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LECTURE 25: DIFFERENTIAL FORMS.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. A continuation of the last three lectures on differential forms and their structure.

25.1. More notation. For ω =
∑
Fi1i2···imdxi1∧· · ·∧ dxim a differentialm-form onM⊂ Rn,

n ≥ m, ˆ
M
ω =

ˆ
· · ·

ˆ
M︸ ︷︷ ︸

n-integrals

∑
Fi1i2···imdxi1 ∧ · · · ∧ dxim ,

where M is an m-dimensional region in Rn. Note that the order of the form and the
dimension of the region integrated over will agree.

Definition 25.1. Let f : D ⊂ Rn → R be a C1-function. Then the exterior derivative of f ,
denoted df , is the 1-form

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn = Df(x) dx = ∇f • dx.

For ω =
∑
Fi1i2···imdxi1 ∧ · · · ∧ dxim a differential m-form, the differential (m+ 1)-form

dω =
∑

d(Fi1i2···im) ∧ dxi1 ∧ · · · ∧ dxim

is called the exterior derivative of ω.

Some notes:

• We call a C1-function f : D ⊂ Rn → R a (differential) 0-form. Thus the exterior
derivative of a function is simply its differential, a 1-form. Thus theexterior derivative
of any differential m-form is always an (m+ 1)-form.
• For each set of indices, the term d(Fi1i2···im) is the standard differential of a function,

and is a 1-form. Upon writing it out, one must then address any and all simplifications
and cancellations, which can be many.

Example 25.1. Let ω = x2y dx− x dy be a C∞ 1-form on R2. Then

dω = d(x2y) ∧ dx− d(x) ∧ dy

= (2xy dx+ x2 dy) ∧ dx− (1 dx− 0 dy) ∧ dy

= 2xy dx ∧ dx+ x2 dy ∧ dx− dx ∧ dy

= −(1 + x2) dx ∧ dy.

So what is d(dω) = d2ω? (Hint: Is it possible to have a 3-form on the plane?) Here

d(dω) = d(−(1 + x2)) dx ∧ dy = −2x dx ∧ dx ∧ dy = 0. (Why?)
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Example 25.2. Let f : R3 → R be defined as f(x, y, z) = x2ye2z. Calculate df and
d(df) = d2f .

First, we have df = 2xye2z dx+ x2e2z dy + 2x2ye2z dz. Then

d(df) = d(2xye2z) ∧ dx+ d(x2e2z) ∧ dy + d(2x2ye2z) ∧ dz

= 2ye2z dx ∧ dx+ 2xe2z dy ∧ dx+ 4xye2z dz ∧ dx

+ 2xe2z dx ∧ dy + 0 dy ∧ dy + 2x2e2z dz ∧ dy

+ 4xye2z dx ∧ dz + 2x2e2z dy ∧ dz + 4x2ye2z dz ∧ dz

= 0

due to skew-symmetry and term-by-term cancelations.

But this is a general feature of exterior differentiation, and has broad implications. We
say that the exterior derivative is nilpotent; it has a positive power, in this case its square,
that is 0:

Proposition 25.2. For ω a differential k-form, d(dω) = d2ω = 0.

We will not prove this here, but in coordinates, the proof relies on the fact that mixed
partials are equal for a sufficiently differentiable function.

Exercise 1. ω = F (x, y, z) dx+G(x, y, z) dy +H(x, y, z) dz + J(x, y, z) du, a C2 1-form on
R4, show that d2ω = 0.

Here are some other properties of the exterior derivative:

(1) If ω is a k-form, and ν is an `-form, then

(25.1) d(ω ∧ ν) = dω ∧ ν + (−1)kω ∧ dν.

Note that we call this equation the Wedge Product Rule for exterior differentiation.

Exercise 2. Verify, using the Wedge Product Rule, that d2(ω ∧ ν) = 0.

(2) As a special case of the Wedge Product Rule, let k = ` = 0. Then f ∧ g = f · g,
since both f and g are just functions. But then the Wedge Product Rule is simply
the Product Rule for the (regular) derivative of functions you learned in Calculus I.
Indeed,

d (f(x)g(x)) = d(f ∧ g) = df ∧ g + (−1)0f ∧ dg

= f ′(x) dx · g(x) + f(x) · g′(x) dx = (f ′(x) · g(x) + f(x) · g′(x)) dx

= df · g + f · dg.

(3) Now look at forms in R3 only: What one sees is the following:
• There is a one-to-one correspondence between 0-forms and 3-forms:

f(x, y, z)←→ f(x, y, z) dx ∧ dy ∧ dz.

Both have only one term, and the coefficient is just a function on some domain.
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• There is a one-to-one correspondence between 1-forms and 2-forms:

F1 dx+ F2 dy + F3 dz ←→ F1 dx ∧ dy + F2 dz ∧ dx+ F3 dy ∧ dz.

Both have collections of coefficient functions that can be considered as vector
fields on some domain.

(4) Again, only in R3, look at the effects of the exterior derivative on forms in R3:
• d(0-form) takes the coefficient function to its gradient.
• d(1-form) takes the coefficient vector field to its curl vector field.
• d(2-form) takes the coefficient vector field to its divergence function.

Perhaps this is another way to think of the ideas that the curl of the gradient is
always the zero vector field, and the divergence of the curl of a vector field is always
0. In the language of differential forms on R3, they both are just d2ω = 0.

Theorem 25.3 (Generalized Stokes’ Theorem). Let D ⊂ Rk be a compact region with
nonempty interior, and M = X(D) be an oriented, parameterized k-dimensional hypersur-
face in Rn, with k ≤ n and ∂M oriented compatibly. Then, for a (k − 1)-form defined on
an open set in Rn containing M, we have

ˆ
M
dω =

ˆ
∂M

ω.

Note: if M is closed, so that ∂M = ∅, then
´
∂M ω = 0, since integrating over nothing is

nothing.

Now we are in a position to understand the big theorems that we have already studied
individually.

25.2. In the language of forms, The Theorem of Gauss. In Theorem 25.3, let n =
k = 3, and M be a (3-dimensional) compact solid in R3, with

ω = F1(x) dy ∧ dz + F2(x) dz ∧ dx+ F3(x) dx ∧ dy

a differential 2-form on a superset of M in R3. Then, we know that ω is a 2-form on the
closed surface ∂M, and that one interpretation of the integral of ω over ∂M is just the
vector surface integral of the vector field F(x) = F1(x) i +F2(x) j +F3(x) k over the surface,
so

ˆ
∂M

ω =

"
∂M

F • dS, where dS =

 dy ∧ dz
dz ∧ dx
dx ∧ dy

 .
This is the left-hand-side of Gauss’ Theorem.
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For the right-hand-side of Gauss’ Theorem, note that dω will be a 3-form. We have

ˆ
M
dω =

ˆ
M
d (F1(x) dy ∧ dz + F2(x) dz ∧ dx+ F3(x) dx ∧ dy)

=

ˆ
M

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dy ∧ dz

+

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dz ∧ dx

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dx ∧ dy

=

ˆ
M

(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx ∧ dy ∧ dz =

ˆ
M

(div F) dV.

Note that all summands with like terms in their wedge products are 0, and every permutation
needed to make the only surviving term dx∧ dy ∧ dz introduces a minus sign, but there are
an even number of permutations to generate the coefficient sum. The end result is precisely
the right-hand-side of Gauss’ Theorem. So, when the dimensions match, The Generalized
Stokes’ Theorem is Gauss’ theorem.

25.3. In the language of forms, The Theorem of Stokes. In Theorem 25.3, let k = 2
and n = 3. In this case, let D ⊂ R2 be a compact region (with boundary), and S = X(D) ⊂
R3 be an oriented parameterized surface, with the closed curve ∂S oriented compatibly. And
let

ω = F1(x) dx+ F2(x) dy + F (x) dz

be a differential 1-form, defined on a superset of S in R3. Then, we know that ω is a 1-form
on the closed curve ∂S, and that one interpretation of the integral of ω over ∂S is just the
vector line integral (the circulation) of the vector field F(x) = F1(x) i + F2(x) j + F3(x) k
over the curve. So

ˆ
∂S
ω =

˛
∂S

F • ds, where ds =

 dx
dy
dz

 .

This is the left-hand-side of Stokes’ Theorem.
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For the right-hand-side of Stokes’ Theorem, note that dω will be a 2-form. We haveˆ
S
dω =

ˆ
S
d (F1(x) dx+ F2(x) dy + F3(x) dz)

=

ˆ
S

(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dx

+

(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dy

+

(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dz

=

ˆ
M

(
∂F3

∂y
− ∂F2

∂z

)
dy ∧ dz +

(
∂F1

∂z
− ∂F3

∂x

)
dz ∧ dx+

(
∂F2

∂x
− ∂F1

∂z

)
dx ∧ dy

=

ˆ
S
∇× F • dS.

As before, all summands with like terms in their wedge products are 0, and the minus signs
come from the permutations needed to combine the remaining terms, if possible. The end
result is precisely the right-hand-side of Stokes’ Theorem. So, again, when the dimensions
are right, The Generalized Stokes’ Theorem is Stokes’ Theorem.

25.4. In the language of forms, The Theorem of Green. Once more in Theorem 25.3,
let k = n = 2. In this case, let D ⊂ R2 be a compact region (with boundary), and

ω = F1 dx+ F2(x) dy

be a differential 1-form, defined on a superset of D in R2. As in the discussion above involving
Stokes’ Theorem, integrating ω over ∂D is akin to calculating the circulation of F over ∂D,
so ˆ

∂D
ω =

˛
∂D

F • ds =

˛
∂D
F1 dx+ F2 dy =

˛
∂D
M(x, y) dx+N(x, y) dy,

where here we expose the notation used in Green’s Theorem by setting M(x, y) = F1(x, y)
and N(x, y) = F2(x, y). This is the left-hand-side of Green’s Theorem.

For the right-hand-side of Green’s Theorem, note that dω will be a 2-form. We haveˆ
D
dω =

ˆ
D
d (M(x, y) dx+N(x, y) dy) =

ˆ
D
dM ∧ dx+ dN ∧ dy

=

ˆ
D

(
∂M

∂x
dx+

∂M

∂y
dy

)
∧ dx+

(
∂N

∂x
dx+

∂N

∂y
dy

)
∧ dy

=

ˆ
D

∂M

∂x
dx ∧ dx+

∂M

∂y
dy ∧ dx+

∂N

∂x
dx ∧ dy +

∂N

∂y
dy ∧ dy

=

ˆ
D

(
∂N

∂x
− ∂M

∂y

)
dx ∧ dy =

¨
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

Again, the end result is precisely the right-hand-side of Green’s Theorem. And, once again,
when the dimensions are right, The Generalized Stokes’ Theorem is Green’s Theorem.
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25.5. In the language of forms, The Fundamental Theorem of Calculus. One last
time, suppose that in Theorem 25.3, we let k = n = 1. Then, for I = [a, b] ⊂ R a closed,
bounded, (compact) interval in R, with ∂I = {a, b} 2 points, and for ω a 0-form (just a
function) on a superset of I in R. Then, upon orienting I, we automatically orient ∂I.
Going from a to b renders the orientation on ∂I in such a fashion that the upper endpoint
is considered positive and the lower endpoint is considered negative. Using this,ˆ

∂I
ω = adding up all values of f(x) on the set of

points {a, b} , oriented compatibly with I
= f(b)− f(a).

This is just the right-hand-side of the Fundamental Theorem of Calculus.

Note: We have yet had no reason to understand the orientation of a discrete set of points,
or a 0-dimensional set. One does this simply by assigning a plus or minus to each point
separately. By convention, then, the orientation induced on the boundary of an interval
upon orienting the interval assigns a minus sign to the lower point, and a plus to the higher
point. So here, f(a) is considered negative, and f(b) is considered positive.

And for ω a 0-form (a function), We know that dω will be a 1-form (its differential). We
have ˆ

I
dω =

ˆ
I
df =

ˆ b

a

f ′(x) dx.

But putting these together, we getˆ
∂I
ω = f(b)− f(a) =

ˆ b

a

f ′(x) dx︸ ︷︷ ︸
Fund. Thm of Calc.

=

ˆ
I
dω.

Hence, The Generalized Stokes’ Theorem is also just the Fundamental Theorem of Calculus.

Put all of this together and one can easily see that Theorem 25.3, being a dimensionless,
and coordinate-less statement on a relationship between quantities defined on a region and
related quantities restricted to its boundary, is just The Fundamental Theorem of Vector
Calculus.


