
April 3, 2019

LECTURE 17: THE LINE INTEGRAL.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. Here, we dive deeper into integration under the idea that in multiple directions,
there are more ways to study the properties of functions. The first type is called the line
integral, where one integrates over a curve. The two varieties, the scalar and vector line
integrals, have interesting geometric interpretations as well as simple meaning on their own.
Today, we define and study these two types.

Helpful Documents. GIF: LineIntegralOfScalarField, LineIntegralOfVectorField.

17.1. Return to notation. Recall the notation we used when discussing integration:

• In single variable calculus, ∫ b

a

f(x) dx =

∫
I
f dx,

where x ∈ I ⊂ R and f is assumed to be a function of x.
• In vector calculus to date: For a double integral,∫∫

D
f dA, D ⊂ R2.

And for triple integrals, ∫∫∫
W
f dV, W ⊂ R3,

where f is real-valued, so f :W → R.

These are definite integrals whose value would remain unchanged upon a change of vari-
ables. Hence the notation denotes a coordinate-free attempt to write the quantities: For D
a region in the xy-plane, for example, then∫

D
f dA =

∫∫
D
f(x, y) dx dy.

In this lecture, we will define some new ways to study properties of functions over relevant
domains in Rn.

17.2. Line Integrals.
1
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17.2.1. Real-valued, scalar functions. Recall that differentiating a C1-function f : X ⊂ Rn →
R along a curve x : I ⊂ R → Rn, where x(I) ⊂ x ⊂ Rn, looks a lot like a single variable
calculus endeavor:

df

dt
(t) =

d

dt
f (x(t)) = Df (x(t)) · dx

dt
(t)

=
∂f

∂x1

dx1
dt

+ · · ·+ ∂f

∂xn

dxn
dt
∈ R.

One would expect, then, that integrating a funciton f : X ⊂ Rn → R over a curve (in essence,
adding up its values along the curve) should also seem like a 1-dimenaional calculation. In
fact, it is quite similar, once we can interpret things correctly:

Definition 17.1. Given an integrable f : X ⊂ Rn → R, and a C1-curve x : I → Rn, where
I = [a, b] ⊂ R and x(I) ⊂ X, the scalar line integral of f over x is∫

x

f ds =

∫ b

a

f (x(t)) ||x′(t)|| dt.

Some notes:

• The symbolic s denotes arclength: Recall that, for any curve parameterization x :
[a, b]→ R, the arclength parameter is

s(t) =

∫ t

a

||x′(τ)|| dτ.

Seen as a change in variables, the new differential is then, by the Fundamental The-
orem of Calculus

ds = s′(t) dt =

(
d

dt

[∫ t

a

||x′(τ)|| dτ
])

dt = ||x′(t)|| dt.

This suggests that the (scalar) line integral is parameterization independent. This
suggestion is correct.
• The scalar line integral is also sometimes called the path integral, or the line integral

of a scalar field.
• Here is a good geometric interpretation of the scalar line integral, using a function

on two variables so that we can see the graph, f : X ⊂ R2 → R: The graph(f), as
a subset of R3 defined as the set of solutions to z = f(x, y), sits vertically over X
sitting within the xy-plane in R3. The curve x sits inside X. Form a vertical wall by
drawing a vertical line from each point in x ⊂ X to graph(x) ⊂ graph(f). Then
the scalar line integral of f along x is the total area of this wall. This is simply the
curved version of the standard geometric interpretation of the integral of a function
f(x) over an interval in Calculus I. See Figure ??.
• So, again, the scalar line integral of f along x is essentially a 1-dimensional calcula-

tion, but now in Rn, n > 1.
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Example 17.2. A constant function along a straight line. Let f(x, y) = 4, and

x(t) =

[
3
4

]
t, defined on I = [0, 1]. Then

∫
x

f ds =

∫ 1

0

f (x(t)) ||x′(t)|| dt

=

∫ 1

0

f (3t, 4t)
√

32 + 42 dt

=

∫ 1

0

4
√

25 dt = 20t

∣∣∣∣1
0

= 20.

Perhaps this was rather obvious, since the rectangle (in R3), whose base if x([0, 1]), and
whose height is 4 has area which is the length of the curve times the height: The length of
the curve is 5, so the area is 4 · 5 = 20.

Example 17.3. Surface area of a cylinder. The surface area SA of a cylinder of
radius r and height h is SA = 2πrh (there is no top nor bottom to this cylinder). We can

functionally calculate this: Let g(x, y) = h, and define c(t) =

[
r cos t
r sin t

]
t be a curve, defined

on I = [0, 2π]. Then∫
c

g ds =

∫ 2π

0

h
√
r2 cos2 t+ r2 sin2 t dt =

∫ 2π

0

hr dt = 2πrh.

Example 17.4. A curve in R3. Integrate f(x, y, z) = xz
y

over x(t) =

 4
2t
t2

2

, defined on

I = [1, 2]. First, we calculate

||x′(t)|| =
√

02 + 22 + t2 =
√

4 + t2.

Then we can calculate the integral:∫
x

f ds =

∫ 2

1

(4)
(
t2

2

)
2t

√
4 + t2 dt =

∫ 2

1

2t
√

4 + t2 dt.

With the substitution u = 4 + t2, along with du = 2t dt, we get∫ 2

1

2t
√

4 + t2 dt =

∫ 8

5

√
u du =

2

3
u

3
2

∣∣∣∣8
5

=
2

3

(
16
√

2− 5
√

5
)
.

17.2.2. Real-valued, vector functions (vector fields). For a curve x : I → Rn, I = [a, b] ⊂ R,
where x(I) ⊂ x ⊂ Rn, inside a vector field F : X ⊂ Rn → Rn (it is again understood that
the entire curve is in X), one can ask how much of the vector field can be “seen” by (a point

on) the curve. Recall for a curve where x′(t) 6= 0, ∀t ∈ I, that T(t) = x′(t)
||x′(t)|| is the unit

tangent vector at t. Then the component of F along x is

F (x(t)) •T(t).
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We can, again, “add up” these values all along the curve to get∫
x

(F •T) ds,

the scalar line integral of F •T, as a scalar-valued function, along x.

Note, that, in a way, this represents the aggregate boost or hindrance a particle moving
along the curve would feel by the vector field.

But ∫
x

(F •T) ds =

∫ b

a

(
F (x(t)) •

x′(t)

||x′(t)||

)
||x′(t)|| dt

=

∫ b

a

F (x(t)) • x′(t) dt

=

∫ b

a

F (x(t)) • ds =

∫
x

F • ds,

where

ds =

 dx1
...
dxn

 =

 x′1(t) dt
...

x′n(t) dt

 =

 x′1(t)
...

x′n(t)

 dt = x′(t) dt

is the vector infinitesimal displacement and represents an infinitesimal change in displace-
ment along each coordinate direction (instead of just along the curve).

Definition 17.5. For a C1-curve x : [a, b] → X ⊂ Rn in a vector field F : X ⊂ Rn → Rn,
the vector line integral of F along x is∫

x

F • ds =

∫ b

a

F (x(t)) • x′(t) dt.

Some notes:

(1) Recall that the work W done by a vector field F (force field) on a particle is just the
force times the displacement d. As vector quantities, when the particle’s motion is
• linear:

W = F • d = ||F|| ||d|| cos θ = ||F|| · (displacement in direction of F) .

• curved: Here we must measure infinitesimally, and

W =

∫ b

a

F (x(t)) • x′(t) dt,

a scalar integral.
(2) Some facts:

Theorem 17.6. A scalar line integral is independent of the curve’s parameterization.

Theorem 17.7. A vector line integral depends on a curve’s parameterization only
in the direction of travel.

(3) Some curve facts:
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• For I = [a, b], and x : I → Rn, a piecewise C1-continuous curve, a C1-function
h : J = [c, d]→ I, which is 1-1, onto, and has a C1-inverse, induces p : J → Rn,
p = x ◦ h a reparameterization.
• For x 1-1 on I, then x(I) has only two directions of travel. A choice of direction,

given by the notion of increasing values of t along x, is called an orientation of
the curve.
• A reparameterization is called oriantation preserving if the direction of travel

along p(J ) is the same as that along x(I). Otherwise, the reparameterization
is called orientation reversing.
• Again, for I = [a, b], a curve x : I → Rn is called simple if x is 1-1 on (a, b), and

closed is x(a) = x(b).
• In general, scalar line (path) integrals are defined on curves, and vector line

integrals are defined on oriented curves.
(4) If x is a simple, closed curve, then the notation for a vector line integral is∮

x

F • ds

and is called the circulation of F along x. We will see the geometric interpretation
of this in time.

(5) For a vector line integral, the term

F • ds = F1 dx1 + . . .+ Fn dxn =
n∑
i=1

Fi dxi

is called a differential 1-form. We will devote more time to this later.

Example 17.8. Evaluate the integral∮
c

(x2 − y2) dx+ (x2 + y2) dy,

where c is the boundary of the unit square, oriented clockwise. Recognizing that
this integral is simply a vector line integral of the vector field F = (x2 − y2)i + (x2 + y2)j
over the closed, simple curve c given by the edge of the unit square, one sees that

(x2 − y2) dx+ (x2 + y2) dy = F • ds

is just a differentiable 1-form. The process here would be, then, the parameterize the unit
square perimeter by time, and integrate under the parameterization: We get

c(t) =


(0, t) 0 ≤ t ≤ 1

(t− 1, 1) 1 ≤ t ≤ 2
(1, 3− t) 2 ≤ t ≤ 3
(4− t, 0) 3 ≤ t ≤ 4

as our clockwise parameterization, beginning and ending at the origin. To understand the
switch to the parameterization, we highlight the first “piece”: Along the left-side edge of
the unit square only, the parameterization is the path c1, going from (0, 0) to (0, 1) and
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parameterized by t in the y-direction only. We get∫
c1

F • ds =

∫
c1

(x2 − y2) dx+ (x2 + y2) dy

=

∫ 1

0

F1(x(t), y(t))x′(t) dt+ F2(x(t), y(t))y′(t) dt

=

∫ 1

0

(
(0)2 − (t)2

)
(0 dt) +

(
(0)2 + (t)2

)
(1 dt)

=

∫ 1

0

t2 dt =
t3

3

∣∣∣∣1
0

=
1

3
.

Hence on the four pieces (so once around the square), we get∮
c

F • ds =

∮
c

(x2 − y2) dx+ (x2 + y2) dy

=

∫ 1

0

t2 dt+

∫ 2

1

(
(t− 1)2 − 12

)
dt+

∫ 3

2

(
12 + (3− t)2

)
dt+

∫ 4

3

(4− t)
2
dt

=

∫ 1

0

t2 dt+

∫ 2

1

(
t2 − 2t

)
dt+

∫ 3

2

(
10− 6t+ t2

)
dt+

∫ 4

3

(
16− 8t+ t2

)
dt

=
1

3
+

(
t3

3
− t2

) ∣∣∣∣2
1

+

(
10t− 3t2 +

t3

3

) ∣∣∣∣3
2

+

(
16t− 4t2 +

t3

3

) ∣∣∣∣4
3

=
1

3
+

(
8

3
− 4− 1

3
+ 1

)
+

(
30− 27 + 9− 20 + 12− 8

3

)
+

(
64− 64 +

64

3
− 48 + 36− 9

)
=

1

3
− 2

3
+

4

3
+

1

3
=

4

3
.

Example 17.9. Calculate the circulation of F = xi + yj over the unit circle in the

plane. Here, we can parameterize the unit circle as the simple closed curve x(t) =

[
cos t
sin t

]
,

for t on the interval t ∈ [0, 2π]. So∮
x

F • ds =

∫ 2π

0

F (x(t)) • x′(t) dt

=

∫ 2π

0

([
cos t
sin t

]
•

[
− sin t

cos t

])
dt =

∫ 2π

0

0 dt = 0.

Note that, here, the vector field is perpendicular to the curve everywhere. Hence there is no
circulation of F along x in this case.

Example 17.10. Circulation of a vector field along one if its integral curves. By
definition, if x is an integral curve of a vector field F on some interval [a, b], then for all
t ∈ [a, b], we have x′(t) = F (x(t)). So∫

x

F • ds =

∫ b

a

F (x(t)) • •x′(t) dt

=

∫ b

a

x′(t) • x′(t) dt =

∫ b

a

||x′(t)||2 dt.

In this case, we are again simply adding up the vector field components along the curve, but
here they equal the velocity vectors all along the curve.


