (f) If F and G are gradient fields, then $\mathbf{F} \times \mathbf{G}$ is incompressible.

Question 4. Let $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, and denote $r = ||\mathbf{r}||$. Show the following:

(a) $\nabla (\ln r) = \frac{\mathbf{r}}{r^2}$. (b) For $n \in \mathbb{N}$, $\nabla \cdot (r^n \mathbf{r}) = (n+3)r^n$.