\relax \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{The Directional Derivative.}}{1}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{7.0.1}{Vector form of a partial derivative.}}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces A directional derivative in the $x$-direction is the partial.\relax }}{1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:xDirDer}{{7.1}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {7.2}{\ignorespaces A directional derivative in the direction of $\mathbf {v}\in X$.\relax }}{2}} \newlabel{fig:vDirDer}{{7.2}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {7.3}{\ignorespaces Geometrically, the gradient vector is always perpendicular to the level sets of a function.\relax }}{3}} \newlabel{fig:LevSetGrad}{{7.3}{3}} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{17.25pt} \newlabel{tocindent1}{0pt} \newlabel{tocindent2}{0pt} \newlabel{tocindent3}{40.80037pt}