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Synopsis. During these last three lectures, I will discuss the structure of differential forms
form the perspective of multi-linear algebra and n-forms on vector spaces. This is basically
not done in the book. This allows me to give a much more foundational treatment of just
what forms are and not just how they work. We learn their structure, how to integrate
them and how to differentiate them, all with an eye toward what works regardless of the
dimension. We show how many of the things we learned in the past, from the product rule
and the Substitution Method in Calculus I to the Change of Variables Theorem and Fubini’s
Theorem in Calculus III, are all just examples of more general structure. We then finish
with the Generalized Stoke’s Theorem, and show how the various big theorems of Gauss,
Stokes and Green are also simply particular examples. We end with the same result of the
Fundamental Theorem of Calculus. In fact, one can easily say that the Generalized Stokes
Theorem is just the Fundamental Theorem of Multivariable Calculus.

23.1. Multilinear algebra. Let V be an n-dimensional vector space on R. Then, relative
to some basis {e1, . . . , en}, (note that we will use the notation of the standard basis in Rn

for convenience, but one can adapt this argument to any basis) any element v ∈ V can be
written as

v = v1e1 + . . . + vnen.

Here, vi is the ith coordinate of v (in the given basis) and, by convention, one often denotes
elements of V by their set of coordinates in the form of a (column) vector

v =


v1
v2
...
vn

 ∈ V, vi ∈ R, for i = 1, . . . , n,

so that we say v ∈ V is a vector in V .

A linear functional, or (linear) 1-form, or covector, is a linear map f : V → R, so satisfies

f(c1v + c1w) = c1f(v) + c1f(w), ∀v,w ∈ V, ∀c1, c2 ∈ R.

The set of all covectors of V is again a n-dimensional vector space V ∗ called the dual space
to V .

Exercise 1. Show that V ∗ is a vector space.

So what is a basis for V ∗? For each i = 1, . . . , n, let ei : V → R be defined so that

e∗i (ej) =

{
1 i = j
0 i 6= j.
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Then, by linearity, e∗i (w) = wi, and the ith basis covector strips off the ith entry of w. One
can readily show that {e∗1, . . . , e∗n} forms a basis for V ∗, and that for any v∗ ∈ V ∗,

v∗ = v1e
∗
1 + . . . + vne

∗
n, vi ∈ R.

Here, v∗ : V → R satisfies

v∗(w) = v1e
∗
1(w) + . . . + vne

∗
n(w)

= v1w1 + . . . + vnwn = v •w

=
[
v1 · · · vn

]  w1
...
wn

 .

Some notes:

• In this way, we often write covectors as row vectors, since written this way, they can
readily “act” on vectors as functionals.
• The dot product dot : Rn×Rn → R is not a linear function. It is linear, however, on

each of its factors separately, and is an example of a mulitlinear function. Indeed, for
v ∈ V , the dot product dot(v, ·) = dotv(·) with one slot filled is a linear functional,
so that one can identify, for v∗ ∈ V ∗,

v∗(w) = dotv(w) = v •w,

as before.
• In R3, each p ∈ R3 has a tangent space TpR3, which is another copy of R3, but with

its origin based at p. It is a different space than the one where p “lives”.

On this last bullet point, for coordinates (x1, . . . , xn) on Rn, define a coordinate system
on TpRn as (dx1, . . . , dxn), where each dxi is the infinitesimal change in the coordinate xi at
p in Rn, but ranges over all real numbers in a particular direction in TpRn. Here, each dxi

is a linear functional on TpRn since, for a choice of v ∈ TpRn, dxi(v) = vi.

Some notes:

• Think of a parameterized hypersurface S ∈ Rn, and it is easier to see how a tangent
vector v ∈ TpS, but v 6∈ S.
• This definition of dxi works because coordinates themselves are actually linear func-

tionals on a space (at least the Cartesian one are). They are projections onto the
factors of the space, which are linear functions. INdeed, let p = (p1, p2) ∈ R2.
Then the functions x : R2 → R and y : R2 → R can be defined as x(p) = p1 and
y(p) = p2. These coordinate functions are linear and hence are not only continuous
but differentiable, and the derivative functions are

Dxp : TpR2 → R, Dxp =
[

1 0
]
, and

Dyp : TpR2 → R, Dyp =
[

0 1
]
,
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where each is a 1× 2-matrix. Then, given v =

[
v1
v2

]
∈ TpR2, we have

Dxp(v) =
[

1 0
] [ v1

v2

]
= v1,

Dxp(v) =
[

1 0
] [ v1

v2

]
= v1.

So we use this to define coordinates directly inside TpR2, (dx, dy), where

dx = Dxp =
[

1 0
]
, dy = Dyp =

[
0 1

]
.

Example 23.1. Let v ∈ R3, so v = v1 i + v2 j + v3 k. Then we can write

x : R3 → R x(v) = v • i = e∗1(v) = v1,
y : R3 → R y(v) = v • j = e∗2(v) = v2,
z : R3 → R z(v) = v • k = e∗3(v) = v3.

Defined, implicitly at least, this way, we often “abuse notation” for convenience and clarity
of concept and simply write

v =

 x
y
z

 ∈ R3,

as one would normally see in a calculus text.

Geometrically, a linear functional on Rn looks like

ω = a1 dx1 + . . . + an dxn = a dx,

where the (row matrix) covector a is called the coefficient vector of the functional, and

dx =

 dx1
...

dxn

 is a basis of covectors (linear functionals) in Rn. However, we could write a

as a column vector. If we did, then, we would be forced to write ω = a • dx. We do see this
at times, and context should make it clear. See Equation 23.1 below.

Example 23.2. Let a =
[

1 2 3
]
,v =

 −4
−5
−6

 ∈ R3. Then

ω = a dx = a1 dx + a2 dy + a3 dz = dx + 2 dy + 3 dz,

and

ω(v) = a1 dx(v) + a2 dy(v) + a3 dz(v)

= a1v1 + a2v2 + a3v3 =
[
a1 a2 a3

]  v1
v2
v3

 =
[

1 2 3
]  −4
−5
−6


= 1(−4) + 2(−5) = 3(−6) = −32.
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Example 23.3. It is also a good idea to keep in mind where different mathematical objects

“live”: Let v =

[
−1
−2

]
∈ TpR2, for p =

[
1
1

]
. Then, while we envision v as a vector in R2

based at p, it is really a vector based at the origin (like vectors should) of TpR2, considered
a different space.

Let c : [a, b] → R2 be a C1-curve. For t0 ∈ (a, b), p = c(t0) ∈ R2, the space TpR2 is not
the same plane as R2. For one, it has different coordinates. We can write the tangent line
`p to the curve at p via the coordinates (dx, dy) of TpR2; This is because `p is defined as
the set of all tangent vectors to c at p, so `p ⊂ TpR2, and not really in the plane where c is
defined. In fact, the line `p is a vector subspace of TpR2: The equation for `p is

dy = (constant) dx.

Can you guess what the constant is?

Example 23.4. Let c : [0, 4]→ R2 be defined by c(t) = (t, t2). In the xy-plane, the equation

for the tangent line to c at p = c(1) =

[
1
1

]
is

(y − 1) = 2(x− 1), or y = 2x− 1.

However, in TpR2, a copy of R2, but with the origin at p and coordinates (dx, dy), the
equation for `p is

dy = 2 dx, or
dy

dx
= 2.

Just for contrast, the equation for `q ∈ TqR2, when q = c(3) =

[
3
9

]
is dy = 6 dx.

Now compare this to the de-parameterized curve: Let x = t, so that y = f(x) = x2. Now
the curve c is the graph of the function f : [0, 4] → R (and parameterized by x). Using dy
as the infinitesimal change in y, its relationship to dx, an infinitesimal change in x, is then
dy = f ′(x) dx = 2x dx. And we are back in Calculus I.

And now, we can generalize:

Definition 23.5. A one form on a smooth region D ⊂ Rn is a choice of a linear one form
on each tangent space to D which varies continuously with p ∈ D.

Some notes:

• This definition sounds a lot like that of a vector field, a choice of a vector in each
tangent space to D which varies continuously with p ∈ D. It is actually quite close!
• Instead of a vector choice in our vector field, a one-form is a choice of a covector, or

linear functional, in each tangent space. In this sense, a 1-form on D is a covector
field on D.

On R, a generic 1-form looks like ω = f(x) dx, for f a C0-function on R. At a point
x0 ∈ R, f(x0) = a, and the linear functional (the covector) at Tx0R, which is a copy of R
but with the origin at x0, is ωx0 = a dx. Then, for v ∈ Tx0R, we have

ωx0(v) = a dx(v).
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On Rn, a generic 1-form looks like

(23.1) ω = f1(x) dx1 + . . . + fn(x) dxn =
n∑

i=1

fi(x) dxi = F • dx,

where F(x) =

 f1(x)
...

fn(x)

, and dx =

 dx1
...

dxn

. Do you recognize this formula? A common

way to construct 1-forms on a domain is to use vector fields as the coefficient functions of
the form. But really, a 1-form is a covector field. We are simply writing the coefficients
a column vectors instead of their more properly written row vectors. But this is what we
alluded to in the discussion just after Example 23.1

Some final notes:

• This dx is precisely the ds in the definition of the vector line integral
´
c
F • ds. In a

sense, integrating a vector field along a curve IS just the adding up of the values of
a 1-form along the curve.
• A 1-form is called a differential 1-form if the coefficient functions fi(x) are C1-

functions for all i = 1, . . . , n.
• For any real-valued C2-function f : D ⊂ Rn → R, its differential

df(x) =
n∑

i=1

∂f

∂xi

(x) dxi =
∂f

∂x1

(x) dx1 + . . . +
∂f

∂xn

(x) dxn

is a differential 1-form since each of the functions ∂f
∂xi

(x) is a C1-function. But 1-forms

do not have to arise in this fashion (that is, not all 1-forms arise as the differentials
of functions).


