HOMEWORK PROBLEM SET 2: DUE FEBRUARY 13, 2019

AS.110.211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN

Question 1. Determine whether the set

$$\left\{ (x,y) \in \mathbb{R}^2 \ \big| \ -1 < x < 1 \right\} \cup \left\{ (x,y) \in \mathbb{R}^2 \ \big| \ x = 2 \right\}$$

is open, closed, or neither.

Question 2. Evaluate the following limits, or show that they fail to exist:

(a)
$$\lim_{(x,y)\to(0,0)} \frac{e^x e^y}{x+y+2}$$
.
(b) $\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 + y^2}$.
(c) $\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x^2 + y^2}}$.

Question 3. Determine whether the functions are continuous on their domain:

(a)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

(b) $g(x,y) = \begin{cases} \frac{x^3 + xy^2 + 2x^2 + 2y^2}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 2 & \text{if } (x,y) = (0,0). \end{cases}$

Question 4. For f(x, y) = 2x - 10y + 3, do the following:

- (a) Show that if $||(x,y) (5,1)|| < \delta$, then $|x-5| < \delta$ and $|y-1| < \delta$.
- (b) Use the previous part to show that if $||(x,y) (5,1)|| < \delta$, then $|f(x,y) 3| < \delta$ 12δ .
- (c) Show that $\lim_{(x,y)\to(5,1)} f(x,y) = 3.$

Question 5. Do the steps below to establish that

$$\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}=0.$$

(a) Show that $|x| \le ||(x,y)||$, and $|y| \le ||(x,y)||$.

- (b) Show that $|x^3 + y^3| \le 2(x^2 + y^2)^{3/2}$. (Hint: Begin with the Triangle Inequality and then use part (a).)
- (c) Show that if $0 < ||(x,y)|| < \delta$, then $\left|\frac{x^3+y^3}{x^2+y^2}\right| < 2\delta$.
- (d) Now prove that $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2} = 0.$

Question 6. Calculate the partial derivatives of the following:

(a) $f(x,y) = \frac{x^3 - y^2}{1 + x^2 + 3y^4}$. (b) $g(x,y) = \ln\left(\frac{x}{y}\right)$. (c) $F(x,y,z) = \sin(x^2y^3z^{-4})$.

Question 7. Show that one can rewrite the expression for the derivative of $f : \mathbb{R} \to \mathbb{R}$ at x = a, namely

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
, to $\lim_{x \to a} \frac{f(x) - (f(a) + f'(a)(x - a))}{x - a} = 0$

This allows us to define the derivative of f at a through the existence of a linear function $h : \mathbb{R} \to \mathbb{R}$, h(x) = f(a) + f'(a)(x-a) which makes the latter limit equation true.