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Synopsis. The integral calculus of functions of more than one variable also follows closely the
structure and patterns of single variable calculus. However, noting that graphs of functions,
even of two independent variables are no longer curves, but hypersurfaces in Rn+1, the idea
of “area under a curve” must be suitably generalized. In this lecture, we lay the groundwork
to understand volumes in many dimensions and what is means to calculate. Then we alter
the idea of single variable integration to fit this new multidimensional arena and build the
tools and structures we need to create the integral calculus.

Volumes of regions. The area of a two dimensional region R (say the difference between
the graphs of two function over the same domain in single variable calculus, is really just
a “sum” of the lengths of all of the vertical lines formed by slicing (along lines of constant
values of the independent variable x) on some interval of x comprising the region. Using
Figure ?? below, we have

Area(R) =

∫ b

a

`(x) dx,

where for each value of x ∈ [a, b], the value of `(x) is f(x)−g(x) on the left and f(x)−0 = f(x)
on the right.

This remains true in higher dimensions, at least once we understand the notions of lengths
and areas in higher dimensions: Given f(x, y), a nonnegative function defined and continuous
on the rectangle

(14.1) R =
{

(x, y) ∈ R2
∣∣ a ≤ x ≤ b, c ≤ y ≤ d

}
,

its graph lies “over” the region in the xy-plane in R3 as the set of points (x, y, 0) ∈ R3,
where (x, y) ∈ R. Add in the vertical walls connecting the four edges of R in the floor to
the corresponding graphs of the edges in graph(f), and one obtains a solid region in R3, as
in Figure ??, which we define as

S =
{

(x, y, z) ∈ R3
∣∣ a ≤ x ≤ b, c ≤ y ≤ d, 0 ≤ z ≤ f(x, y)

}
.

We can calculate the volume of S as the sum of all of the areas of the “vertical” slices through
S by, say, slicing along lines of constant x, which we will call Rx. In this way, we could write

Volume(S) =

∫ b

a

Area(Rx) dx.

Note that we could also slice vertically along lines of constant y, creating regions Ry, so that

Volume(S) =

∫ d

c

Area(Ry) dy.

We will stick with the former for now.
1
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So, for each value of x, what is the area of each Rx? At a point x0 ∈ [a, b], the area of
Rx0 is

Area(Rx0) =

∫ d

c

`(y) dy =

∫ d

c

f(x0, y) dy.

Nesting these two concepts together, we arrive at

Volume(S) =

∫ b

a

Area(Rx) dx =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ b

a

∫ d

c

f(x, y) dy dx.

Some notes:

• The parentheses distinguishing the “inside” integral from the “outside” (in the penul-
timate expression) are not strictly needed (and hence removed) if one understands
that the integrals are always taken to be nested.
• The use of the choice of x = x0 subscript is also not needed, and hence removed. It

is understood here that as one integrates with respect to one variable, the other is
considered fixed, like a parameter. Do you recall this idea from the notion of partial
differentiation?
• If the limits of the variables do not depend on each other, then the region one is

integrating over is rectangular. In this case, one can reverse the process and form
a nested pair of integrals with the order of integration reversed, but with the same
result. So

Volume(S) =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

The general notion of parameterizing the parallel slices (in any chosen direction) through
a solid to find its volume is known as Cavalieri’s Principle. Let S ⊂ Rn be an n-dimensional
solid in n-space, bounded in the x1-direction by [a, b]. Then

Volume(S) =

∫ b

a

Volume(Rx1) dx1,

where Volume(Rx1) is the volume of the (n−1)-dimensional x1-slice through S at x1 ∈ [a, b].
Recursively speaking, calculating the volume of S will involve a nested set of n integrals,
or an n-tuple integral. Note that, while we would easily use terms like quadruple integral or
quintuple integral for volumes in, respectively, R4 and R5, we commonly refer to a nested set
of three integrals as a triple integral, and in two dimensions, a double integral.

Now one can define a double integral on a rectangular region R via a 2-dimensional
Riemann Sum:

Define a nonnegative f(x, y) on the regionR defined above in Equation 14.1, and partition
R into boxes by partitioning the two intervals [a, b] and [c, d]:

a = x0 < x1 < · · · < xn−1 < xn = b, and

c = y0 < y1 < · · · < ym−1 < ym = d,

so that ∆xi = xi − xi−1 and ∆yj = yj − yj−1. Then the area of the ijth box is then
∆Aij = ∆xi∆yj.

Now choose a point (pi, qj) within each box, where pi ∈ [xi−1, xi] and qj ∈ [yj−1, yj],
i = 1, . . . , n and j = 1, . . . ,m. Then we can approximate the volume of the solid S between
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the floor (the domain R in the xy-plane in R3, the ceiling (the graph(f) over R, by the
sum of all of the volumes of the small cuboids whose base in [xi−1, xi] × [yj−1, yj], height is
f(pi, qj). Hence

Volume(S) ≈
n∑
i=1

m∑
j=1

f(pi, qj)∆Aij.

This is a 2-dimensional Riemann Sum.

Definition 14.1. The double integral of f on R is∫∫
R
f dA = lim

n,m→∞

n∑
i=1

m∑
j=1

f(pi, qj)∆Aij

when the limits exists.

Notes:

(1) Actually, as stated, the definition has a serious flaw in it. I will leave it unspecified
to see if you can see it. It is a flaw in the nature of the limit. Find it!

(2) If the limit exists, then we say f is integrable on R.
(3) The notation used, without specific upper and lower limits but the more general R

under the double integral sign, is common and accentuates the region R instead of
the coordinates used. But, using the standard cartesian coordinates x, and y, we
automatically know then, that, in this case,∫∫

R
f dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

(4) Over any base box in a Riemann Sum, if f(x, y) < 0, then we interpret the volume
of that box as negative, just like in single variable calculus.

(5) Also like in single variable calculus, the same problems and caveats that occur with
the limit can occur here also:
• In single variable calculus, piecewise continuous functions on an interval [a, b] are

integrable. Recall that piecewise continuous functions are those that are contin-
uous everywhere, except on a finite set of points where “jump” discontinuities
can occur.
• In two dimensions, if f is bounded on R with the set of all discontinuities having

zero area, then f is integrable. One way to see this is to think of graph(f) as
smooth but possibly cut up into a finite number of pieces.
• Continuous functions on closed, bounded domains are always integrable.

Theorem 14.2 (Fubini). Let f be bounded on R = [a, b]× [c, d] and assume that the set S
of discontinuities of f on R has zero area. If every line parallel to the coordinate axes meets
S in, at most, a finite number of places, then∫∫

R
f dA =

∫ b

a

∫ d

c

f(x, y) dy dx =

∫ d

c

∫ b

a

f(x, y) dx dy.

Notes:

• The fact that R is a rectangle is vital here.
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• The stipulation that all lines parallel to coordinate axes meet S in at most a finite
number of places is sufficient but not strictly necessary. It forces the function inter-
secting the slice to be piecewise continuous, and thus integrable. But this is not the
only way to have an integrable funciton on each slice.
• For all intents and purposes, aero area means that the set of discontinuities has

smaller dimension as a set than R.

The properties of double integrals reflect those of their 1-dimensional cousins. See Propo-
sition 5.2.7 on page 320 of the text.

Keep in mind that Cavalieri’s Principle will still hold for solids in 3-space defined for
regions of the plane (as domains for functions) more general than rectangles. However, the
order of integration, when defining and calculating a double integral, may matter. Hence,
we need to understand why and how.

Definition 14.3. A region D ⊂ R2 is called elementary if it can be described via an interval
in one variable and as the difference between two functions of that variable in the other.
There are three types:

(1) Type I: D =
{

(x, y) ∈ R2
∣∣ a ≤ x ≤ b, γ(x) ≤ y ≤ δ(x)

}
, where γ(x) and δ(x) are

continuous functions on [a, b].
(2) Type II: D =

{
(x, y) ∈ R2

∣∣ c ≤ y ≤ d, α(x) ≤ x ≤ β(x)
}
, where α(y) and β(y) are

continuous functions on [c, d].
(3) Type III: D is of both Type I and Type II.

A region D is called non-elementary if it is neither Type I nor Type II. We immediately
have:

Theorem 14.4. If D ⊂ R2 is elementary and f is C0 on D, then

(1) Type I:

∫∫
D
f dA =

∫ b

a

∫ δ(x)

γ(x)

f(x, y) dy dx,

(2) Type II:

∫∫
D
f dA =

∫ d

c

∫ β(y)

α(y)

f(x, y) dx dy.

Note here that the proof is noneventful, and relies on a notion of extending D to some
rectangular region R ⊃ D by creating a new function f ext on R which equals f on D and is
0 outside of D in R. This creates a discontinuous function on R, but one that is integrable
according to Fubini. Do not worry about this technique. It works for the theorem, but is
not necessary to know for a good understanding of integration.

Example 14.5. Let f(x) = −3
2
x + 4, and g(x) = 1

2
x. The region D in the (closed) first

quadrant of the plane between these two functions is a triangle of height 2, with base along
the y-axis from 0 to 4. Integrate the function h(x, y) = 2x+ 2y on D.

Strategy: View D as elementary of either type and construct the double integral according
to Theorem 14.4. Then use the Fundamental Theorem of Calculus (from single variable
calculus) on the “inside” integral, then again on the “outside” integral.
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Solution: Viewing D as a Type I elementary region, we set γ(x) = g(x) and δ(x) = f(x),
and use the formula of Theorem 14.4 to set up the integral. We get

∫∫
D
f dA =

∫ 2

0

∫ − 3
2
x+4

1
2
x

(2x+ 2y) dy dx.

Then we calculate:

∫∫
D
f dA =

∫ 2

0

∫ − 3
2
x+4

1
2
x

(2x+ 2y) dy dx =

∫ 2

0

[(
2xy + y2

) ∣∣∣∣− 3
2
x+4

1
2
x

]
dx

=

∫ 2

0

[
2x

(
−3

2
x+ 4

)
+

(
−3

2
x+ 4

)2

−

(
2x

(
1

2
x

)
+

(
1

2
x

)2
)]

dx

=

∫ 2

0

[
−3x2 + 8x+

9

4
x2 − 12x+ 16− x2 − 1

4
x2
]
dx

=

∫ 2

0

(
−2x2 − 4x+ 16

)
dx

=

(
−2

3
x3 − 2x2 + 16x

) ∣∣∣∣2
0

= −16

3
− 8 + 32 =

56

3
.

Notice that we can also deem D as elementary of Type II, using

α(y) = 0, and β(y) =

{ −2
3
(y − 4) y ∈ [1, 4]

2y y ∈ [0, 1].
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Then the construction and calculation become∫∫
D
f dA =

∫ 4

0

∫ β(y)

α(y)

(2x+ 2y) dx dy

=

∫ 1

0

∫ 2y

0

(2x+ 2y) dx dy +

∫ 4

1

∫ − 2
3
(y−4)

0

(2x+ 2y) dx dy

=

∫ 1

0

[(
x2 + 2xy

) ∣∣∣∣2y
0

]
dy +

∫ 4

1

[(
x2 + 2xy

) ∣∣∣∣− 2
3
(y−4)

0

]
dy

=

∫ 1

0

(
(2y)2 + 2(2y)y

)
dy +

∫ 4

1

((
−2

3
(y − 4)

)2

+ 2

(
−2

3
(y − 4)

)
y

)
dy

=

∫ 1

0

8y2 dy − 2

3

∫ 4

1

(
−2

3
(y2 − 8y + 16) + 2y2 − 8y

)
dy

=

[
8

3
y3
∣∣∣∣1
0

]
− 2

3

∫ 4

1

(
4

3
y2 − 8

3
y − 32

3

)
dy

=
8

3
− 8

9

[(
y3

3
− y2 − 8y

) ∣∣∣∣4
1

]

=
8

3
− 8

9

(
64

3
− 16− 32− 1

3
+ 1 + 8

)
=

8

3
− 8

9
(−18) =

8

3
+ 16 =

56

3
.

And lastly, more complicated regions (those that are not elementary), can usually be
broken up into a set of elementary regions that meet along boundaries. Then the integrals
over these adjacent regions can be added together, noting that the contributions along the
boundaries will be zero.

Example 14.6. Consider the annular region D between the two planar equations x2+y2 = 1
and x2 +y2 = 4. This region is not elementary! But in the plane, slice up D into four regions
using the two vertical lines x = ±1, as in Figure ??. Then we have

• D1 =
{

(x, y) ∈ R2
∣∣ − 4 ≤ x ≤ −1, −

√
4− x2 ≤ y ≤

√
4− x2

}
,

• D2 =
{

(x, y) ∈ R2
∣∣ − 1 ≤ x ≤ −1, −

√
4− x2 ≤ y ≤ −

√
1− x2

}
,

• D3 =
{

(x, y) ∈ R2
∣∣ − 1 ≤ x ≤ −1,

√
1− x2 ≤ y ≤

√
4− x2

}
,

• D4 =
{

(x, y) ∈ R2
∣∣ 1 ≤ x ≤ 4, −

√
4− x2 ≤ y ≤

√
4− x2

}
. As written, all of these

are Type I.

Example 14.7. Find the area of a circle of radius r ≥ 0. Here, the circle of radius r
centered at the origin is the set of points that satisfy the equation x2 + y2 = r2. The region
is then the closed disk Dr consisting of the interior of this circle and the circle itself. It is
elementary of Type III, and can be written as elementary of Type I as

Dr =
{

(x, y) ∈ R2
∣∣ − r ≤ x ≤ r, −

√
r2 − x2 ≤ y ≤

√
r2 − x2

}
.



LECTURE 14: THE DEFINITE INTEGRAL. 7

Using this, then, we have

Area(Dr) =

∫ r

−r

∫ √r2−x2
−
√
r2−x2

dy dx.

Two things here: First, what is the integrand here? And why does this work? And secondly,
finish this calculation. Note that you will have to use a inverse trig substitution to solve
this. Perhaps THAT is why you will wind up with the answe: Area(Dr) = πr2.


