HOMEWORK PROBLEM SET 11: DUE APRIL 24, 2019

AS.110.211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN

Question 1. Do the following:

- (a) Find the flux of $\mathbf{F} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ across the surface \mathcal{S} consisting of the triangular region of the plane 2x 2y + z = 2 that is cut out by the coordinate planes. Use the upward-pointing normal to orient \mathcal{S} .
- (b) Find $\iint_{\mathcal{C}} (x^2 + y^2) dS$, where the surface \mathcal{C} is a cylinder of height h > 0 and radius a > 0 centered on the z-axis. \mathcal{C} has neither a top nor a bottom.
- Question 2. For $S \in \mathbb{R}^3$ the closed surface called a canister; a cylinder $x^2 + y^2 = 9$, along with a flat top at z = 4 and a flat bottom at z = 0, oriented outward, determine the following:
 - (a) $\iint_{S} xyz \, dS$.
 - (b) $\iint_{S} (x \mathbf{i} + y \mathbf{j}) \cdot d\mathbf{S}.$
- Question 3. Find the flux of $\mathbf{F} = x^2 \mathbf{i} + xy \mathbf{j} + xz \mathbf{k}$ across the upper hemisphere $x^2 + y^2 + z^2 = a^2$, for $z \ge 0$. Orient the hemisphere with an upward pointing normal.
- Question 4. Let $S \in \mathbb{R}^3$ be the funnel-shaped surface defined by $x^2 + y^2 = z^2$ for $1 \le z \le 9$, and $x^2 + y^2 = 1$ for 0 < z < 1.
 - (a) Sketch S.
 - (b) Determine outward pointing normal vectors to S.
 - (c) Evaluate $\iint_{\mathcal{S}} \mathbf{F} \cdot d\mathbf{S}$, for $\mathbf{F} = -y \mathbf{i} + x \mathbf{j} + z \mathbf{k}$ with the outward-pointing orientation.

Question 5. Do the following:

- (a) Verify Stokes' Theorem for S given by $x^2 + y^2 + 5z = 1$, $z \ge 0$, oriented upward, and $\mathbf{F} = xz \mathbf{i} + yz \mathbf{j} + (x^2 + y^2) \mathbf{k}$.
- (b) Verify Gauss' Theorem for $\mathbf{F} = x^2 \mathbf{i} + y \mathbf{j} + z \mathbf{k}$, and

$$\mathcal{W} = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + 1 \le z \le 5\}.$$

- **Question 6.** Verify that Stokes' Theorem implies Green's Theorem. (Hint: When assuming Stokes' holds, assume that $\mathbf{F} = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ is both independent of z and has no \mathbf{k} -component.
- Question 7. Let S be the surface defined by $z=4-4x^2-y^2,\ z\geq 0$, oriented with nonnegative **k**-component. For $\mathbf{F}=x^3\,\mathbf{i}+e^{y^2}\,\mathbf{j}+ze^{xy}\,\mathbf{k}$, find $\iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S}$. (Hint: Argue that you can integrate over a different surface.)
- **Question 8.** Use Gauss' Theorem to find the volume of the solid bounded by the paraboloids $z = 9 x^2 y^2$, and $z = 3x^2 + 3y^2 16$.