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LECTURE 11: DIFFERENTIALS AND TAYLOR SERIES.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. Herein, we give a brief interpretation of the differential of a function. There are
many interpretations of a function’s differential, but we only deal with one currently. Then
we delve into an even briefer description of the Taylor Series of a real-valued function on R".
The details, for now, are not important. But the relationship to the counterparts of both of
these concepts to single variable calculus is quite important.

Helpful Documents. Mathematica: TaylorPolynomials.

The differential of a function. Recall that for a variable z, a small change in x is denoted
Az = (x + h) — x = h, where h is a number near 0. As the value of h tends to 0, Az also
vanishes. But we can mark the vanishing of Az via what is called an infinitesimal change
in z, and denote it dx, so that

Az 2% dr,
Really, this has meaning almost exclusively in the context of how other quantities change
that depend on x or when compared to x. The quantity dx is called the differential of x.

Now let f: X C R — R be a differentiable function, and a € X. For the graph y = f(z),
the quantity

Ay=Af = f(z+Az) - f(x)

represents a small change in y, as it depends on Az, the small change in z. As h — 0, of
course, Af also goes to 0. But measuring how Af goes to zero is important in calculus.
Hence we mark teh infinitesimal change in y or f by its differential: df = dy. Studying just
how the dependent variable y is changing as one varies x is vitally important in the study of
functional relationships between entities, and is the motivation behind the Liebniz notation

in calculus Z—g = % = % (x) representing the derivative of f(x) with respect to x:
fle+h)—fl@) . fl@+Ar)—f(=) . Af df

/ _ — — Y = 2

e v =A% A T da

since Ax = (x 4+ h) —x = h. To even be able to discuss ideas that involve passing to a
limit, one needs to be able to discuss quantities that are infinitesimally close to 0 or close to
each other. One can say that an infinitesimally small positive number represents a positive
number closer to 0 than any real positive number.

We note here that, as an alternate definition, one can call the quantities dz, and dy
actual new variables, whose relationship is tied to the relationship between y and z, namely
y = f(x). This alternate definition provides a much more concrete foundation for which to
use these quantities, but structurally does not change their meaning. We will visit this more

concrete notion of a differential later when we discuss differential forms.
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The quantity df (the differential of f), represents an infinitesimal change in f given an
infinitesimal change in its independent variable x: at x = a, we have
df

df(a) = f'()da, or  S-(a) = f(a)

to reflect the idea that this differential will change as we vary the point x = a. More
generally, df = f'(z) dx
Some notes:
e This will make more sense later, when we discuss differential forms, but df, the

differential of f, is an example of a differential 1-form.
e This concept embodies the Substitution Rule (the Anti-Chain Rule) in single variable

calculus:
’ , u=g(x) 9(b)
| 1) g@de —=— [* j(a) au
a du=g’(z) dx 9(a)

Indeed, let f be a function of u, with © = « a point in its domainf, and F' an
antiderivative of f, so that F'(u) = f(u). Then
) du.

= g(z) is a function of z, then du, the differential of w, is related to dz, and
= ¢'(z) dz. But also, f and hence F' are functions of x, via composition: f(u) =
( x)) and F(u) = F (g(x)). Thus, their differentials also vary with respect to z,

) )du
) (F/(U) u=g<a>=a> <g,<x> x:a) o
(1o

= ['(9(a)) ¢'(a) dz.
Hence, we are left with, on their appropriate domains,
F(w) du= f'(g(x)) ¢/(z) d.

Finally, recall that integration is just a form of infinitesimal addition. Now does the
form of the Substitution Rule make more sense?

dF (o) = F'(a) du = f(a) du = <f(u)

f(a) du=dF(a) = F'(a) du = (F’(u)

In many variables, let f : X C R® — R be a differentiable function, and a € X. df is the
sum of the partial differentials (differentials in the coordinate directions), % dx;, and
8 f af

af
0z, dy + . axn dan = — ox;

(11.1) df = dx; = Df(a)dx
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represents the total differential of f. This quantity represents an infinitesimal change in f
in terms of the infinitesimal changes in its coordinate directions dxz;. The use of the vector
d!El
term dx = : will make more sense later on in the course.
dx,

As a function, Af = f(a+ Ax) — f(a) = f(a+ h) — f(a), where Ax = h is a vector of
small changes in each of the coordinate directions. Written out, A f will contain many terms
which are not linear in Ax. As Ax tends to 0, any terms which contain products of the
various small changes in the coordinate directions will tend toward 0 much faster, so that
only the linear parts of these terms will contribute to the limit (the higher-degree terms will
die off quickly, leaving only the linear terms). One can then see directly how the differential
of a function operates:

Example 11.1. Let f : R? — R be given by f(z,y) = 2> + 2y — v — y + sinz. Here
Ax = (Ax, Ay))T, and

Af(m,0) = f ((7,0)7 + Az, Ay)") = f(x,0)
= (7 + Az)® + (7 + Az)(Ay) — (7 + Ax) — Ay +sin (7 + Az) —7° + 7
=%+ 21Az + (A7)* + Ay + AzAy — 7 — Az — Ay — sin(Ax) — 7% + 7.
Notice here that all of the terms not containing a Az or a Ay cancel out. Recall also
that for very small values of Az, the function sin(Az) ~ Az. This is called a first-order
approximation of the sine function near x = 0, and reflects the idea that the sine function
has a Taylor expansion at x = 0 containing a linear term with coefficient 1 (its first Taylor

polynomial is Ti(x) = z). Likewise, for very small values of Az and Ay, all of the other
higher-order terms vanish double fast, leaving only the linear terms:

Af(m,0) =27 — 1)Az — Az + (7 — 1)Ay = (27 — 2)Az + (7 — 1)Ay.

Passing to the infinitesimals, we get Af — df, and Ax — dx = l ZZ

] , and we get
df (m,0) = (2m — 2)dx + (7 — 1) dy.

Now compare this to the direct computation, using Equation 11.1 above. Here

g(ﬂ,O):(Zx—y—l—i—cosx) = (2m — 2)
5’x T=T
y=0
and
Uimoy=@-1| =(x-1
8y T=T
y=0
so that
dx

df(,0) = Df(m,0)dx = [ 2r =2 7m—1] {dy

} =27 —2)dr + (7 — 1) dy.

The result is the same.
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And finally, going back to the notion of dx and dy being actual coordinates, tied together
via y = f(x) so that dy = f'(x) dz, we can extend this notion to the multidimensional case.
Here, we can view each of the dz; as an actual coordinate on the local linearization of f at
the point x = a. Thus, the set { dzy,..., dz,} become a set of coordinates on each tangent
space to the domain X C R", and df (a) becomes a vector measuring just how f is changing
infinitesimally. Again,we will explore this notion in detail at the end of the course.

The Taylor series. Recall that the Taylor series of a C*-function f : I C R — R at a
point a € I is

i

© i)y |
fo =30 - ay,

and is defined on the largest interval where the series converges. Here, one may also truncate
this series to obtain the mth Taylor polynomial

m ) (g ,
Tm(x)zzf f )(x—a)z.

- 7!
=0

The mth Taylor polynomial is considered the “best” mth-degree polynomial that approxi-
mates f(x) near x = a, and we define the term “best” to mean that all of the derivatives of
f and T, are the same up to and including the mth derivative. So, for : =0,1,...,m,

d’ ,
—T(a) = fD(a).

T To(a) = )

Now let g : X C R™ — R also be C'"°. We may ask very similar questions, like: What
is the best mth degree polynomial (in the variables defining X) that approximates g near
x = a. Again, the criteria for “best” will be the one that matches g at a for all (partial)
derivatives up to and including the order-m ones.

Obviously, the best 0-degree polynomial to approximate g(x) at x = a is the one whose
function value is g(a), so

To(x) = g(a).
And we have already calculated the best first-degree polynomial, where the derivative matrix
of g played a vital role:

Ti(x) = g(a) + Dg(a)(x — a).
Perhaps a better way to write this is to appeal to the individual variables explicitly, so

Ti(x) = g(a) + Dg(a)(x — a)

=9(a) + gu (@) (1 — 1) + goy (A) (X2 = a2) + .. + gu, (A) (X0 — an) .
all ﬁrs;;artials
Now it should be straightforward to see that not only does T7(a) = g(a), but

8T1 . 39
81’@' (a) - axz (a)7

foralli=1,...,n.
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So follow the pattern. What would be the “best” degree-2 polynomial to approximate

g(x) at x = a? Of course, one such that Ty(a) = g(a), and for all 4,5 = 1,...,n, we have
GTQ 8g GQTQ 829
d = .
o0x; (a) = 8@( a), an Ox;0x; (a Ox;0x; (a)

It is apparent by reverse engmeermg that the only degree—2 polynomial that would work is

Th(x a) + Z (9:17@ Z 8%89:1 — a;)(2; = a).

7]_

A big question to answer here is: Why the 1 5 coefficient? Think about this.
There is a much better way to view the form of T5:
Definition 11.2. Given f : X C R® — R a C? function, the n x n matrix whose 7jth entry

. 32f
18 Ox;0x;’

fxlﬂcl T fmxn
Hf=| @
fl'nl'l e fl‘nxn
is called the Hessian of f.

Now, denote by h = x — a, so that h; = x; — a;. Then we can write

8 n
+Z (@) (s — ai) + = Z 8:578@( )(@i — ai)(zj — ay)

h1 1 gryzi(a) 0 gryw,(a) hy
=g9@+[gn@ - ge,@ ]| 0 |+ k] ; ; :

Grpz (@) 0 Gopa,(d) hn

= g(a) + Dg(a)h + %hTHth

So what would the third Taylor polynomial look like? Generalize in the obvious fashion,
and get

7y(x) = g(a) + Y 55; o) 5 3 g S~ ) )

i=1 i,j=1

*5 Z 6xk8x]3xl (a)(z; — a;)(x; — a;)(zp — ar),

7 7k_
of course. And the polynomial 7y(x), for natural number ¢ > 37

You may notice that I did not write T3(x) in a more elegant fashion, using some three
dimensional verion of the derivative matrix or the Hessian matrix. It get difficult now since
we would be creating and using objects that are higher dimensional arrays (All 8 = 23 of the
third-order partials of f : R? — R would be arranged into a three dimensional array. These
objects do exist and are manifestations of what are called tensors. Getting a handle on the
notation and working with these objects would involve a bit more time than we can devote
to it at the moment. So we rely simply on the summation notation, and basically stop here.

Exercise 1. Devise a mathematical notation that would provide an array-based version of
the third-order terms in 73(x).



