HOMEWORK PROBLEM SET 10: DUE APRIL 17, 2019

AS.110.211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN

- **Question 1.** Do Exercise 1 in **Lecture 18**: Given \mathcal{D} a closed, bounded, elementary region of Type II in the plane, and $\mathbf{F}(x,y) = M(x,y)\mathbf{i} + N(x,y)\mathbf{j}$ a C^1 -vector field, show that $\oint_{\partial \mathcal{D}} N \, dy = \iint_{\mathcal{D}} \frac{\partial N}{\partial x} \, dA$.
- Question 2. Example 18.9 in Lecture 18 demonstrates that not all irrotational vector fields are conservative. The vector field $\mathbf{F} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j} + 0 \mathbf{k}$, defined on $\mathcal{W} = \mathbb{R}^3 \{(0,0,z) \in \mathbb{R}^3 \mid z \in \mathbb{R}\}$ is one such example. (\mathcal{W} is not simply connected.) To verify, do the following:
 - (a) Show that **F** is irrotational, so show that $\nabla \times \mathbf{F} = \mathbf{0}$.
 - (b) Show that \mathbf{F} does not have path-independent line integrals by finding a simple closed curve \mathbf{c} where $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} \neq 0$. (Hint: Try the unit circle in the *xy*-plane.)

Question 3. Verify Green's Theorem for the following:

- (a) $\mathbf{F} = 2y\mathbf{i} + x\mathbf{j}$, and \mathcal{D} is the semicircular region defined by $y^2 + y^2 \le a^2$, where a > 0, and $y \ge 0$.
- (b) $G = 3xy \mathbf{i} + 2x^2 \mathbf{j}$, and \mathbf{c} is the oriented simple closed curve given by Figure 1.

FIGURE 1. The curve \mathbf{c} here encloses a square capped by a semicircle.

Question 4. Let \mathcal{D} be a region for which Green's Theorem applies, with its boundary $\partial \mathcal{D}$ oriented as in the theorem. Show that the area of \mathcal{D} is given by either of the following:

$$\mathbf{area}(\mathcal{D}) = \oint_{\partial \mathcal{D}} x \, dy = -\oint_{\partial \mathcal{D}} y \, dx.$$

Question 5. For c any simple closed curve in the plane, show that $\oint_{\mathbf{c}} 3x^2y \, dx + x^3 \, dy = 0$.

Question 6. Let f(x,y) be harmonic (this means that f is C^2 , with $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$). Then, for any region \mathcal{D} for which Green's Theorem applies, we have

$$\oint_{\partial \mathcal{D}} \frac{\partial f}{\partial y} dx - \frac{\partial f}{\partial x} dy = 0.$$

Question 7. Do the following, for $\mathbf{F} = 2xy\mathbf{i} + (x^2 + z^2)\mathbf{j} + 2yz\mathbf{k}$:

- (a) Calculate the vector line integral of **F** along $\mathbf{x}(t) = (t^2, t^3, t^5), 0 \le t \le 1$.
- (b) Calculate the vector line integral of \mathbf{F} along the line from (0,0,0) to (1,0,0), and then along the line from (1,0,0) to (1,1,1).
- (c) Does F have path-independent line integrals? Explain fully your assessment.

Question 8. Determine whether the given vector field is conservative. If so, find a scalar potential for **F**:

(a)
$$\mathbf{F} = \frac{xy^2}{(1+x^2)^2}\mathbf{i} + \frac{x^2y}{1+x^2}\mathbf{j}.$$

(b)
$$\mathbf{F} = (4xyz^3 - 2xy)\mathbf{i} + (2x^2z^3 - x^2 + 2yz)\mathbf{j} + (6x^2yz^2 + y^2)\mathbf{k}.$$

Question 9. Find all functions M(x,y) such that the vector field

$$\mathbf{F} = M(x, y) \mathbf{i} + (x \sin y - y \cos x) \mathbf{j}$$

is conservative.

Question 10. Let $S = \mathbf{X}(\mathcal{D})$ for the map $\mathbf{X}(s,t) = (s^2 \cos t, s^2 \sin t, s)$, defined on $\mathcal{D} = [-3, 3] \times [0, 2\pi]$.

- (a) Find a normal vector for S at the point (s,t) = (-1,0).
- (b) Determine the tangent plane to S at the point (1,0,-1).
- (c) Find an equation f(x, y, z) = 0 whose solutions are precisely \mathcal{S} .

 ${\bf Question~11.}$ Find the surface area of the following surfaces:

- (a) The helicoid: $\mathbf{X}(r,\theta) = (r\cos\theta, r\sin\theta, \theta)$, for $\mathcal{D} = [0,1] \times [0,4\pi]$.
- (b) Part of the paraboloid: The set of points in \mathbb{R}^3 satisfying $z=2x^2+2y^2$, for $z\in[2,8]$.

Question 12. Represent the lower hemisphere, including the equatorial circle, defined by the equation $x^2 + y^2 + z^2 = 9$ as a piecewise smooth parameterized surface.