
April 17, 2019

LECTURE 21: THE THEOREM OF STOKES’.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. In this lecture, we begin to finish the foundational material of what makes a
vector calculus course with a full discussion of one of the two other Big Theorems, those of
Stokes and Gauss. Here, we present and discuss Stokes’ Theorem, developing the intuition
of what the theorem actually says, and establishing some main situations where the theorem
is relevant. Then we use Stokes’ Theorem in a few examples and situations.

Theorem 21.1 (Stokes’ Theorem). Let S be a bounded, piecewise smooth, oriented surface
in R3, where ∂S consists of finitely many piecewise smooth closed curves oriented compatibly.
FOr F a C1-vector field on a domain containing S,

¨
S
∇× F • dS =

˛
∂S

F • ds.

Some notes:

(1) Here, the surface integral of the curl of a vector field along a surface is equal to the
circulation of the vector field along the boundary of the surface.

(2) This is a lot like Green’s Theorem:
• The left-hand side measure the normal component of the curl of F along S, so

measures the amount of twisting in the direction through S).
• The right-hand side measures the tangent component of F along ∂S.

(3) In a way, the shape of the surface doesn;t matter as much as what is happening on
the boundary. According to Stokes’ Theorem, in each of the surfaces in Figure ??,
the value of

˜
S ∇× F • dS is the same.

(4) Typical use: Sometimes the flux of the curl of F is hard to calculate across a bounded
surface. But the circulation along its boundary is not!

Example 21.2. Compute the flux of the curl of F = xz i + yz j + xy k through the
surface of the sphere x2 +y2 +z2 = 4 inside the cylinder x2 +y2 = 1 and above the
xy-plane in R3. The strategy for this calculation is that, since both the vector field and
the surface satisfy Stokes’ Theorem (F is C1 and S, using the outward normal is orientable
and bounded with a closed, smooth boundary curve, which we can orient compatibly as
counterclockwise, or with S on the left, walking upright on the curve), we look to calulate
the surface integral by instead calculating the circulation of F along ∂S.

First, let’s parameterize ∂S so that the orientation given by the parameterization is con-
patible with the surface orientation. Here, ∂S is on both the sphere x2 + y2 + z2 = 4, as well
as the cylinder x2 + y2 = 1. Hence

(x2 + y2) + z2 = 1 + z2 = 4,
1
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so that z2 = 3 and z =
√

3 (recall we are only using the positive hemisphere here). So
parameterize ∂S as c : [0, 2π]→ R3 via

c(t) =

 cos t
sin t√

3

 ∈ R3.

The next step is to calculate the circulation of F over c. Here we have¨
S
∇× F • dS

Stokes’
======

ˆ
∂S

F • ds =

ˆ
c

F (c(t)) • c′(t) dt

=

ˆ 2π

0

 √3 cos t√
3 sin t

cos t sin t

 •
 − sin t

cos t
0

 dt

=

ˆ 2π

0

0 dt = 0.

Now suppose that we did this calculation directly, without using Stoke’s. In this case, the
strategy is to parameterize the surface, which we will do using spherical coordinates (note
that the “curved disk” here, which comprises S, lies on the ρ = 4 sphere). In spherical
coordinates, we find that the region is, in fact, a rectangle in the two angles. Then we
calculate the resulting double integral.

Here, we start with calculating curl(F):

curl(F) = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

xz yz xy

∣∣∣∣∣∣ = (x− y) i− (y − x) j + 0k =

 x− y
x− y

0

 .
Next, we parameterize S. First, we again note that the entirety of S lies on the sphere at

ρ = 2. This leaves us already with the parameterization X : D → R3 based solely on the
angles

X(θϕ) =

 2 cos θ sinϕ
2 sin θ sinϕ

2 cosϕ

 .
Second, we seek to define the region D in the θϕ-plane that leads to S = X(D). To this
end, we note that the azimuth angle goes all the way to describe S, so θ ∈ [0, 2π]. However,
the polar angle ϕ will only go from ϕ = 0, at the north pole, to the edge of S, so we need to
find the value of ϕ that corresponds to the edge. To see this, look directly into the xz-plane,
and note that the ρ = 2 sphere forms a semicircle of radius 2, and the intersection of ∂S in
this plane occurs at a point on this semicircle with x-coordinate 1. One can calculate that
the y-coordinate here is

√
3 , and that the radial line from the origin to ∂S has angle α = π

3
.

This means that the polar angle ϕ = π
2
− α = π

6
.

Hence the region D in the θϕ-plane corresponds to D = [0, 2π]×
[
0, π

6

]
.

Next, before we integrate, we need to check to ensure that our idea of orienting S with the
normal pointing outward is correct, using this parameterization. We need this since we have
already oriented our curve c in the previous calculation to be compatible with the outward
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pointing normal. Here, we have

Xθ =

 −2 sin θ sinϕ
2 cos θ sinϕ

0

 , and Xϕ =

 2 cos θ cosϕ
2 sin θ cosϕ
−2 sinϕ

 ,
and N = Xθ ×Xϕ =

 cos θ sinϕ
sin θ sinϕ

cosϕ

 (−4 sinϕ). But this means

n =
N

||Xθ ×Xϕ||
= −

 cos θ sinϕ
sin θ sinϕ

cosϕ

 .
Unfortunately, this unit normal points inward (toward the origin). This is fine, but it is
incompatible with our orientation of ∂S. To fix this, we simply reparameterize to generate
the other orientation. The simplest way to do this is to rewrite the region D as lying inside
the ϕθ-place instead of the θϕ-plane. Then the region D =

[
0, π

6

]
× [0, 2π] in the ϕθ-plane

and the normal vector to S using this new orientation reversing reparameterization will be

N = Xϕ ×Xθ = −Xθ ×Xϕ

by the properties of the cross product.

Lastly, we calculate the flux of the curl:¨
S
∇× F • dS =

¨
D
∇× F (X (ϕ, θ)) • (Xϕ ×Xθ) dA

=

¨
D

(∇× F (X (ϕ, θ)) • n) dA

=

ˆ π
6

0

ˆ 2π

0

 2 sinϕ(cos θ − sin θ)
2 sinϕ(cos θ − sin θ)

0

 •
 cos θ sinϕ

sin θ sinϕ
cosϕ

 (4 sinϕ) dθ dϕ

=

ˆ π
6

0

ˆ 2π

0

8 sin3 ϕ
(
cos2 θ − sin2 θ

)
dθ dϕ

=

ˆ π
6

0

8 sin3 ϕ

(ˆ 2π

0

sin 2θ dθ

)
dϕ.

But the inside integral is 0, since
ˆ 2π

0

sin 2θ dθ =

[
−1

2
cos 2θ

∣∣∣∣2π
0

]
= 0.

Hence the entire double integral is 0.

So which was easier??

Here is a less typical example of the use of Stokes’ Theorem: Sometimes, one can use
Stokes’ to change the surface in a way that leaves the boundary fixed. So if a calculation
of the flux of the curl of a vector field across S is difficult, and the circulation of the vector
field along ∂S is also difficult, if Stokes applies, one can just find a different surface, with
the same boundary, where the flux of the curl is easier to integrate.
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Example 21.3. Example 7.3.2 of the text. Calculate the flux of the curl of

F =

 ey+z − 2y
xey+z + y
ex+y

 across S =

{
(x, y, z) ∈ R3

∣∣∣∣ z ≥ 1

e
, z = e−(x

2+y2)

}
.

By inspection and a few quick calculations (check the book), one can use Stokes’ Theorem
here, but both sides of the equal sign in the theorem are quite difficult calculations! However,
by Stokes’, any surface with the same boundary as S will do, when calculating the flux of
the curl of F across it.

So here, choose

Ŝ =

{(
x, y,

1

e

)
∈ R3

∣∣∣∣ x2 + y2 ≤ 1

}
.

Then, we have

∂Ŝ = ∂S =

{(
x, y,

1

e

)
∈ R3

∣∣∣∣ x2 + y2 = 1

}
.

So by Stokes’ Theorem,¨
S
∇× F • dS =

¨
Ŝ
∇× F • dS =

¨
Ŝ

(∇× F • n) dS.

So for this calculation, we find

∇× F =

 ex+y − xey+z
ey+z − ex+y

2

 , and n =

 0
0
1

 .
So then ∇× F • n = 2. Now the calculation is simply¨

S
∇× F • dS =

¨
Ŝ

(∇× F • n) dS

=

¨
Ŝ

2 dS = 2
(
area(Ŝ)

)
= 2

(
π(1)2

)
= 2π.

Here ae some great uses for Stokes’ Theorem:

(1) A surface is called compact if it is closed as a set, and bounded. A surface is called
closed if it is compact and has no boundary.
• Surfaces like the 2-sphere S2, and the 2-torus T 2 are closed, while the disk, or a

surface which is the continuous injective graph of a closed rectangle in the plane
(we tend to call this a (flying) carpet.
• Recall that a curve in Rn is simple if it does not intersect itself. Hence a bounded

simple curve with its endpoints is compact. Its boundary are the two endpoints.
A closed curve forms a loop, and hence has no boundary.
• Also, the surface of teh unit cube in R3 is closed. Creases and corners are not

considered boundaries of a surface. So, in a very mathematical sense, there
is no real difference between the surface of a cube, and the surface of a ball.
One does have edges and corners and the other does not, but each does enclose
space. Now, there is a difference, though. The surface of the unit cube is not
smooth, while the surface of the ball is. But we can still integrate over each.
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The difference is that, to integrate over the cube (a piece-wise smooth surface),
we would have to break up the integral calculation into each face, and then add
the results at the end.

(2) In the case of a closed surface, the curl of any vector field in R3 over a closed surface
will be 0, by order of Stokes’ Theorem: The total flux of the curl of a vector field
over a surface is equal to the circulation of that vector field over the boundary of
the surface. If the surface has no boundary, then there is no circulation. Then by
Stokes’, the curl of F has no flux across the surface.

(3) In contrast, let F be a conservative vector field, so F = ∇f for a real-valued, C1-
function. Then, for any surface S that satisfies Stokes’, the circulation of F along ∂S
is 0 (we say it vanishes), or ˆ

∂S
F • ds = 0.

Why is this? For any conservative vector field, ∇ × F = ∇ × ∇f = 0. Hence by
Stokes’ ¨

S
∇× F • dS =

¨
S
0 • dS = 0 =

˛
∂S

F • ds.
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Synopsis. In this lecture, we finish the foundational material of what makes a vector calculus
course with a full discussion of the last of the Big Theorems, the theorem of Gauss. Really,
the BIg Three theorems we are discussing are all similar in nature yet vary in dimension.
Again, for Gauss’ Theorem, we state the theorem and discuss its constituent pieces, develop
the intuition needed to see what the theorem states, and establish some main situations
where the theorem is relevant. Then we use Gauss’ and Stokes’ Theorems to give a much
more precise idea of just what the divergence and the curl of a vector field actually is and
how to understand these concepts geometrically.

22.1. Gauss’ Theorem.

Theorem 22.1 (Gauss’ Theorem). Let W ∈ R3 be a solid region, whith ∂W a finite set of
piecewise smooth, closed, orientable surfaces, oriented outwardly fromW. For F a C1-vector
field on a domain containing W,("

∂W
(F • n) dS =

)"
∂W

F • dS =

˚
W
∇ • F dV

(
=

˚
W

(divF) dV

)
.

Special Notes:

(1) Recall that any compact domain in R2 with nonempty interior has a set of closed
curves as boundary. In R3, any compact domain with nonempty interior has a set
of closed surfaces as boundary. And this generalizes to higher dimensions readily.
But this leads to the conclusion: The boundary of a compact region with nonempty
interior has no boundary! Think about this.

(2) The proof of Gauss’ Theorem is elementary and quite straightforward: Denoting
points in R3 in the obvious way using the variable x, y, and z, and with F =
F1(x, y, z) i + F2(x, y, z) j + F3(x, y, z)k, we first see that˚

W
(divF) dV =

˚
W

∂F1

∂x
dV +

˚
W

∂F2

∂y
dV +

˚
W

∂F3

∂z
dV.

Then, it should also be clear that¨
∂W

(F • n) dV =

¨
∂W

F1 i • n dV +

¨
∂W

F2 j • n dV +

¨
∂W

F3 k • n dV.

And finally, one simply shows that each is equal to each, respectively.

Exercise 1. Show

˚
W

∂F1

∂x
dV =

¨
∂W

F1 i • n dV , when W is elementary in all

directions.

So we are now fully in a position to understand some concepts that we have previously
only vaguely discussed:

1
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• Divergence of a vector field.
• Curl of a vector field.

22.2. Divergence.

• Intuitive definition: Measures the infinitesimal expansion of volume under the flow
of a vector field.
• Actual definition: Measures the aggregate flux of a vector field across the boundary

of an infinitesimal ball centered at a point.

Theorem 22.2. Let F be a C1-vector field defined in some (open) neighborhood of a point
p ∈ R3. For

Sa =
{
x ∈ R3

∣∣ ||x− p|| = a
}
,

a 2-sphere of radius a > 0 centered at p and oriented outwardly,

divF(p) = lim
a→0+

3

4πa3

"
Sa

F • dS.

Proof. For any f ∈ C0[W ⊂ R3,R], W a bounded solid region, there exists q ∈ R3 where˚
W
f(x, y, z) dV = f(q) · volume(W).

This is the Mean Value Theorem for triple integrals.

Now since F is C1 in an open neighborhood of p, there exists ε > 0 such that F is C1 on

Bε =
{
x ∈ R3

∣∣ ||x− p|| ≤ ε
}
.

Then ε = a in the theorem and Sa = ∂Bε. Then, there exists a q ∈ Bε such that˚
Bε
div(F) dV = div (F(q)) · volume

(
Bε
)

=
4πε3

3
div (F(q)) ,

since divergence is simply a scalar field on Bε. Now, we can use Gauss’ Theorem:

lim
ε→0+

3

4πε3

"
Sε
F • dS

Gauss
===== lim

ε→0+

3

4πε3

˚
Bε
div (F) dV

= lim
ε→0+

3

4πε3

(
4πε3

3
· div (F(q))

)
= lim

ε→0+
div (F(q)) = div (F(p)) .

�

So Gauss’ Theorem says that the amount of volume created or lost upon flowing along a
vector field in a compact solidW is equal to the total amount flowing through the boundary
∂W .
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22.3. Curl.

• Intuitive definition: Measures the twisting effect of a vector field in R3 felt by flowing
along it.
• Actual definition: Measures the total circulation of a vector field along an edge of an

infinitesimal disk normal to the vector field at a point.

Theorem 22.3. Let F be a C1-vector field defined in some (open) neighborhood of a point
p ∈ R3. Let n be a unit vector based at p, with

Da =
{
x ∈ R3

∣∣ ||x− p|| ≤ a, (x− p) • n = 0
}
,

a 2-disk of radius a > 0 centered at p and normal to n. Orient Da compatibly with n and
also Ca = ∂Da. Then the component of curl in the direction of n is

curlF(p) • n = lim
a→0+

1

πa2

˛
Ca

F • ds.

Hence, curl at a point is the infinitesimal circulation of F along a loop perpendicular to the
direction of flow. In essence, choose a unit vector n based at p, and form a small disk normal
to n and containing p. If the vector field generally points in a direction along the boundary
of the disk compatibly with its orientation with the disk on its left (counterclockwise), then
the circulation will be positive. If, in the aggregate, it points in the opposite direction to the
orientation on the boundary of the disk, then the circulation will be negative. And if, in the
aggregate, the vector field is orthogonal to the boundary of the disk, then the circulation
will be 0.

Now allow n to vary. The magnitude of curlF(p) • n will be maximized at p precisely
when

n =
curlF(p)

||curlF(p)||
.

Therefore the twisting or rotating effect of the vector field F at p is greatest about the axis

parallel to curlF(p)
||curlF(p)|| . One can use this as a definition of the curl of a vector field.

Proof. Exactly like the previous theorem but using Stokes instead of Gauss. �

Notes:

• The quantity div (F(p)) is also called the flux density of F at p: It is the limit of
the flux per unit volume.
• The quantity curl (F(p)) is also called the circulation density of F at p: It is the

limit of the flux per unit volume.

Stokes’ Theorem says that the total rotational effect of a vector field on a surface in R3 is
equal to the aggregate boost or hindrance of a particle on the edge.

Green’s Theorem is simply Stokes’ Theorem limited to domains in the plane.

Example 22.4. For F = 2x i + y2 j + z2 k and

S =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 = 1

}
,

the unit 2-sphere in R3, find the flux of F through S.
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The solution here is a calculation of"
S

(F • n) dS,

where n is the unit normal vector to S. We use Gauss’ Theorem to instead integrate the
divergence of F on the unit ball

B =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 ≤ 1

}
.

By Gauss, "
S

(F • n) dS =

˚
B
divF dV

=

˚
B

2(1 + y + z) dV

= 2

˚
B
dV + 2

˚
B
y dV + 2

˚
B
z dV.

We do the middle integral first: We have

2

˚
B
y dV = 2

ˆ 1

−1

ˆ √
1−x2

−
√
1−x2

ˆ √
1−x2−z2

−
√
1−x2−z2

y dy dz dx

= 2

ˆ 1

−1

ˆ √
1−x2

−
√
1−x2

(
y2

2

∣∣∣∣
√
1−x2−z2

−
√
1−x2−z2

)
︸ ︷︷ ︸

0

dz dx

= 0.

The same will be true for the third integral. And so we have ,"
S

(F • n) dS
Gauss

=====

˚
B
divF dV

= 2

˚
B
dV = 2 · vol

(
B
)

= 2

(
4π(1)3

3

)
=

8π

3
.


