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Synopsis. Today, we finish our discussion on limits and pass through the concept of conti-
nuity. Really, there is little to add to the mix since the only new idea is that the limit of a
function not only exists but equals the function value at a point of continuity. But there are
a few rules and extensions that we talk about here. Then on to differentiability, where things
start to diverge from single variable calculus. Here we define what differentiability is for a
vector-valued function on more than one variable, both from an analytical as well as geomet-
ric perspective, and start the discussion on its properties. The accompanying Mathematica
notebook gives some geometric meaning to the derivative of a real-valued function on two
variables and how the tangent plane to its graph in three space is defined and constructed.

Helpful Documents. Mathematica: PartialDerivatives.

The Derivative. A partial derivative of a real-valued function f : X ⊂ Rn → R taken
at a point is really a single variable calculus concept, where one studies how a function is
changing in a particular direction:

Definition 4.1. Let a ∈ X be an interior point, and f : X ⊂ Rn → R a real-valued function
on X. Then the partial derivative of f , with respect to the coordinate xi at the point x = a
is the real number

∂f

∂xi

(a) = lim
h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a)

h
.

The partial derivative of f with respect to xi is the real-valued function

∂f

∂xi

(x) = lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x)

h
.

.

Notes:

• It is simply the ordinary (read: Calculus I) derivative of f with respect to xi, found
by fixing all coordinates xj, for j 6= i, and varying only xi.
• Alternate notation: Dxi

f(x), or fxi
(x).

• Geometrically, given f(x, y) and x =

[
x
y

]
, the y-slice through graph(f) at y = b

is a 1-dimensional curve inside the xz-plane at y = b. Then ∂f
∂x

(a, b) is the slope of
this curve inside the slice, evaluated at (a, b):

∂f

∂x
(a, b) = lim

h→0

f(a + h, b)− f(a, b)

h
.

In this case, a varies, but b is held constant. In this case,, we say that the partial
derivative of f with respect to x, evaluated at (x, y) = (a, b) is the slope of the line
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tangent to that portion of the graph(f) that intersects the xz-plane at y = b. item
In turn,

∂f

∂y
(a, b) = lim

h→0

f(a, b + h)− f(a, b)

h

is the slope of the line tangent to that portion of the graph(f) that intersects the
xy-plane at x = a. These partial derivatives, as regular single variable calculus
derivatives in a single direction, satisfy all of the rules that one developed in Calculus
I.

Now, for a point (a, b) in the domain where these two quantities exist, the two tangent lines
sitting in R3, cross at the point (a, b, f(a, b)) ∈ R3 and are perpendicular (form a right angle).
They will determine a plane in R3: choose a non-zero vector inside each line, based at the
corssing point. The plane determined by these two crossing lines is then the set of all linear
combinations (in R3) of these two vectors.

Example 4.2. In higher, dimensions, this setup generalizes well: For f : X ⊂ Rn → R,
with

graph(f) =




x1
...
xn

z

 ∈ Rn+1

∣∣∣∣ z = f(x1, . . . , xn)

 ,

fix a point a =

 a1
...
an

 ∈ X. Now allow the ith coordinte to vary. Then the slice formed by

fixing

x1 = a1, . . . , xi−1 = ai−1, xi+1 = ai+1, . . . , xn = an

(note that this set of equations comprise n−1 equations in Rn+1, where the graph of f lives),
forms a two-dimensional space in Rn+1 parameterized by the variable x1 and z, which we
will call the xiz-plane at a. Here, the intersection

graph(f) ∩ {xiz-plane at x = a}

is a 1-dimensional curve. If ∂f
∂xi

(a) exists, then its value represents the slope of the line tangent

to this curve in the xiz-plane at a. As a line in Rn+1, it passes through (a, f(a) ∈ Rn+1.
Now if tangent lines exist for each of the variables xi, for i = 1, . . . , n, they will form an
n-dimensional space inside Rn+1 passing through the point (a, f(a) ∈ Rn+1. This space will
be of vital importance to us.

Back to our two dimensional case, the plane formed by the two tangent lines to the slices
of f(x, y) at the point (a, b) is called the tangent plane to the graph of f at (a, b). So what
is the equation defining this 2-dimensional plane in R3, what is its equation?

• It will consist of one linear equation in the three variables x, y, and z.
• One choice of vector in the tangent line to the curve in the xz-plane corresponding

to y = b will be based at (a, b) and have components

[
1

fx(a, b)

]
. (Why is this?) So,
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as a vector in R3, this vector will have components

 1
0

fx(a, b)

, and be based at the

point (x, y, z) = (a, b, f(a, b)).
• The other vector in the tangent line to the intersection of the yz-plane at x = a with

the graph of f , will have components

 0
1

fy(a, b)

, again based at (a, b, f(a, b)).

• The tangent plane is then the set of all linear combinations of vectors, based at
(a, b, f(a, b0) that have components

c1

 1
0

fx(a, b)

+ c2

 0
1

fy(a, b)

 .

A little cumbersome, but well-defined.

There is a better way to describe the tangent plane: The vector

n =

 1
0

fx(a, b)

×
 0

1
fy(a, b)

 =

 −fx(a, b)
−fy(a, b)

1


is normal to both of the tangent vectors. Thus it is also normal to every linear combination
of these tangent vectors. In fact, then, one can define the tangent space defined by these
two tangent vectors as the space of vectors normal to n, so with the dot product, we have x− a

y − b
z − f(a, b)


︸ ︷︷ ︸

generic vector at (a,b,f(a,b))

•

 −fx(a, b)
−fy(a, b)

1


︸ ︷︷ ︸
normal vector to all

= 0.

This works out to

−fx(a, b)(x− a)− fy(a, b)(y − b) + z − f(a, b) = 0,

or, with a bit of rearranging of terms

z = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b).

Now, call the right hand side of this last equation h(x, y), so that

z = h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

is a linear function h : R2 → R. It’s graph z = h(x, y) is then a linear equation representing a
plane in R3 that passes through (a, b, f(a, b)), and has precisely the partials hx(a, b) = fx(a, b)
and hy(a, b) = fy(a, b), when it is defined, that is. When it is defined, the graph of this
function becomes the best linear approximation to graph(f) at the point (a, b) ∈ X. So
what does “best” actually mean in this context? It means:

(1) z = h(x, y) is a linear function in the variables x, y, and z, and
(2) at (a, b), all of the following are true:

• The functions are equal, so h(a, b) = f(a, b);
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• the derivatives are equal, so ∂h
∂x

(a, b) = hx(a, b) = fx(a, b) = ∂f
∂x

(a, b), and
∂h
∂y

(a, b) = hy(a, b) = fy(a, b) = ∂f
∂y

(a, b).

Example 4.3. Let f(x, y) = x2 + y2, and choose (a, b) = (1, 2). We can go directly to
Definition 4.1 here and compute

∂f

∂x
(1, 2) = lim

h→0

f(1 + h, 2)− f(1, 2)

h

= lim
h→0

((1 + h)2 + 22)− (12 + 22)

h

= lim
h→0

(1 + 2h + h2 + 4− (1 + 4))

h
= lim

h→0

2h + h2

h
= lim

h→0
2 + h = 2.

Similarly, ∂f
∂y

(1, 2) = 4. Then

z = h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

= 5 + 2(x− 1) + 4(y − 2)

is the equation in x, y, and z, whose solutions comprise the tangent plane to the graph of
f(x, y) in R3. Of course, as mentioned in the first note after Definition 4.1, one can think
directly that partial derivative are really single variable derivatives, as far as calculation
goes. What this means is that we can sidestep the definition, and simply write

∂f

∂x
(1, 2) =

∂f

∂x
(x, y)

∣∣∣∣
(x,y)=(1,2)

=
∂

∂x

[
x2 + y2

] ∣∣∣∣
(x,y)=(1,2)

= (2x + 0)

∣∣∣∣
(x,y)=(1,2)

= 2.

There is a major caveat that we need to mention here: Just because the individual limits
∂f
∂x

(a, b) and ∂f
∂y

(a, b) may both exist, it does not automatically mean that f is differentiable

at (a, b)! Example 4, on page 121 of the text is a great example of why the existence of these
limits is not enough. I call this the rooftop function:

Example 4.4. Let g(x, y) =
∣∣∣|x| − |y|∣∣∣− |x| − |y|. Here,

∂g

∂x
(0, 0) = lim

h→0

g(0 + h, 0)− g(0, 0)

h
= lim

h→0

∣∣∣|h| − |0|∣∣∣− |h| − |0| − 0

h
= 0.

Similarly, ∂g
∂y

(0, 0) = 0. However, step off of the axes, and one can see the sharp edges of the

graph. In fact, if one sliced the graph of g along the x = y line (diagonally, with respect to
the two axes), then the limits would not exist! Indeed, slice graph(g) along the line y = x.
Call the plane forming this slice

Px =
{

(x, y, z) ∈ R3
∣∣ y = x

}
.

Then the piece of the graph of g inside Px can be written as

z = g(x, x) = g(x) =

∣∣∣∣|x| − |x|∣∣∣∣− |x| − |x| = −2|x|.

But, as already known from Calculus I, This function has no derivative at x = 0, since

g′(0) = lim
x→0

g(x)− g(0)

x− 0
=
−2|x|
x

.
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This limit does not exist, and one can see the corner at the origin of the graph of g(x). Note:
This idea of slicing a graph of a function along a line that is different from an axis in the
domain will be an important tool in studying the properties of functions of more than one
variable. This is the idea of a directional derivative, which we will explore soon.

The existence of a proper tangent space to the graph of a function relies on its ability
to well-approximate the function from ALL directions. The best way to construct this is,
again, to use the limit!

Let f : R→ R, and notice how we can rewrite

f ′(a) = lim
x→a

f(x)− f(a)

x− a
, as lim

x→a

f(x)− (f(a) + f ′(a)(x− a))

x− a
= 0

when (and only when) the limit actually exists.

Exercise 1. Show that this is true.

But this means that, for h(x) = f(a) + f ′(a)(x − a), we can say that f is differentiable
at x = a precisely when the tangent line y = h(x) to y = f(x) at x = a exists, so precisely
when

lim
x→a

f(x)− h(x)

x− a
.

This is important, and establishes an alternate way to define differentiability for a function;
A function f(x) is differentiable

Example 4.5. In 2-dimensions, this setup generalizes well: For X ⊂ R2 open, with f : X →
R, f is differentiable at (a, b) ∈ X if

• Both ∂f
∂x

(a, b) and ∂f
∂y

(a, b) exist, and

• if h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) satisfies

lim
(x,y)→(a,b)

f(x, y)− h(x, y)

||(x, y)− (a, b)||
= 0.

Note that, again, when h(x, y) exists and satisfies the limit above, then z = h(x, y) is the
tangent plane to graph(f) at (a, b, f(a, b)) ∈ graph(f) ⊂ R3.

More notes:

• An alternate, but equivalent, notion of differentiability: For X ⊂ R2 open, and
f : X → R, f is differentiable at (a, b) if fx(x, y) and fy(x, y) are continuous in a
neighborhood of (a, b) in X.
• Like in Calculus I, differentiability always implies continuity.
• Also true in n-dimensions: Given X ⊂ Rn open, and f : X → R, f is differentiable

at a ∈ X if
– Each of ∂f

∂xi
(a) exist for i = 1, . . . , n, and

– if

h(x) = f(a) +
n∑

i=1

∂f

∂xi

(a)(xi − ai) satisfies lim
x→a

f(x)− h(x)

||x− a||
= 0.

There is an easier way to write this:
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Definition 4.6. For f : X ⊂ Rn → R differentiable at a ∈ X, the derivative of f at a is the
1× n matrix

Df(a) =
[
fx1(a) fx2(a) . . . fxn(a)

]
.

And the derivative function is the 1× n matrix of functions

Df(x) =
[
fx1(x) fx2(x) . . . fxn(x)

]
.

Knowing this, the tangent linear function, using the above notation and definition, can be
written

h(x) = f(a) +
n∑

i=1

fxi
(a)(xi − ai)

= f(a) +
[
fx1(a) . . . fxn(a)

] 
x1 − a1
x2 − a2

...
xn − an


= f(a) + Df(a) (x− a)

where Df(a) is a n × 1 (row) matrix, and (x− a) is an 1 × n matrix (an n-vector). The
result is a number, as it should. Hence the limit, in the definition becomes

lim
x→a

f(x)− f(a)

||x− a||
= lim

x→a

f(x)− (f(a)−Df(a)(x− a))

||x− a||
= lim

x→a

f(x)− h(x)

||x− a||
.

Now what about f : X ⊂ Rn → Rm? Here, for x ∈ X, we have f(x) −

 f1(x)
...

fn(x)

. with

n input variables and m output variables. If the derivative is to exist, then each component
real-valued function fi : X → R must have a derivative (including all of the partials). We
have

Df(a) =

 Df1(a)
...

Dfn(a)

 ,

where each element in this matrix is, itself, a 1× n matrix. Hence

Df(a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
. . .

...
∂fn
∂x1

(a) ∂fn
∂x2

(a) · · · ∂fn
∂xn

(a)

 ,

an m× n matrix with ∂fi
∂xj

(a) as the ijth entry.

So our most general definition is:

Definition 4.7. Let f : X ⊂ Rn → Rm be a vector-valued function on an open X, and let
a ∈ X. f is differentiable at x = a if

(1) ∂fi
∂xj

(a) all exist, for i = 1, . . . , n and j = 1, . . . , n, and



LECTURE 4: THE DERIVATIVE. 7

(2) the linear map h(x) = f(a) + Df(a)(x− a) satisfies

lim
x→a

||f(x)− h(x)||
||x− a||

.

Some final notes:

• In Definition 4.7, the term ||f(x)− h(x)|| measures the distance between f(x) and
h(x) near a, as vector-valued functions.
• Df(a), as a matrix of numbers, represents a linear transformation from Rn to Rm.

It’s entries vary as a varies, but it represents the best linear map approximating f(x)
near x = a.
• Df(a)(x − a) ∈ Rm is an m-vector for each value of x and represents a catalog of

ways that moving around near a affects functions values in the codomain.
• h(x) = f(a) +Df(a)(x− a) defines an affine map h : Rn → Rm (a linear map with a

translation). Recall that for m = 1, z = h(x) has a graph in Rn+1 which is tangent
to graph(f) at the point (a, f(a)). It is the same for m > 1, once one understands
the nature of a graph with more than one output, but geometrically, it is far less easy
to “see”.


