\relax \@writefile{lof}{\contentsline {figure}{\numberline {8.1}{\ignorespaces The unit 2-sphere in $\ensuremath {\mathbb R}^3$, defined as $S_1$.\relax }}{1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:Unit2Sphere}{{8.1}{1}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{The Implicit Function Theorem.}}{1}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{8.0.1}{In three variables.}}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {8.2}{\ignorespaces $\nabla F$ helps determine where level sets locally look like graphs of functions.\relax }}{2}} \newlabel{fig:GradFab}{{8.2}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {8.3}{\ignorespaces Near $\mathbf {a}$, $S_1$ looks like the graph of $z = f(x,y) = \sqrt {1-x^2-y^2}$.\relax }}{2}} \newlabel{fig:IFTgraph(f)}{{8.3}{2}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{8.1}{The Inverse Function Theorem.}}{3}} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{17.25pt} \newlabel{tocindent1}{0pt} \newlabel{tocindent2}{34.5pt} \newlabel{tocindent3}{40.80037pt}