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Synopsis. Local and global extrema are much like their counterparts in single variable
calculus. They are just points in the domain of a real-valued function where the function
value is locally the lowest or highest. And they occur, if at all, at critical points of the
function. If the function is differentiable everywhere, then extrema only occur at places
where the derivative (matrix) has zeros in all of its elements. Thus all of the directional
derivatives are 0 here also. But since directional derivatives are just derivatives along slices
through the function, we can also check the concavity of these slice functions along vector
directions in the domain. This leads to a notion of a second directional derivative, and also to
one major application of the Hessian matrix of second partials. Relating this to a quadratic
form, we construct the Second Derivative Test for a C2-real-valued function of more than
one variable. We then end with the multidimensional counterpart of the Extreme Value
Theorem, once we understand what closed and bounded mean for a domain in real n-space.

Helpful Documents. Mathematica: Extrema, MoreExtrema.

Local extrema. Like in single variable calculus, local extrema are important properties of
functions:

Definition 12.1. The function f : X ⊂ Rn → R, for X open, has a local minimum at a ∈ X
if there exists a neighborhood U(a) ⊂ X such that f(x) ≥ f(a), for every x ∈ U . And f has
a local maximum at a ∈ X if there exists a neighborhood U(a) ⊂ X such that f(x) ≤ f(a),
for every x ∈ U .

Some Notes:

• A local minimum (maximum) is global if U = X.
• If f ∈ C1, then local extrema have a special quality:

Theorem 12.2. Given X ⊂ Rn open and f : X → R a C1-function, if f has a local
extremum at a ∈ X, then Df(a) is the zero matrix (every entry in the matrix is 0).

• The proof of this theorem shows that a directional derivative, evaluated at a in
this case, would see a local extremum here in every direction. In particular, in the
coordinate directions. And the only matrix A1×n that takes every possible n-vector
to 0 is the 0-matrix.

Definition 12.3. Given f : X ⊂ Rn → R, with X open, a point a ∈ X is a critical point of
f if either

(1) Df(a) = 01×n, or
(2) Df(a) is undefined.

Just like in single variable calculus, extrema happen at critical points, but not all critical
point need be extrema. Some examples of critical points include:
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• sharp mountain ridges or roof peaks, or mountain top points, where the derivative
matrix is not defined,
• smoothed over mountain tops where the derivative matrix is the zero matrix,
• saddle points,
• mesas and flood plains.

Recall that the graph of a function f : X ⊂ Rn → R is a subset of Rn+1 where X ⊂ Rn

is pictured as the “floor”, and the height above the floor is hte value of the last variable
xn+1. At a place (a, f(a)), where the derivative matrix is the zero matrix, the equation of
the tangent space would be

xn+1 = f(a) + Df(a) (x− a) = f(a)

and the tangent space is parallel to the floor, or “horizontal”.

However, like in Calculua I, extrema do not need to exist at all for particular functions:

Example 12.4. Let f(x, y) = x2 + y2, on the domain X = R2 − (0, 0), the plane without
the origin. What would you consider the point in X where f achieves its maximum? How
about it’s minumum?

So how does one detect an extremum, given a critical point? Really, it is all about the
structure. Some ideas:

(1) Look for extreme bahavior by simply testing functions values for points “near” the
critical point. In single variable calculus, we sometimes call this the 0th Derivative
Test. This method is sometimes employed when the derivative matrix is not defined
at a critical point.

(2) If f is differentiable at a critical point a, then the derivative matrix is the zero matrix
there. Again, this means that every directional derivative will also be 0 at a. Recall
that directional derivatives are defined via vertical slices through the graph of the
function f along directions through a in the domain. If one follows the curve where
graph(f) intersects the slice, adn sees the derivative go from negative (before a), to
0 (at a), to positive (after a), and this happens in every direction, then you have a
local minimum at a. Of course, one can generalize this stipulation and say that in
some or all directions, the derivative can stay 0 near a, and we would still have a
local min there. One can characterize this as a form of First Derivative Test for a
critical point.

(3) Or if, within each slice, f , restricted to the slice is concave up or down and stays
that way for all of the slices, then f is locally extreme at a. (Again, all that is really
necessary is that the concavity is not mixed along the slices.) If locally extreme is
every direction, then locally extreme.

Example 12.5. For the parabolic bowl, f : R2 → R, f(x, y) = x2 + y2, we know that
f ∈ C1, since it is a polynomial, and

Df(x) =
[

2x 2y
]

=
[

0 0
]

only at the origin x = y = 0. So we have

Dv

([
0
0

])
= Df(0)v =

[
0 0

] [ v1
v2

]
= 0, ∀v ∈ R2.
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So choose a direction v =

[
v1
v2

]
∈ R2 ⊂ R3 in the floor of R3, considered the domain of

f . Then the vertical plane containing v is defined by the vector orthogonal to both v and

the vector

 0
0
1

 (why is this true?), and is

 v1
v2
0

×
 0

0
1

 =

∣∣∣∣∣∣
i j k
v1 v2 0
0 0 1

 =

 v2
−v1

0

 , or v2x− v1y = 0.

Notice that, in the domain, this is just the line y = v2
v1
x, at least when v1 6= 0.

Now the graph of this line is the set of points(
x,

v2
v1
, f

(
x,

v2
v1

))
=

(
x,

v2
v1
, x2

(
1 +

v22
v22

))
∈ R3.

So let fv = f

∣∣∣∣
y=

v2
v1

x

: R→ R, where fv(x) = x2
(

1 +
v22
v21

)
. Here, of course, we have the data

f ′v(0) = 2x

(
1 +

v22
v21

) ∣∣∣∣
x=0

= 0, and f ′′v(0) = 2

(
1 +

v22
v21

) ∣∣∣∣
x=0

> 0.

Hence, within the slice formed by v, fv is concave up, and, at least in this direction,
according to the Second Derivative Test for an extremum from Calculus I, the point 0

corresponds to a local min of f

∣∣∣∣
v

. And since this will be true of all choices of v (we did

ntoot specify values of the entries v1 and v2), we can safely conclude that a = 0 is a local
minimum for f . Yes, I know, it is a global minimum on any domain that contains the origin

Now for f : X ⊂ Rn → R a C2-function, we already have access to all of its second
derivative information in the form of the Hessian of f ,

HF (a) =

 fx1x1(a) · · · fx1xn(a)
...

. . .
...

fxnx1(a) · · · fxnxn(a)

 .

Recall that Dvf(a) = Df(a)v. One can also show that D2
vf(a) = vTHf(a)v is the second

directional derivative of f in the direction of v. It directly measures the concavity of the
curve which is the intersection of graph(f) with the slice determined by v at a.

Exercise 1. Show that the second directional derivative of f in the direction of v is given
by D2

vf(a) = vTHf(a)v.

Hence if D2
vf(a) = vTHf(a)v > 0, for every direction v at a ∈ X, then we can be assured

that there is a local minimum of f at a.

Some notes:
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• For every n×n matrix A, one can construct a quadratic form: A real-valued function
Q : Rn → R defined by

Q(x) = xTAx =
n∑

i=1

aijxixj.

In dimension-1, any quadratic form will look like Q(x) = ax2, and in dimension-2,

with A =

[
a b
c d

]
, we have Q(x, y) = ax2 + (b+ c)xy + dx2. In general, a quadratic

form will be a polynomial in the variables given, with each monomial corresponding
either to the product of two variables or the square of one of them, with total exponent
2 (sum the exponents of each of the factors).
• Quadratic forms are invariant under conjugations of the matrix defining the form.

Hence we can always take A to be symmetric (which means aij = aji throughout A,
or AT = A.
• Hessians are always symmetric! (why?)
• A quadratic form Q(x) is called positive definite if Q(x) > 0, for every x 6= 0. (And

negative definite if Q(x) < 0, for every x 6= 0.)

Theorem 12.6. For X ⊂ Rn open, let f : X → R be C2 with a critical point a ∈ X.

(1) if Hf(a) is positive definite, then f has a local minimum at a.
(2) if Hf(a) is negative definite, then f has a local maximum at a.
(3) If det Hf(a) 6= 0, and neither positive nor negative definite, then a is a saddle.

There is a mechanical process for determining when a matrix if positive or negative definite
and it is all linear algebra. In essence, it involves testing the leading principal minors of
Hf(a) to see if Hf(a) is positive definite, negative definite, or neither.

Indeed, let Q(a) = xTan×nx be a quadratic form. Define the kth leading principal minor
of A to be the determinant of

Ak =

 a11 · · · a1k
...

. . .
...

ak1 · · · akk

 .

This Ak is a k × k submatrix of A consisting of entries that are both in the first k rows and
the first k columns of A. Of course, A has n of these:

A1 = a11. A2 =

[
a11 a12
a21 a22

]
, A3 =

 a11 a12 a13
a31 a22 a23
a31 a32 a33

 , . . . , An = A.

So what can we say?

• If all of these leading principal minors are positive, so if detAk > 0, for k = 1, . . . , n,
then A, and hence Q(x), is positive definite.
• A, and hence Q(x), is negative definite if det A < 0 for k-odd and det A > 0 for
k-even.
• A is called indefinite if neither of the two cases above holds but all of the leading

principal minors are non-zero.
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• Q(x) is called degenerate, as is A, if det A = 0, and nondegenerate otherwise. Note
here that it is certainly possible that Q(x) is nondegenerate but at least one of the
leading principal minors is 0. Just take any nonsingular matrix with a11 = 0.

Lastly, the Extreme Value Theorem from single variable calculus has a counterpart in
vector calculus. Recall that a set X ⊂ Rn is closed if it contains all of its boundary points.
A set X ⊂ Rn is called bounded if there exists a real number M > 0 such that

||x|| < M, ∀x ∈ X.

And a set X ⊂ Rn is called compact if it is both closed and bounded in Rn.

Theorem 12.7 (The Extreme Value Theorem). If X ⊂ Rn is compact and f : X → R is
continuous, then f has a global maximum and a global minimum on X.

Just like in single variable calculus, it is certainly possible for a function f on a possibly
nonclosed or unbounded (or both )X to have global extrema. But it is only guaranteed to
have each when X is compact and f is continuous.


