HOMEWORK PROBLEM SET 2: DUE FEBRUARY 13, 2019

AS.110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Question 1. Determine whether the set
{(z,y) eR*| — 1<z <1}U{(z,y) eR* |2z =2}

is open, closed, or neither.

Question 2. Evaluate the following limits, or show that they fail to exist:
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Question 3. Determine whether the functions are continuous on their domain:
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Question 4. For f(z,y) = 2x — 10y + 3, do the following:

(a) Show that if ||(x,y) — (5,1)|| < d, then |z — 5| < 6 and |y — 1] < 9.

(b) Use the previous part to show that if ||(x,y) — (5,1)|| < 4, then |f(z,y) — 3| <
126.

(c) Show that lim )f(x,y) = 3.
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Question 5. Do the steps below to establish that
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m —=0.
(z,9)—+(0,0) 2 + 32

(a) Show that |z| < [|(z,y)l], and |y| < [(z,y)]].
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(b) Show that |23 + 43| < 2(z% + »?)¥2. (Hint: Begin with the Triangle Inequality
and then use part (a).)

(c) Show that if 0 < [|(z,y)|| < &, then |+

2 +y2

< 26.

(d) Now prove that lim,4)—(0,0) z;—JrZ; —0.
Question 6. Calculate the partial derivatives of the following:

3y2

(a) fla.y) = ikl

(b) glay) =n (%),

(c) F(z,y,z) = sin (x?y327%).

Question 7. Show that one can rewrite the expression for the derivative of f : R — R at
r = a, namely

) — i L I @) = () £ £ )~ a)

T—a T —a T—a Tr — a

= 0.

This allows us to define the derivative of f at a through the existence of a linear
function h : R — R, h(x) = f(a)+ f'(a)(x — a) which makes the latter limit equation
true.



