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LECTURE 8: IMPLICIT AND INVERSE FUNCTION THEOREMS.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. Here, give a treatment of both the Implicit Function Theorem (for real-valued
functions), and the Inverse Function Theorem. These are very powerful theorems that expose
some of the hidden structure of real-valued and vector-valued functions of more than one
variable. We will study the ideas in class, and here is a proof of the Implicit Function
Theorem for a function on (a subset of) three space. And here is a Mathematica Notebook
for this class.

Helpful Documents.

• Mathematica: ImplicitFunctionTheoremExample.
• PDF: IFTproof

Figure 8.1. The unit 2-sphere in
R3, defined as S1.

The Implicit Function Theorem.

8.0.1. In three variables. Recall the definition of a c-level set
of a function F : X ⊂ Rn → R:

Sc =

{
x ∈ Rn

∣∣∣∣ f(x) = c

}
.

For this discussion, let F ∈ C1, and n = 3. We are using an
upper case F here for a reason, which should be clear in the
following discussion. Here is an example for motivation:

Example 8.1. Define F : R3 → R by F (x, y, z) = x2 +y2 +z2,
and let a ∈ S1. Geometrically, here, S1 is the unit sphere in
R3, depicted in Figure 8.1. Some questions:

Question 1. Is it possible to view S1 as the graph of a function where we think of
one variable as a dependent variable and all of the others still independent. Thus,
in this case, can we write S1 as the graph of z = f(x, y) (this would be a different
function than F )? The answer here is no! But, specifically, why not?

Question 2. Is it possible to write S1 as z = f(x, y) “locally”, near a ∈ S1? The
answer here is “depends...”. But specifically, depends on what? Where a is located.
Specifically whether the point in question is along the equator or not.

Question 3. So what information about F can be used to determine whether we can
locally think of a level set of a function as the graph of (a different) function, with
one variable a dependent variable and the other independent?
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A central tool for this study will be the gradient of F : ∇F (a) =

 Fx(a)
Fy(a)
Fz(a)

 =

 2x
2y
2z

.

For F (x, y, z) = x2 +y2 +z2, then, what property does ∇F have for points along the equator
that is different from other points on S1? Namely, for points like b along the equator in
Figure 8.2, Fz(b) = 0. Off of the equator, like point a in Figure 8.2, F (a) 6= 0. So for b ∈ S1

along the equator, take any small open set inside S1 containing b (This is the dotted oval
sitting on the surface, where it bends around the sphere a bit). If we try to write these points
in a form z = f(x, y), we would wind up with some values for x and y with two points for z,

following the function z = ±
√

1− x2 − y2. Here, Fz(b) = 0 means that the gradient vector
has no component in the z direction. It means that the gradient vector is “horizontal” (read:
perpendicular to the z-direction). This means that the tangent plane to S1 at the point b
would look “vertical” here (all vector with only a z-component would be inside the tangent
plane).

Figure 8.2. ∇F helps determine
where level sets locally look like
graphs of functions.

Hence the condition that Fz(a) 6= 0 is a sufficient condition
for being able to locally write F (x, y, z) = c near a as z =
f(x, y) for some function f . This works equally well in n-
dimensions:

Theorem 8.2 (Theorem 2.6.5). Let F : X ⊂ Rn → R be C1

and a = (a1, . . . , an−1) ∈ Sc, where
Sc =

{
x ∈ X

∣∣ F (x) = c
}
.

If Fxn(a) 6= 0, then there exists a neighborhood U of
(a1, . . . , an−1) ∈ Rn−1, a neighborhood V of an ∈ R, and a C1-
function f : U ⊂ Rn−1 → V , such that when (x1, . . . , xn−1) ∈
U , and xn ∈ V , then xn = f(x1, . . . , xn).

Figure 8.3. Near a, S1 looks like
the graph of z = f(x, y) =√

1− x2 − y2.

Go back to our example of the 1-level set S1 of the function
F (x, y, z) = x2 + y2 + z2. If we choose a strictly inside the
northern hemisphere of S1, as in Figure 8.3, then for these
points, we can “solve” for z as a function of x and y:

z = f(x, y) =
√

1− x2 − y2.
But to do this on a neighborhood of U(a), we need to make
sure that U includes no points from the equator. So choose a ⊂
S1 from the northern hemisphere. Now since a = (a1, a2, a3)
satisfies a21+a22+a23 = 1, and a3 > 0, it follows that a21+a22 < 1,
so that (a1, a2), in the xy-plane, is inside the unit circle there.
The distance between (a1, a2) and the unit circle in the xy-
plane is 1 − (a21 + a22) > 0, so choose δ = 1

2
(1− (a21 + a22)).

Then the neighborhood U(a1, a2) = Bδ(a1, a2) lies completely inside the unit circle in the
xy-plane (See Figure 8.3). Take V ∈ S1, where V = f(U), and the theorem holds.

Example 8.3. LetG(x, y, z) = 2xy2+xyz−2z2, and a = (2,−3, 3). Can we write z = f(x, y)
near a? In essense, this is a question of when it is possible to “solve” for z in terms of x and
y. In practice, this theorem and idea provides the ability to solve for one variable in terms
for the others even in the case where algebraically, it is extremely difficult or not possible.
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For G, we can answer this question quickly: Since

G(a) = Gz(2,−3, 3) = (xy − 4z)

∣∣∣∣
(2,−3,3)

= (2)(−3)− 4(3) = −18 6= 0,

the answer is yes!. Basically, since the z-component of the gradient is not 0 at a, it will
remain not 0 at all points near a. Thus the gradient vector will not be horizontal near a
and the tangent planes to the level-sets of G containing the nearby points will still not be
vertical.

To continue with this example, at the point b = (0, 4, 0), we have

∇G(b) =

 Gx(b)
Gy(b)
Gz(b)

 =

 2y2 + yz
4xy + xz
xy − 4z

∣∣∣∣∣∣
(0,4,0)

=

 32
0
0

 .
Due to this, we cannot write z as a function of x and y, near b. We also cannot write y as
a function of x and z there. However, we can find a function (at least in theory) so that
x = g(y, z), near b.

We can directly calculate the tangent plane to the level set of G near the points a and a,
again using the gradient, in any case that the gradient has at least one component that is
not 0. Here,

∇G(a) =

 Gx(a)
Gy(a)
Gz(a)

 =

 2y2 + yz
4xy + xz
xy − 4z

 ∣∣∣∣
(2,−3,3)

=

 9
−18
−18

 .
Then the equation of the tangent plane is

∇G(a) · (x− a) = 0

9(x− 2)− 18(y + 3)− 18(z − 3) = 0

z = −1 +
1

2
x− y.

Note that a is actually inside this tangent plane.

For b = (0, 4, 0), we have ∇G(b) =

 32
0
0

, so

∇G(b) · (x− b) = 0 = 32(x− 0) + 0(y − 4) + 0(z − 0) = 32x.

But this is simply the plane defined by the equation x = 0, or the yz-plane in R3. Again,
note that b is inside the yz-plane.

Note: There is a general version of the Implicit Function Theorem for vector-valued func-
tions, but for now, we will move on to a related idea:

8.1. The Inverse Function Theorem. Here is a question: Let y = f(x) = ex. Does
f(x) have an inverse? This question is really an existence question. One could answer it by
actually constructing an inverse function. One can also answer it by appealing to the fact
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that ex is injective, and noting that injective functions do have inverses. Specifically, the
function here is f : R→ R, y = f(x) = ex, but

image(f) = R+ =
{
x ∈ R

∣∣ x > 0
}
.

Hence only if we restrict the codomain of f to R+, can we actually construct the inverse:
For f : R → R+, f(x) = ex, construct g : R+ → R, g(x) = lnx. Then one can show that
(f ◦ g)(x) = x on R+ and (g ◦ f)(x) = x on R.

In practice, at times, one would show that an inverse exists by simply taking y = f(x),
and attempting to “solve for x”. Or one could graph the function and look to see that
it satisfies the “horizontal line test”, a graphical tool for establishing injectivity, since if a
function satisfies the horizontal line test, then its inverse will satisfy the vertical line test,
thus verifying that the inverse is actually a function. Without these tools, sometimes it is
necessary to know if a function has an inverse even if the expression is not necessary. For
example, does y = x2 + 5 cosx − ex have an inverse? Does it have one on [0, 1]? Without
other aids, graph this function to see.

In vector calculus, these questions become much more complicated (try graphing a non-
linear function from three space to three space), even as the ideas behind them are precisely
the same. Suppose f : X ⊂ Rn → Rn, a ∈ X ⊂ Rn open, and f ∈ C1. If detDf(a) 6= 0, then
∃U ⊂ X, and open neighborhood, where (1) f

∣∣
U

is 1-1, (2) f(U) = V is open in Rn, and (3)

a uniquely defined inverse function g : V → U , g ∈ C1, where

(g ◦ f) (x) = x and (f ◦ g) (x) = x.

We say f and g are inverses of each other, and write f−1 = g and g−1 = f .

Notes:

• Given f : X ⊂ Rn → Rn, then f(x) =

 f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 =

 y1
...
yn

 = y is a system

of n (nonlinear) equations, each writing a dependent variable yi as a function of the
n independent variables x1, . . . , xn. Can we solve this system for the x-variables,
writing each of them as a function of the variable y1, . . . , yn? In essence, can we
rewrite the system as

x = g(y),

thereby finding the inverse function, where g = f−1, at least locally to a point a?
The answer to this question is yes, but only if detDf(a) 6= 0.
• If f : Rn → Rn is linear, then f(x) = An×nx = y, for some square matrix A. The

question is: Is it possible to find a new matrix A−1 so that x = A−1y? Again, the
answer is yes, but only if detA 6= 0.

The Inverse Function Theorem is simply the nonlinear (local) version of this!

Example 8.4. Is it possible to solve u = xy, v = x − y for x and y as functions of u and
v near the point a = (1, 1) in the plane? How about near the point b = (−1, 1)? Answer
these questions, and where one can invert the system, do so.

To set up this problem, let f : R2 → R2, where f(x, y) = (xy, x − y). The strategy here
will be to calculate the derivative of f , evaluated at a and b, and see if its determinant is
non-zero. Where it is non-zero, invert the system.
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Here,

Df(x) =

[
y x
1 −1

]
, so Df(a) =

[
1 1
1 −1

]
and Df(b) =

[
1 −1
1 −1

]
.

It is easy to see that detDf(a) = −1 6= 0, while detDf(b) = 0. Hence the system is
invertible near a but not near b.

To invert the system, write v = x− y as x = v + y, and then

u = xy = (v + y)y = vy + y2.

Solving this for y, we get y = −v±
√
v2+4u
2

. But without knowing which sign to choose, this is
not yet a function. We then note here that when (x, y) = (1, 1), then (u, v) = (1, 0). Hence
the plus sign in the y expression is the one that is compatible to this, since when u = 1 and
v = 0, y must equal 1. Hence we get the system

x = v +
−v +

√
v2 + 4u

2
=
v +
√
v2 + 4u

2

y =
−v +

√
v2 + 4u

2
.

Finally, note that at b, x = −1 and y = 1. This makes u = −1 and v = −2. Now, can you
see why x and y cannot be functions of u and v near b?


