
April 10, 2019

LECTURE 19: SURFACE PARAMETERIZATIONS.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. The two dimensional counterpart to a curve in n-space is a surface in n-space,
and today we define and discuss the properties of parameterized surfaces in (mostly) three-
space (and sometimes n-space.) The parallels to curves will be obvious, and discussing these
parallels will bring up very interesting contrasts, which we will highlight. Then we will
begin the discussion of how a parameterization of a surface in space allows us to discuss the
properties of the surface, including how functions behave when defined along the surface.

Helpful Documents. Mathematica: ParameterizedSurfaces.

19.1. Coordinates on a surface. We typically parameterize a curve in Rn via a map
c : I → R, where I = [a, b] ⊂ R, and

c(t) =


x1(t)
x2(t)

...
xn(t)

 ∈ Rn.

For n = 3, we would usually write the three coordinate functions as x(t), y(t), and z(t), all
real-valued functions on I.

Now let D ⊂ R2 be a connected, open set, along with some or all of its boundary points.
A parameterized surface in Rn is then a C0-function X : D → Rn (n > 2), that is one-to-one
on the interior of D. The corresponding image of X is then

X(s, t) =


x1(s, t)
x2(s, t)

...
xn(s, t)

 ∈ Rn.

Example 19.1. Let D =
{

(s, t) ∈ R2
∣∣ 0 ≤ s ≤ 2π, 0 ≤ t ≤ π

}
= [0, 2π] × [0, π] in the st-

plane. Then the map X : D → R3, defined by

X(s, t) =

 x(s, t)
y(s, t)
z(s, t)

 =

 a cos s sin t
a sin s sin t
a cos t


has image S2

a the sphere of radius a centered at the origin in R3. In this parameterization,
every point on the interior of D is mapped uniquely to a point on S2

a = X(D). However,
the top and bottom edges of D are each all mapped to a point (the north and south poles,
respectively, while the two walls are together mapped to a line from the north pole to the
south pole. Perhaps we can call that line the “seam” of the ball? See Figure ??.
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Note: Just as a curve sits inside Rn, n > 2, a surface can have Rn, n > 3 as a codomain.
For now, we will restrict our examples to three space R3 for the convenience and clarity of
visualization.

Example 19.2. Graphs of functions are parameterizations. Any f : D ⊂ R2 →
R has graph(f) ⊂ R3 parameterized directly by the coordinates of D, where (x, y) 7→
(x, y, f(x, y)). The points in the domain parameterize graph(f) ⊂ R3 because the third
coordinate is uniquely specified once the first two are known.

Example 19.3. The square torus. The 2-torus T 2 has a nice description as the product
of two copies of the circle T 2 = S1 × S1, where each coordinate is an angular one. This
is fundamentally different form the two angular coordinates that comprise the 2-sphere,
though. Here, let D = [0, 2π]× [0, 2π] = [0, 2π]2. Then, for a > b > 0 positive constants, the
map X : D → R3, defined by

X(s, t) =

 x(s, t)
y(s, t)
z(s, t)

 =

 (a+ b cos t) cos s
(a+ b cos t) sin s

b sin t


has the shape of the surface of a doughnut. Here b is the cross-sectional radius and a is the
radial distance from the z-axis to the center of any corss-sectional circle. The torus T 2 is
often described as simply the unit square in the plane with the “opposite sides identified”.

Definition 19.4. A surface S = X(D) is differentiable if its coordinate functions are. When
this is the case, then

Xs(s0, t0) =
∂X

∂s
(s0, t0) =


∂x
∂s

(s0, t0)
∂y
∂s

(s0, t0)
∂z
∂s

(s0, t0)

 .
The same is true for Xt(s0, t0).

If these two first partials are continuous functions, then the derivative matrix DX =
[Xs,Xt] exists and is a 3× 2 matrix. Each of Xs and Xt is a vector of functions, and when
evaluated at the point (s0, t0), each represents a vector tangent to the embedded surface
S = X(D), at the point

(
x(s0, t0), y(s), t0), z(x0, t0)

)
. Hence Xs(s0, t0) and Xt(s0, t0) are

member of the tangent space to S at (s0, t0), where s, t are parameter coordinates on the
surface, and (x(s0, t0), y(s0, t0, z(s0, t0)) is the corresponding point in the ambient coordinates
in R3.

Now as Xs and Xt are always members of the tangent space to X(D) ⊂ R3, then Xs×Xt

is normal to the surface (when it is nonzero and the surface is C1, that is). Call this normal
vector N(s0, t0) = (Xs ×Xt) (s0, t0).

Definition 19.5. The surface S = X(D) is called smooth at the point X(s0, t0) if X is C1

in an open neighborhood of (s0, t0) and if N(s0, t0) 6= 0. The surface S is called smooth if it
is smooth everywhere.

Note that C1 and smoothness ensure that the embedded surface has no sharp edges only if
the normal vector is nonzero. This is similar to the image of a parameterized curve, where
if the parameter function is differentiable, one may still have a corner in the image of the
curve if the tangent vector is 0.
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Example 19.6. For S2
a = X(D), given in Example ?? above, we have

Xs =

 −a sin s sin t
a cos s sin t

0

 , and Xt =

 a cos s cos t
a sin s cos t
−a sin t

 .
Hence N = Xs × Xt = −a sin t

 x
y
z

. Hence, under this parameterization, N is nonzero

everywhere except for when t = 0, π, so everywhere except for at the poles.

Exercise 1. Do the calculation that shows that N = Xs×Xt = −a sin t

 x
y
z

 in Example ??

above.

However, S2
a is smooth everywhere, even at the poles. But not according to this parameter-

ization. To see the poles as smooth, one would have to reparameterize so that the points
corresponsding to the poles lie somewhere inside the corresponding region domain D. In a
sense, the parameterization we specified does give meaning to the phrase “One cannot walk
east or west when standing at the north pole. One can only walk south!”

Definition 19.7. A piecewise smooth parameterized surface is the union of images of finitely
many parameterized surfaces Xi : Di → R3, where each Di is (1) elementary, (2) C1 except
possibly along ∂Di, and (3) each Si = Xi(Di) is smooth except at possibly a finite set of
points.

19.2. Surface area. Recall that the length of a parameterized curve c : [a, b]→ Rn can be
calculated using the parameterization ∫ b

a

||c′(t)|| dt,

even as the actual length of the curve in Rn is independent of the parameterization. In
2-dimensions, we can develop a similar construction: Given a surface parameterization X :
D → Rn, for a region D, a small rectangleR ⊂ D, based at a point (s0, t0) and of size ∆s and
∆t, will have image X(R) a small region inside the surface S = X(D). This image will most
likely not be a parallelogram. But it can be approximated by one with sides Xs(s0, t0)∆s
and Xt(s0, t0)∆t. Then, the area of this image region is

area (X(R)) ≈ ||Xs(s0, t0)∆s×Xt(s0, t0)∆t||
= ||Xs(s0, t0)×Xt(s0, t0)||∆s∆t = ||N(s0, t0)||∆s∆t.

Note that this quantity is the area of the unit square inside the tangent space to S at (s0, t0),
suitably scaled by ∆s and ∆t.

In the limit, as ∆s,∆t → 0, we get ||Xs ×Xt|| ds dt. With the idea that area(D) =∫∫
D dA, we get

area(S) =

∫∫
S
dS =

∫∫
D
||Xs ×Xt|| ds dt =

∫∫
D
||N(s, t)|| ds dt.

Here dS = ||N(s, t)|| dA is the differential of area, or an area form on S.
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Some notes:

• The expression dS = ||N(s, t)|| dA is the 2-dimensional analog to dc = ||c′(t)|| dA in
the scalar-line integral.
• For X(s, t) = (x(s, t), y(s, t), z(s, t)) ∈ R3,

Xs ×Xt =


∂(y,z)
∂(s,t)

−∂(x,z)
∂(s,t)

∂(x,y)
∂(s,t)

 ,
so

area(S) =

∫∫
D

√(
∂(y, z)

∂(s, t)

)2

+

(
∂(x, z)

∂(s, t)

)2

+

(
∂(x, y)

∂(s, t)

)2

ds dt,

where each of the summands under the radical is the square of a Jacobian determi-
nant. Compare this to the calculation of arclength for a parameterized curve in the
plane in single variable calculus: Given c(t) = (x(t), y(t)),

arclength(c) =

∫
c

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

Example 19.8. The surface area of S2
a a 2-sphere of radius a. Recall that X(s, t) =

(a cos s sin t, a sin s sin t, a cos t). So, as detailed in Example ?? above.

Xs =

 −a sin s sin t
a cos s sin t

0

 , and Xt =

 a cos s cos t
a sin s cos t
−a sin t

 ,
leading to

N = Xs ×Xt = −a sin t

 x
y
z

 =

 a2 cos s sin2 t
−a2 sin s sin2 t
−a2 sin t cos t

 .
This leads to

||Xs ×Xt|| =

√(
∂(y, z)

∂(s, t)

)2

+

(
∂(x, z)

∂(s, t)

)2

+

(
∂(x, y)

∂(s, t)

)2

=
√
a4 cos2 s sin4 t+ a4 sin2 s sin4 t+ a4 sin2 t cos2 t

=
√
a4 sin2 t = a2 sin t.

where we do not need to shroud this last term in absolute values since sin t is nonnegative
for t ∈ [0, π].
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Thus we have

area(S2
a) =

∫∫
S2
a

dS =

∫ π

0

∫ 2π

0

||Xs ×Xt|| ds dt

=

∫ π

0

∫ 2π

0

a2 sin t ds dt =

∫ π

0

2πa2 sin t dt

= −2πa2 cos t

∣∣∣∣π
0

= 2πa2 + 2πa2 = 4πa2.

Example 19.9. The surface area of a graph. For f : D ⊂ R2 → R,

S = X(D) =
{

(x, y, z) ∈ R3
∣∣ z = f(x, y)

}
= graph(f).

Here

Xx(x, y) =

 1
0
fx

 , and Xy(x, y) =

 0
1
fy

 ,
so that

Xx ×Xy =

∣∣∣∣∣∣
i j k
1 0 fx
0 1 fy

∣∣∣∣∣∣ = −fxi− fyj + k =

 −fx−fy
1

 .
Then the surface area of S = X(D) = graph(f) is

area (S) =

∫∫
S
dS =

∫∫
D
||Xs ×Xt|| dt =

∫∫
D

√
(fx)

2 + (fy)
2 + 1 dA.

Now compare this to the single variable calculation of the length of a curve which is the
graph of a function f : [a, b]→ R:

length =

∫ b

a

√
1 + (f ′(x))2 dx.


