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Synopsis. Just as in single variable calculus, optimizing a function of one variable is a mat-
ter for the Extreme Value Theorem and local extrema. But often, situations arise where the
objective function involves more than one variable. In this case, there are usually relation-
ships between the variables that allow for rewriting the function as a function of one variable.
This is a form of constrained optimization that generalizes well to multivariable calculus.
Today we explore this idea, using geometry to “see” our way through to a technique. This
leads to the technique of Lagrange multipliers, which we develop here.

Helpful Documents. Mathematica: LagrangeMult.

Figure 13.1. A fenced yeard along a river.

One variable optimization. Recall optimization in
single variable calculus:

Example 13.1. Using 1800 linear feet of fencing,
construct a rectangular yard along a straight river
with the largest area possible. The idea here is to
maximize area of a rectangular region. Given the two
unknowns of length and width, say, x and y, maxi-
mize area A = xy. Of course, there is a constraint
in that you can only use up to 1800 feet of fencing.
Mathematically speaking, this means that 1800 = 2x + y, given the arrangement of the
rectangle in Figure 13.1. We call the area equation here the objective function, and the
perimater fencing equation the constraint.

The constraint facilitates calculation by

• allowing us to change the objective function, via substitution, into a function of only
one variable, and
• allows us to use single variable calculus techniques to help locate the extrema of the

objective function within the constraints.

Now, since 1800 = 2x+ y, we know y = 1800− 2x, so that

A = xy = x(1800− 2x) = 1800x− 2x2.

This is a clue that we are on the right track here, as A(x) has a graph which is a parabola
opening down (the leading coefficient is negative). Hence it will have a max at the vertex. We
also know that the variables must be nonnegative numbers, as they denote lengths. Hence
0 ≤ x ≤ 900 and 0 ≤ y ≤ 1800. Hence A(x) has a domain [0, 900] and by the Extreme Value
Theorem, must achieve its maximum either at an endpoint or at a critical point. And as
A(x) is differentiable, all critical points will occur at places where a′(x) = 0. Here

A′(x) = 1800− 4x = 0 is solved only by x = 450.
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Immediately, using the Second Derivative Test, we also see that A′′(450) = −4 > 0. Hence
x = 450 corresponds to a local maximum, and since A(0) = A(900) = 0, x = 450 corresponds
to a global maximum.

The solution, then, is to construct the pen in Figure 13.1 with x = 450 feet, and y = 900
feet.

Here is a different viewpoint of the same problem: Leave the function A = A(x, y) = xy
as a function on two variables, and consider the level sets of A(x, y) on the domain

R =
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ 900, 0 ≤ y ≤ 1800

}
,

a few of which are graphed in Figure 13.2. Also on R an in the figure, we can graph the
constraint curve (as the red line), thinking of it as the 0-level set of the function P (x, y) =
2x + y − 1800. Now, if we are forced to stay on the constraint line, is there a place on this
red line where we touch or cross the level set of A(x, y) corresponding to the largest area?
One can possibly see it in the figure. But can one “calculate” it?

Figure 13.2. Level set of A(x, y) = xy in black, and 0-
level set of P (x, y) = 1800− 2x− y in red.

In this new approach, both the objective
function and the constraint are left as func-
tions of the two variables. And we search
for a geometric solution to locating an ex-
tremum of one function constrained by a sec-
ond one. One can see in the figure that, as
we move along the red line, we are cutting
through the level sets of A for a while. At
some point, we go tangent to a particular
level set and then we start cutting through
level sets of A again, although in the other
direction (first form lower to higher, then
from higher to lower values of A). SO what
to we see as the values of A along the red
line? We see A rising for a while (cutting
through blue lines of increasing A, topping
out at some point (the red line becomes tan-
gent to a blue line), then declining in value
(again cutting through level set of decreas-

ing A). We have found our maximum of A along the red line via the point of tangency with
a blue line!

This new, geometric, idea of optimization can be generalized: Optimize f : X ⊂ Rn → R,
subject to g : X → R, where g(x) = c. We look for extrema of f while constrained to the
c-level set of g. We note here that the idea we started with, that of using the constraint
to remove one of the variables in the objective function is less helpful in this multivariable
setting. And possibly impossible:

Example 13.2. Maximize f(x, y, z) = x2 + 3y2 + y2z4, subject to g(x, y, z) = exy − xyz +
cos
(
xy
z

)
= 2. Try to solve for one of the variables in g as a function of the other two, and

substitute that into f to remove a variable!
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Theorem 13.3. For X ⊂ Rn open, f, g : X → R both C1-functions, let

S =
{
x ∈ X

∣∣ g(x) = c
}

be the c-level set of g. Then, if f
∣∣
S
has an extremum at x0 ∈ S, where ∇g(x0) 6= 0, then

∃λ ∈ R such that

∇f(x0) = λ∇g(x0).

Some notes:

• The extrema of f will happen at places where ∇f is a multiple of ∇g, as vectors.
These wind up being places of tangency between level sets, and places where often
the level set of g stops cutting through the level sets of f (for a moment).
• The equation ∇f(x0) = λ∇g(x0) is actually set of n equaitons (nonlinear) in n + 1

unknowns (each component of the vector x, along with the real number λ). So there
are lots of solutions!
• But if we add in the constraint itself, we arrive at n+ 1 equations in n+ 1 unknowns:

fx1(x) = λgx1(x)

...

fxn(x) = λgxn(x)

g(x) = c.

• The variable λ is called a Lagrange multiplier. It’s actual value is not nearly as
important as its existence!

Example 13.4. Identify all critical points of f(x, y) = 5x + 2y, subject to g(x, y) = 5x2 +
2y2 = 14.

Here, ∇f(x) =

[
5
2

]
and ∇g(x) =

[
10x
4y

]
. The system is then

fx(x) = λgx(x) 5 = λ10x

fy(x) = λgy(x) 2 = λ4y

g(x) = c 5x2 + 2y2 = 14.

Solving, we find by the first and second equations, that x = 1
2λ

= y. So the last equations
becomes

5

4λ2
+

2

4λ2
= 14, =⇒ λ = ± 1

2
√

2
.

Hence the critical points are (x, y) =
(√

2,
√

2
)

and (x, y) =
(
−
√

2,−
√

2
)

Geometrically, one can see whether these points are extrema or not, and why the gradient
condition is quite telling. And analytically?

Handling multiple constraints is done in the same general fashion:

• Each constraint tends to reduce the number of independent variables by one.
• Each constraint tends to reduce the dimension of the space that we evaluate the

objective function along by one.
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• in R3, one objective function has level sets which are generically surfaces. Each
constraint will also have level sets which are mostly surfaces. two surfaces typically
meet in a curve. We then evaluate the objective function along this curve, looking
for extrema in a very single variable calculus fashion.

Example 13.5. Find the extrema of f(x, y, z) = 2x + y2 − z2, subject to g1(x, y, z) =
x− 2y = 0 and g2(x, y, z) = x+ z = 0.

Here, one could simply replace z with −x and y with x
2
, and look for extrema of f(x) =

2x + x2

4
− x2 = 2x− 3

4
x2. One would find that x = 4

3
is the only extremum and that it is a

maximum. So the point x0 =
(
4
3
, 2
3
,−4

3

)
is the only critical point of f .

Geometrically, How do we construct a system that we can solve for?

Theorem 13.6. For X ⊂ Rn open, f, g1, . . . , gk : X → R be C1-functions, with k < n. Let

S =
{
x ∈ X

∣∣ g1(x) = c1, . . . , gk(x) = ck
}

be the intersection of the level sets of the gi, i = 1, . . . , k. Then, if f
∣∣
S
has an extremum at

x0 ∈ S, where ∇g1(x0), . . . , gk(x0) are all linearly independent as vectors, then there exist
scalars λ1, . . . , λk ∈ R such that

(13.1) ∇f(x0) = λ1∇g1(x0) + . . .+ λk∇gk(x0).

Notes:

• Recall that linear independence as vectors as means that every vector must be
nonzero!
• Basically, as a vector and at an extremum, ∇f(x0) must be in the space spanned by

the ∇gi(x0), for i = 1, . . . , k.

Example 13.7. In Example 13.5 above, we sought the extrema of f(x, y, z) = 2x+ y2− z2,
subject to the two constraints g1(x, y, z) = x − 2y = 0 and g2(x, y, z) = x + z = 0. To use
Theorem 13.6, we form Equation 13.1 directly via the vectors

∇f(x) =

 2
2y
−2z

 , ∇g1(x) =

 1
−2

0

 , and ∇g2(x) =

 1
0
1

 .
Here, the constraint vectors are linearly independent everywhere (why is this?), so the system
is

fx(x) = λ1
∂g1
∂x

(x) + λ2
∂g2
∂x

(x) 2 = λ1 + λ2

fy(x) = λ1
∂g1
∂y

(x) + λ2
∂g2
∂y

(x) 2y = −2λ1

fz(x) = λ1
∂g1
∂z

(x) + λ2
∂g2
∂z

(x) −2z = λ2

g1(x) = c1 x− 2y = 0

g2(x) = c2 x+ z = 0.

There are many ways to solve these 5 equations in 5 unknowns. One way it so eliminate
the lambdas in the first equation via substitution using the second and third. One obtains
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λ1 = −y and λ2 = −2z, so that the first equation is 2 = −y − 2z. And eliminating x in the
last two equations yields the single equation 0 = 2y + z. Together, the system

2 = −y − 2z

0 = 2y + z

is solved by z = −4
3

and y = 2
3
. One then calculates x = 4

3
, so that the only critical point of

f is again x0 =
(
4
3
, 2
3
,−4

3

)
.


