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Synopsis. Today we begin the course in earnest in Chapter 2, although, again like on
Monday, we will be covering the material mostly for notation and viewpoint. Pay close
attention to why and how we visualize functions, though parameterizations, graphs, slices
and sections. These will expose the visual clues to how we analyze functions.

Helpful Documents.

• Mathematica: CurvesInSpace,
• Mathematica: ParameterizedSurfaces,
• Mathematica: VisualizingFunctions, and
• PDF: LevelSets.

Functions of Several Variables. A function f : X → Y from a set X to another set Y is
defined in a manner equal to what you have already studied in single variable calculus (and
pre-calculus):

• f assigns to each x ∈ X a single element y ∈ Y .
• The set X is called the domain of the function, and Y is called the codomain.
• f(X) ⊂ Y (as a set) is called the range of f , and more precisely called the image of
X in Y under f . It can be defined as

f(X) =
{
y ∈ Y

∣∣ y = f(x) for some x ∈ X
}
.

• For a subset Z ⊂ Y , the set

f−1(Z) =
{
x ∈ X

∣∣ f(x) ∈ Z
}

is called the inverse image of Z in X under f , or the preimage of Z in X (under f).
Note that f−1(y) = ∅, when y 6∈ f(X).
• f is called one-to-one, or injective, if

#
{
x ∈ X

∣∣ f(x) = y
}
≤ 1, ∀y ∈ Y.

• f is called onto or surjective if ∀y ∈ Y , y = f(x) for at least one x ∈ X.
• f is called bijective if f is both injective and surjective.

Note that, for this class, X and Y will be subsets of Euclidean space, although often not
the same space nor the same dimension.

Here is some additional nomenclature and notation:

• Let X ⊂ Rn and Y ⊂ Rm. If m = 1, we call f : X → Y a real-valued or scalar-valued
function on X, or on n-variables (restricted to X). If m > 1, we say f is vector-valued.
As we will see, vector-valued functions consist of expressions that are real-valued on
each coordinate of Rm.
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• Where important to the discussion, we will denote scalars as x ∈ R, and vectors as
x ∈ Rn, n > 1. We will also denote a real-valued function as f , and a vector-valued

function as f . In lecture, we will employ the vector notation ~x and ~f , since boldface is
difficult in chalk. Note that when it is not important to the discussion, or for general
situations, it is the case that we will use boldface for variables, and possibly write
f : X → Y , and f(x) = y, even if X ∈ Rn, n > 1, and y ∈ Y ⊂ Rm, m > 1. This is
common in analysis and should be clear in context.
• a function f : X → Y is often called a map (or a mapping) from X to Y . In some

contexts, a function and a map are not the same thing, but often they are used
interchangeably.

Definition 2.1. A map p : X → X is called a projection if p(p(x)) = p(x), ∀x ∈ X.

– Here, the set comprising the image p(X) ⊂ X is called the projection of X onto
p(X). When X is a linear space and p a linear projection, then p(X) is a linear
subspace. See Example 2.2 below.

– A projection p, restricted to its image, is the identity map. We can write this as
p
∣∣
p(X)

= Idp(X).

– For X = Rn, the map pi : Rn → Rn, defined by

pi ((x1, . . . , xi−1, xi, xi+1, . . . , xn)) = (0, . . . , 0, xi, 0, . . . , 0)

is called the ith projection. Sometimes, one may write pi(x) = xi, but this is not
quite correct.

– There are many extensions and generalizations of the idea of projection in various
areas of mathematics, including some that do not seem to fit the definition above.
(See, for instance, the separate document StereographicProjection.) For now,
here are a couple of examples.

Example 2.2. A common projection onto a linear subspace of Rn is to zero out one or more
coordinates: In R3, the map

(x, y, z) 7−→ (x, y, 0)

is a projection of 3-space onto the xy-plane (See the left side of Figure 2.1.

Figure 2.1. Projections in R3 onto the xy-plane (at left), and the unit sphere S2 (at right).
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Example 2.3. The map r : R3 − {0} → S2, r(x) = x
||x|| is the map which normalizes every

non-zero vector in R3. Here

S2 =
{
x ∈ R3

∣∣ ||x|| = 1
}

is called the unit sphere in R3, seen on the right of Figure 2.1. Do you see why 0 ∈ R3 cannot
be in the domain of r?

Visualizing functions either defined on subsets of Rn and/or to Rn, when n > 1 can be
tricky. Some tools that are useful include:

Graphs - In its most basic form, a relation is defined as any subset of the Cartesian product
of two (or more) sets. And then a graph of a relation is just any visual depiction of that
relation. When the two sets are subsets of real space X ∈ Rn and Y ⊂ Rm, then the relation
is a subset of Rn×Rm = Rn+m. Often, relations among real variables are given by equations,
and in this case, the graph is the set of solutions to the equations “living” inside the direct
product of copies of R, one for each of the variables. And sometimes these relations are
functional in one or more of the variables. In this case, solving the equation for one of the
variables creates a function whose output is that solved-for variable and whose input(s) are
the other variables. In this case, the graph of that function takes on a particular look; that
of a“height over a floor” schematic:

Definition 2.4. For f : X ⊂ Rn → R, the graph of f is the set

graph(f) =
{

(x, f(x)) ∈ Rn × R = Rn+1
∣∣ xn+1 = f(x)

}
.

Note that this is quite useful for n = 2 (so that the graph “lives” in R3, but not so useful
for n > 2. Also, this is the proper generalization for the way graphs of functions were
constructed in pre-calculus and single variable calculus. And, generally speaking, the “size”
of f(X) ∈ R3 will be the same as that of X. It should be easy to see that it is always the
case that graph(f) ⊂ Rn+1 always projects to (a copy of) X ⊂ Rn × R as

(x1, x2, . . . , xn, f(x)) 7−→ (x1, . . . , xn, 0).

See Figure 2.2. More generally, we have:

Definition 2.5. For f : X ⊂ Rn → Rm, m ≥ 1, where f(x) = y, the graph of f is the set

graph(f) =
{

(x, f(x)) ∈ Rn × Rm = Rn+m
∣∣ y = f(x)

}
.

Figure 2.2. For f : X ⊂ Rn → R,
graph(f) ⊂ Rn+1.

Consider the vector-valued function g : X ⊂ R2 →

R2, defined by g(x) = g

([
x
y

])
=

[
g1(x, y)
g2(x, y)

]
.

Here, for i = 1, 2, each gi : X → R is a real-valued
function, called a component function or a coordinate
function. But the graph of g ⊂ R4 is the set

graph(g) =

{
(x, y, z, u) ∈ R4

∣∣∣∣ z = g1(x, y)
u = g2(x, y)

}
.

It is already hard to visualize!

An easier example to visualize is the function h :
R → R2, h(t) = (cos t, sin t). Its graph lives in R3 as
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a curve

graph(h) =
{

(t, x, y) ∈ R3
∣∣ x = cos t, y = sin t

}
.

As one can see in Figure 2.3, this curve can be visualized and studied, but is still a bit tricky
to analyze.

Figure 2.3. Projections in R3 onto the xy-plane (at left), and the unit sphere S2 (at right).

Parameterizations - Generalized coordinates can be placed directly on a subset of Rn

through continuous functions so that points on the subset are distinguishable via parameter
values instead of ambient coordinates. (One does this on a sphere when one speaks of the
latitude and longitude of a point on our Earth.) A parameterization allows one to describe
a subset of Rn by a smaller number of variables; one can generally talk of a subset having
a dimension equal to the number of variables it takes to distinguish points on the subset,
although the notion of dimension for a space is not always very well defined.

Return to the function h : R → R2, h(t) = (cos t, sin t) ∈ R2, and consider only the
image of h ⊂ R2. Here, we say that h parameterizes the unit circle in the plane. In this
case, t is a coordinate, defined directly (and only) on the circle of radius 1 in R2, and is a
1-dimensional parameterization. Note here that, broadly speaking, parameterizations should
be one-to-one as functions, so that points are distinguished adequately. However, this is not
true in general, and this example is telling. Here, we would say that this parameterization
is locally-injective. We caution, though, that even this is not true in general.

Figure 2.4. Parameterization of S1 ⊂ R2 via h : R→ R2, h(t) = (cos t, sin t).



LECTURE 2: FUNCTIONS OF SEVERAL VARIABLES. 5

Example 2.6. Let D ⊂ R2 be the rectangle

D =
{

(θ, ψ) ∈ R2
∣∣ θ ∈ [0, 2π], ψ ∈ [0, π]

}
as a subset of R2. Then the function Φ : D → R3, Φ(θ, ψ) = (sin θ sinψ, cos θ sinψ, cosψ)
provides coordinates directly on the unit sphere in three space that correspond to the azimuth
angle θ and polar angle ψ of the standard spherical coordinate system in R3.

Figure 2.5. Parameterization of S2 ⊂ R3 via Φ : D → R3.

Note here two things:

(1) The function Φ in Example 2.6 is injective, but only on the interior of D, and maps
the bottom and top edges of D to the north and south poles, respectively, and maps
both the left and right edges of D on top of each other and to one of the half-great
circles stretching from the north pole to the south. Can you draw this seam on the
sphere in Figure 2.5.

(2) The parameterized objects in these examples are not graphs of functions. They
are visual depictions, yes, but they do not satisfy Definition ??. They are actually
the image of the function defining the parameterization. Hence we would call the
unit circle S1 = image(h) in Figure 2.4, and the two-sphere S2 = image(Φ) in
Example 2.6.

Figure 2.6. image(F ) ⊂ R3 in Example 2.7
is not the graph of a function defined on the
xy-plane in R3.

Now the domain of the graph of a function f : X ⊂
Rn → R always parameterizes graph(f) ⊂ Rn+1. See
Figure 2.2. Can you see why? However, as seen with
the sphere in Figure 2.5, it can also parameterize sub-
sets of Rn that are not the graphs of functions:

Example 2.7. Let R = [−2, 2]× [−1.5, 1.5], and F :

R → R3, where F (u, v) =
(
u, 3(v

3−v)
4

, 2v
5

)
, shown in

Figure 2.6.

Slices and Sections of graphs of functions - Un-
derstanding the features of graphs of functions of more than one variable can sometimes be
facilitated by slicing through the graph, thus fixing the value of one or more variables, either
parallel to the domain (a section), or perpendicular to the domain (a slice). First, some
definitions:

Definition 2.8. Let f : X ⊂ Rn → R be a real-valued function on X.

(a) A c-level set of f is
{
x ∈ X

∣∣ f(x) = c
}

.

(b) A (horizontal) section of f at c is the set
{

(x, c) ∈ graph(f) ⊂ Rn+1
∣∣ c = f(x)

}
. Note

that this is just the graph of a c-level set, and is sometimes called a c-contour set.
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It is important to note here that a c-level set of a function f : X ⊂ Rn → R is a subset of
the domain X, while a horizontal section is a subset of the graph of X under f .

Example 2.9. Let f : R2 → R be defined by f(x, y) = x2 + y2. This function is called a
parabolic bowl due to the shape of the graph, as in Figure 2.7, at left.

Figure 2.7. The z = 8-section and c = 8-level set of z = f(x, y) = x2 + y2.

Some notes:

• All c-level sets in Example!2.9 are circles in the plane, centered at the origin and of
radius

√
c. They satisfy the equation c = x2 + y2.

• One can view c-level sets as the projections of a horizontal section back down into
the domain, viewed as part of Rn+1 representing the floor z = 0.
• One can also write a c-level set as the inverse image (as a set) of an output value
c ∈ R. Here f−1(c) ⊂ X. Note that in Example 2.7, f−1(c) = ∅, for c < 0. But still,
f−1(c) is well-defined in these cases and f−1(−3) ⊂ X, even as it is empty.

In contrast, a vertical section (or slice) of graph(f) is the intersection of graph(f) with
a vertical subspace of Rn+1 formed by setting one of the domain variables to a constant. So
for

graph(f) =
{

(x1, x2, . . . , xn, z) ∈ Rn+1
∣∣ z = f(x)

}
,

the xi-slice at xi = c is the set{
(x, z) ∈ Rn+1

∣∣ z = f(x1, . . . , xi−1, c, xi+1, . . . , xn)
}
.

Figure 2.8. The 2 coordinate slices through graph(f), for f : X ⊂ R2 → R.
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Back to f : R2 → R, f(x, y) = x2 + y2 in Example 2.9, the y = 2-slice is shown in
Figure 2.9, and given by the equation z = x2 + 4 in the xz-plane defined at y = 2. The
y = 2-slice is a curve in R3 parameterized by x, and is the set{

(x, 2, x2 + 4) ∈ R3
}
.

Figure 2.9. The y-slice at y = 2 of the function z = f(x, y) = x2 + y2.


