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Synopsis. Today we continue the general idea of integration of a real-valued function on
more than one variable by generalizing the 2-dimensional version to three dimensions. There
is little that is new here except for the pattern of the generalization that leads to the n-
dimensional version. Fubini’s Theorem still holds, and switching the order of integration
outside of a cuboid region still involves checking that the region is elementary in different
permutations of the variables of integration and that, if so, one can rewrite the limits as
functions of some of the variable properly.

Volumes of higher dimensional regions. Let

B =

(x, y, z) ∈ R3

∣∣∣∣∣∣
a ≤ x ≤ b
c ≤ y ≤ d
p ≤ z ≤ q


be a cuboid. We can approximate the volume of the four-dimensional solid S with B as its
base (can you envision this?) and graph(f) as its roof, where f : B → R is a nonnegative
C0-function, by:

• Partitioning all three dimensions of B so that

Bijk =

(x, y, z) ∈ R3

∣∣∣∣∣∣
x ∈ [xi−1, xi]
y ∈ [yj−1, yj]
z ∈ [zk−1, zk]

 ,

with lengths ∆xi = xi − xi−1, ∆yj = yj − yj−1, and ∆zk = zk − zk−1. Note that, in
this construction, we will choose a partition size of n for all three dimensions. This
will greatly simplify the construction;
• Find volume(Bijk) = ∆Vijk = ∆xi∆yj∆zk;
• Choose a point cijk ∈ Bijk, ∀i, j, k ∈ {1, . . . , n};
• Sum over indices,

volume(S) ≈
n∑

i,j,k=1

f(cijk)∆Vijk.

Then the triple integral of f over B is

volume(S) =

∫∫∫
B
f dV = lim

n→∞

n∑
i,j,k=1

f(cijk)∆Vijk = lim
n→∞

n∑
i,j,k=1

f(xi, yj, zk)∆xi∆yj∆zk.

Here are some facts about triple integrals:

(1) Fubini’s Theorem still holds in higher dimensions.
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(2) A region W ∈ R3 is called elementary if it can be written as

W =

(x, y, z) ∈ R3

∣∣∣∣∣∣
a ≤ x ≤ b

α(x) ≤ y ≤ β(x)
ϕ(x, y) ≤ z ≤ ψ(x, y)

 ,

or some permutation of these variables. Here, one direction should look like an
interval, a second direction should look like the difference between two functions of
that first variable, and the third direction should look like the difference between two
functions of the other two.

(3) Given an elementary W , then, if f is continuous on W , we have∫∫∫
W
f dV =

∫ b

a

∫ β(x)

α(x)

∫ ψ(x,y)

ϕ(x,y)

f(x, y, z) dz dy dx,

or, again, some permutation of the three variables. Note again that the integrals are
nested here.

(4) The volume of the solidW can be found by integrating the unit function f(x, y, z) =
1, so

volume(W) =

∫∫∫
W

1 dV =

∫∫∫
W
dV.

(5) Sometimes, it is advantageous to understand that∫∫∫
W
f dV =

∫∫
D

∫ ψ(x,y)

ϕ(x,y)

f(x, y, z) dz dA,

for D elementary in x and y, and W elementary in all three variables.

Example 15.1. What is the volume of the unit sphere in R3? Here we define the
unit 2-sphere as

S2 =
{

(x, y, z) ∈ R3
∣∣ x2 + y2 + z2 = 1

}
,

noting that the notation is common in mathematics and generalizes to Sn, the unit n-sphere,
n ∈ N, as a subset of Rn+1. One ways to think of this is the set of all unit-length vectors in
(n+ 1)-space. So what does S1 look like? How about S0??

Here, then, the space consisting of S2 and its interior is sometimes called the (unit) 3-ball,
or B3. So we are looking for the volume of B3. Note that B3 is elementary, and can be
written as the difference between two functions z = −

√
1− x2 − y2 and z =

√
1− x2 − y2,

on the domain

D =
{

(x, y) ∈ R2
∣∣ x2 + y2 = 1

}
=
{

(x, y, z) ∈ R2
∣∣ x2 + y2 = 1, z = 0

}
.

These graphs of these two functions are the southern and northern hemispheres of S2, re-
spectively, and meet at the equator.

So here,

volume(B3) =

∫∫∫
B

i dV =

∫∫
D

∫ √1−x2−y2

−
√

1−x2−y2
dz dA

=

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ √1−x2−y2

−
√

1−x2−y2
dz dy dx.
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Example 15.2. Let W be the region bounded by y = x2 and y + z = 9 and the
xy-plane. Integrate f(x, y, z) = 8xyz over W . Here, the roof of this solid is the inclined
plane z = 9 − y, the floor is the xy-plane, and the wall is given by the parabolic y = x2,
projected vertically out of the floor. We get Figure 15.1 below. W is an elementary region,
and one way to see this is the following: As z goes from the floor at 0 to the roof at 9− y,
the variable y goes from 9 to x2, and x ranges from −3 to 3. Hence the integration is∫ 3

−3

∫ 9

x2

∫ 9−y

0

8xyz dz dy dx =

∫ 3

−3

∫ 9

x2

[
8xy

(
z2

2

) ∣∣∣∣9−y
0

]
dy dz

=

∫ 3

−3

∫ 9

x2
4xy(9− y)2 dy dx

=

∫ 3

−3

∫ 9

x2
4x
(
81y − 18y2 + y3

)
dy dx

=

∫ 3

−3
4x

[(
81

2
y2 − 18

3
y3 +

y4

4

) ∣∣∣∣9
x2

]
dx

=

∫ 3

−3
4x

[
812

2
− 6(9)3 +

94

4
− 81

2
x4 + 6x6 − x8

4

]
dx = 0.

A good question to ask is: Why is this quantity 0? One can “see” that this is true at this
point due to the properties of the integral one learned in single variable calculus. Indeed,
notice that the integrand is actually an odd function, symmetric with respect to the origin.
In this case, the integrans is a polynomial with all of the monomials of odd degree, and that
the interval one is integrating over is of the form [−a, a], for some a ≥ 0. Hence one can
cease calculating here and conclude.

Figure 15.1. The solid W in Example 15.2.


