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Synopsis. Today, we define and investigate the notion of a limit in more than one dimension.
This is much more subtle than in the Calculus I case, and much harder to fully investigate
using the definition alone. Fortunately, all of the “nice” functions from Calculus I are still
“nice” in their multivariable generalization. Also, all of the properties of limits developed in
single variable calculus are still valid. We will not go deep in this section, but just survey some
ideas which we will explore in more detail in the context of more advanced material. The
accompanying Mathematica document details some of the more basic pathological functions,
where limits do not exist even as intuition indicates they should.

Helpful Documents.

• Mathematica: PlottingSurfaces, and
• PDF: ProductRule.

Limits. Recall from Calculus I the definition of a limit of a function at a point:

Definition 3.1. Let I ⊂ R be open and f : I → R a real-valued function on I. Then f has
a limit L at x = c ∈ I, denoted

lim
x→c

f(x) = L,

if for every ε > 0, there is a δ > 0 such that if 0 < |x− c| < δ, then |f(x)− L| < ε.

Figure 3.1. On the left, f(x) has the limit L at x = c. On the right, x can only approach c in R
form two directions.

Some notes:

• Defining a limit at c gives us a notion of what happens to the function near c. This
is the essence of what calculus is really all about!
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• Limits are not concerned at all with what happens at c.
• If, anytime one can define a small (ε-)interval around L, one can find a small (δ-

)interval of inputs (around c, but not necessarily at c) all of whose function values
stay in the function-value interval (see the left side of Figure 3.1), then near c, all
function values stay near L, and the limit will exist.
• Of course, limits can exist even when function values at c are different or nonexistent.

In Figure ??, the limit is the same at x = c for all three graphs.
• In R, the idea of x approaching c involves only 2 possible directions, as shown on the

right of Figure 3.1. These correspond to the one-sided limits

lim
x→c−

f(x), and lim
x→c+

f(x).

And only when these two “side” limits both exist and are equal, does the actual limit
exist.

Figure 3.2. In all three cases here, lim
x→c

f(x) = L.

Figure 3.3. What possible choice for L could
work as a limit for f(x) at x = c?

In Figure 3.3, at right, lim
x→c−

f(x) 6= lim
x→c+

f(x). Hence

limx→c f(x) does not exist. To see this, make a choice
for what the limit L could possibly be. Then choose
an ε > 0 which is small enough to not include both
ends of f(x) near x = c. Then there will always be
points x arbitrarily close to c where f(x) 6∈ (L−ε, L+
ε).

In the case of a vector-valued function of more than
one variable, f : X ∈ Rn → Rm with x ∈ Rn, and
f(x) ∈ Rm, we seek to construct a proper definition
for a limit in this new case:

Definition 3.2. f has a limit L at x = c, denoted

lim
x→c

f(x) = L

if, for every ε > 0, there is a δ > 0 such that if
0 < ||x− c|| < δ, then ||f(x)− L|| < ε.

Here, ||·|| is the Euclidean norm in real space, de-
fined by

||x− y|| =

√√√√ n∑
i=1

(xi − yi)2.
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Notice all of the similarities, and one big difference: The number of ways to approach c in
the domain makes things a lot more complicated! See Figure 3.4

Figure 3.4. Approaching a domain point c in
two dimensions.

To understand this, we need to introduce some
topology: The Euclidean metric on Rn allows for a
nice definition of an “open” set, much like an open
interval in R.

3.1. Topology in Rn.

Definition 3.3. An open ball of radius ε > 0, cen-
tered at c ∈ Rn is

Bε(c) =
{
x ∈ Rn

∣∣ ||x− c|| < ε
}
.

Some notes:

• In R3, this is the usual ball you played with as
a kid (see Figure 3.5), but without the skin!
• In R2, it is the disk of radius ε without the

circle edge. And in R? How about R17?
• One can think of this ball as the set of all

vectors of length less than ε based at c (and not at 0.

Definition 3.4. A closed ball of radius ε > 0, centered at c ∈ Rn is

Bε(c) =
{
x ∈ Rn

∣∣ ||x− c|| ≤ ε
}
.

Figure 3.5. An r-ball about c ∈ R, c ∈ R2 and c ∈ R3.

Here, the “skin” of the ball (technically, its boundary, is the set
{
x ∈ Rn

∣∣ ||x− c|| = ε
}

.
What does this skin look like in R5, for example? In R? Does this thing have a name? It
winds up being the boundary of both Bε(c) and Bε(c).

Definition 3.5. A set X ∈ Rn is called open if ∀x ∈ X, ∃ε > 0 such that Bε(x) ⊂ X.

Definition 3.6. A point x ∈ Rn is a boundary point of X ⊂ Rn if ∀ε > 0, Bε(x) contains
points in X and points not in X. See Figure 3.6.

Definition 3.7. A set X ∈ Rn is called closed if it contains all of its boundary points.

Example 3.8. Given ε > 0, the set

D =
{
x ∈ R3

∣∣ ||x|| < ε and z ≥ 0
}

is neither open nor closed in R3. It contains some but not all of its boundary points.
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Definition 3.9. Given X ∈ Rn, A point x ∈ X is an interior point of X if ∃ε > 0 such that
Bε(x) ⊂ X.

Figure 3.6. Any neighborhood of
a boundary point x ∈ Rn of X will
contain points inside X and points
outside X.

We note here that, given X ⊂ Rn and an interior point
x ∈ X, we call X a neighborhood of x. A neighborhood X is
open when, of course X is open in R3. We will often refer to
open neighborhoods of a point x without regard to which one
we choose.

Here is a better way to “see” a limit without a graph? Sep-
arate the domain and codomain spaces. Given a function
f : X ⊂ Rn → Rm, f has a limit L at x = c if, given any
ε-ball Bε(L), one can find a δ-ball Bδ(c) so the image f (Bδ(c))
lies entirely inside Bε(L) (except possibly at c).

In practice,

(1) Limits are hard to calculate using the definition, as pathological functions create a
diverse array of issues.

(2) Limits follow all of the typical rules found in Calculus I (See page 106.
(3) Most functions in vector calculus are “nice”: They behave well on their full domain:

• vector-valued functions are scalar-valued on each component.
• Scalar-valued functions involving trig, exponential, logarithmic, rational and

polynomial functions are nice even if their arguments involve many variables.

Example 3.10. The function f : R2 → R, f(x, y) = cos(x + y) will still have
limits everywhere for the same reasons the cosine function did in single variable
calculus.

3.2. Techniques for studying limits.

3.2.1. Directional approach. One technique to study whether a limit exists or not is to reduce
the approach of x to c to one direction, and use all of the techniques one learns from Calculus
I. While this can often be useful for establishing a limit may not exist (coming in from two
different direction yields to different values), it is dangerous to use to establish a limit (See
accompanying Mathematica files for examples).

Example 3.11. Let f : R2 → R be defined by f(x, y) = xy
x2+y2

. This function is not defined

at the origin in R2. But does the limit exist there? Let’s explore by looking only at certain
directions. To start, suppose we approach the origin (0, 0), along the linen y = 0 in the
plane. Then

lim
(x,y)→(0,0)

f(x, y) = lim
(x,0)→(0,0)

x · 0
x2 + 02

= lim
x→0

0 = 0.

This result will be the same if we approached the origin along the line x − 0 (check this!).
But nowm, let’s approach the origin in R2 along the line y = x. Here

lim
(x,y)→(0,0)

f(x, y) = lim
(x,x)→(0,0)

x · x
x2 + x2

= lim
x→0

x2

2x2
=

1

2
.

If approaching from different directions yields different values for a limit, then can a limit
possibly exist?
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Example 3.12. Let f : R2 → R be defined by g(x, y) = x4y4

(x2+y4)3
. This function is again not

defined only at the origin in R2. Does the limit exist at the origin? Let’s explore by again
looking at certain directions. Suppose we approach the origin (0, 0), along the linen y = cx
in the plane. This should help to determine almost every direction of approach depending
on the value of c ∈ R. (which directions are missed?) Then

lim
(x,y)→(0,0)

g(x, y) = lim
(x,cx)→(0,0)

x4(cx)4

(x2 + (cx)4)3
= lim

x→0

c4x8

(x6 + 3c4x8 + 3c8x10 + c12x12)

= lim
x→0

c4x2

(1 + 3c4x2 + 3c8x4 + c12x6)
= 0.

So it would seem here that the limit odes actually exist and is equal to 0 in this case.
However, let’s approach the origin along the parabola x = y2. Then we have

lim
(x,y)→(0,0)

g(x, y) = lim
(y2,y)→(0,0)

(y2)
4
y4

((y2)2 + y4)3
= lim

y→0

y12

8y12
=

1

8
.

It turns out that approaching from all directions is more complicated than simply coming in
linearly from each direction.

3.2.2. Polar coordinates. Switch to polar coordinates and use the fact that Bε(x) = Bρ(x)
where ρ is the “distance” variable in the spherical coordinate system on Rn.

Example 3.13. Back to f : R2 → R, f(x, y) = xy
x2+y2

, we convert the coordinate system in

the plane to polar coordinates through the equations x = ρ cos θ, and y = ρ sin θ. Then

f(x, y) = f(ρ cos θ, ρ sin θ) =
(ρ cos θ)(ρ sin θ)

(ρ cos θ)2 + (ρ sin θ)2
= cos θ sin θ = f(ρ, θ).

But approaching from different linear directions to the origin means approaching along lines
of fixed θ. As f will take different values for different fixed values of θ, the limit at the origin
does not exist.

3.3. Continuity. Continuity of functions in vector calculus is pretty much the same as for
Calculus I, with a bit of extra structure:

Definition 3.14. A function f : X ⊂ Rn → Rm is said to be continuous at a if either a is
an isolated point of X or if

lim
x→a

f(x) = f(a).

And we say that f is a continuous function on X if it is continuous at a for every a ∈ X.

Some notes:

• In the case of continuity, graphs do not have tears, holes, cliffs, or break in it (this is
not a mathematical description).
• Like in Calculus I, sums and scalar multiples of continuous functions are continuous.
• Also, products of continuous functions are continuous, and also quotients where they

make sense.
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• Compositions of continuous functions are also continuous where they make sense. In
this case, we have, if f : X ⊂ Rn → Rm and g : Y ⊂ Rm → Rp are continuous, and
f(X) ⊂ Y , the

(g ◦ f) : X ⊂ Rn → Rp

is continuous.
• the vector-valued function f : X ⊂ Rn → Rm is continuous at a iff each component

function fi : X ⊂ Rn → R, i = 1, 2, . . . ,m is continuous at a.


