\relax \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Limits.}}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces On the left, $f(x)$ has the limit $L$ at $x=c$. On the right, $x$ can only approach $c$ in $\ensuremath {\mathbb R}$ form two directions.\relax }}{1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:LimitGraph}{{3.1}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces In all three cases here, $\displaystyle \qopname \relax m{lim}_{x\to c} f(x) = L$.\relax }}{2}} \newlabel{fig:3LinitGraphs}{{3.2}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces What possible choice for $L$ could work as a limit for $f(x)$ at $x=c$?\relax }}{2}} \newlabel{fig:Discontinuous}{{3.3}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Approaching a domain point $c$ in two dimensions.\relax }}{3}} \newlabel{fig:2DLimit}{{3.4}{3}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.1}{Topology in $\ensuremath {\mathbb R}^n$.}}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces An $r$-ball about $c\in \ensuremath {\mathbb R}$, $c\in \ensuremath {\mathbb R}^2$ and $c\in \ensuremath {\mathbb R}^3$.\relax }}{3}} \newlabel{fig:Ball}{{3.5}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Any neighborhood of a boundary point $x\in \ensuremath {\mathbb R}^n$ of $X$ will contain points inside $X$ and points outside $X$.\relax }}{4}} \newlabel{fig:BoundaryPoint}{{3.6}{4}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.2}{Techniques for studying limits.}}{4}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.1}{Directional approach.}}{4}} \@writefile{toc}{\contentsline {subsubsection}{\tocsubsubsection {}{3.2.2}{Polar coordinates.}}{5}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.3}{Continuity.}}{5}} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{17.25pt} \newlabel{tocindent1}{0pt} \newlabel{tocindent2}{34.5pt} \newlabel{tocindent3}{40.80037pt}