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Synopsis. Here, we define and discuss the Chain Rule in the differential calculus of vector-
valued functions of more than one independent variable. One can use the Calculus I version
to define the multivariable calculus version, which works in the same fashion. However, care
must be taken for two reasons: (1) the derivatives of functions here are not the same kinds
of functions as the original functions, and (2) composition is tricky when the domains and
codomains can be of different sizes. We discuss this at length here.

The Chain Rule.

6.0.1. The Chain Rule in single variable calculus. Recall from Calculus I: For f, g : R→ R,
where f, g ∈ C1,

d

dx
(f ◦ g) (x) = f ′ (g(x)) · g′(x).

In essence, the derivative of a composition of functions is the product of the derivatives...,
(but with a definite twist! - The derivative of the “outside” function is evaluated at the image
of x under the “inside” function. This leads to the immediate question of just how the domain
of a composition depends on the domains of the constituent pieces in the composition. To
see this, let f : J ⊂ R → R and g : I ⊂ R → R be defined, but only on the subsets of the
real line. Then

domain (f ◦ g) =
{
x ∈ I

∣∣ g(x) ∈ J
}

= g−1(J) ⊂ I.

Be careful here, though, as g−1(J) is the set inverse of g, which makes sense even if g does
not have an inverse as a function.

Example 6.1. Let f(x) =
√
x and g(x) = 2− x2. Of course, without specifying a domain,

the domain of each of these is automatically the largest set on which the function makes
sense. In these cases, adn using the notation of the above discussion, f : J → R, with
J = [0,∞), and g : I → R, where I = R. So what is the domain of (f ◦ g)? One way to see
this is to simply construct the function:

(f ◦ g) (x) = f(g(x)) = f(2− x2) =
√

2− x2.

With this, the domain can only include points that satisfy 2 − x2 ≥ 0, so x ∈
[
−
√

2,
√

2
]
.

And thinking of this in terms of sets alone, we can calculate

domain (f ◦ g) (x) = g−1(J) = g−1 ([0,∞)) =
{
x ∈ I

∣∣ g(x) ∈ J
}

=
{
x ∈ R

∣∣ 2− x2 ∈ [0,∞)
}

=
[
−
√

2,
√

2
]
.

But here is an issue: What is the domain of (g ◦ f)? Calculating the function, we get

(g ◦ f) (x) = g(f(x)) = g(
√
x) = 2−

(√
x
)2

= 2− x.
1
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Without paying attention, one may wrongly assume that the domain is all of R, since
(g ◦ f) (x) = 2 − x is a degree-1 polynomial. However, the “inside” function has as its
domain only the non-negative reals [0,∞). Hence so does (g ◦ f)!

To use the set notation, note that J and I are switched here, and

domain (g ◦ f) (x) = f−1(I) = f−1 (R) =
{
x ∈ J

∣∣ f(x) ∈ I
}

=
{
x ∈ [0,∞)

∣∣ √x ∈ R
}

= [0,∞) .

Note: In Leibniz notation, let z = g(y), and y = f(x), so that z = (g ◦ f) (x) = g(f(x)).
Then z is considered a function of x, and the Chain Rule looks like

dz

dx
=

dz

dy
· dy
dx

.

One can directly and easily again see this notion that the derivative of a product of functions
is, in fact, the product of the derivatives. However, when evaluated the derivative of a
composition at a point, the “twist” in the product again becomes clear, and

dz

dx

∣∣∣∣
x=a

=
dz

dy

∣∣∣∣
y=g(a)

· dy
dx

∣∣∣∣
x=a

.

Example 6.2. Back to the previous example and translating into Leibniz notation, we have
y = f(x) =

√
x, and z = g(y) = 2− y2. Then

z = (g ◦ f) (x) = g(f(x)) = g(
√
x) = 2−

(√
x
)2

= 2− x, on [0,∞).

Its derivative, defined on (0,∞), should be dz
dx

= −1 everywhere. Here

dz

dx
=

dz

dy

∣∣∣∣
y=f(x)

· dy
dx

= −2y

∣∣∣∣
y=
√
x

·
(

1

2
√
x

)
=
(
−2
√
x
)( 1

2
√
x

)
= −1.

6.1. The Chain Rule in multivariable calculus. In vector calculus, the Chain Rule still
holds:

Theorem (Theorem 2.5.3 in text). Suppose X ⊂ Rn and Y ⊂ Rm are open, and f : Y → Rp

and g : X → Rm are defined so that g(X) ⊂ Y . Then, if g is differentiable at x0 ∈ X, and
f is differentiable at y0 = g(x0) ∈ Y , then (f ◦ g) is differentiable at x0, with

D (f ◦ g) (x0) = Df (g(x0))Dg(x0).

Example 6.3. Let f : R2 → R3, f(x, y) = (x2y, 1, exy), and g : R3 → R, with g(x, y, z) =
xyz. We calculate D (g ◦ f) (x, y) in two ways:

(1) Composition before derivative. Here, (g ◦ f) : R2 → R, and

(g ◦ f) (x, y) = g (f(x, y)) = g(x2, 1, exy) = x2yexy.

Then

D (g ◦ f) (x, y) =
[

∂(g◦f)
∂x

(x, y) ∂(g◦f)
∂y

(x, y)
]

=
[

2xyexy + x2y2exy x2exy + x3yexy
]
.
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(2) Via the Chain Rule. The derivatives of the constituent functions are

Df(x, y) =

 2xy x2

0 0
yexy xexy

 and Dg(x, y, z) =
[
yz xz xy

]
.

So Dg (f(x, y)) = Dg(x2y, 1, exy) =
[
exy x2yexy x2y

]
. With the Chain Rule, we

get

D (g ◦ f) (x, y) = Dg (f(x, y)) ·Df(x, y)

=
[
exy x2yexy x2y

]  2xy x2

0 0
yexy xexy


=
[

2xyexy + x2y2exy x2exy + x3yexy
]

as before.

Now you may be thinking that the variables can be confusing here, with x and y included
in the two domains, R2 for f , and R3 for g. In a very important way, they are not the same,
and should not be considered so! One way to correct this error of notation, and also to make
things much more clear, is to switch the names of the variables, using different variables for
each domain. Indeed, Let us denote the function f as before, but noticing explicitly that it
has three component functions

f(x, y) = (f1(x, y), f2(x, y), f3(x, y)) = (x2y, 1, exy),

and now define g(u, v, w) = uvw, the same function as before, but with new variable names.
Then the two derivatives are, as before, but look like

Dg(u, v, w) =
[

∂g
∂u

∂g
∂v

∂g
∂w

]
, and Df(x, y) =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

∂f3
∂x

∂f3
∂y

 .

Now, within the composition, we know that

u = f1(x, y) = x2y

v = f2(x, y) = 1

w = f3(x, y) = exy.

Hence the derivative of the composition, which is

Dg (f(x, y)) ·Df(x, y) =
[

∂(g◦f)
∂x

(x, y) ∂(g◦f)
∂y

(x, y)
]
,
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where by direct matrix multiplication

∂ (g ◦ f)
∂x

(x, y) =
∂g

∂u
· ∂f1
∂x

+
∂g

∂v
· ∂f2
∂x

+
∂g

∂w
· ∂f3
∂x

=
∂g

∂u
· ∂u
∂x

+
∂g

∂v
· ∂v
∂x

+
∂g

∂w
· ∂w
∂x

= vw

∣∣∣∣v = 1
w = exy

· (2xy) + uw

∣∣∣∣
u = x2y
w = exy

· (0) + uv

∣∣∣∣
u = x2y
v = 1

· (yexy)

= 2xyexy + x2y2exy.

Here, the products of the partials in these derivative of compositions are always understood
to have the “twist”, as mentioned earlier, so that

∂g

∂u
· ∂u
∂x

=
∂g

∂u

∣∣∣∣
u=f(x)

· ∂u
∂x

∣∣∣∣
x

, where u =

 u
v
w

 , and x =

[
x
y

]
.

Here is one more example:

Example 6.4. Let c : R → R3 be a C1-curve in three-space, and f : R3 → R be a C1-
scalar-valued function on R3. Then the composition g = f ◦ c : R → R is just f evaluated
along the curve, and looks like a function from R to R. One often writes

g = f
∣∣
c
.

In this sense, g′(t) = df
dt

(t) along c. We calculate this quantity via the Chain Rule:

Here c(t) =

 x(t)
y(t)
z(t)

 is C1, and

dc

dt
(t) = c′(t) =

 x′(t)
y′(t)
z′(t)

 =


dx
dt

dy
dt

dz
dt

 ,

while Df(x, y, z) =
[

∂f
∂x

∂f
∂y

∂f
∂z

]
.

Hence

g′(t) = D (f ◦ c) (t) =
df
∣∣
c

dt
= Df (c(t)) ·Dc(t)

=
[

∂f
∂x

∂f
∂y

∂f
∂z

]
dx
dt

dy
dt

dz
dt


=

∂f

∂x
· dx
dt

+
∂f

∂y
· dy
dt

+
∂f

∂z
· dz
dt

=
∂f

∂x

∣∣∣∣
c(t)

· x′(t) +
∂f

∂y

∣∣∣∣
c(t)

· y′(t) +
∂f

∂z

∣∣∣∣
c(t)

· z′(t).


