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110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. Vector fields, as geometric objects and/or functions, provide a backbone in which
all of physics and engineering, really mathematical modeling is structured on. From force
fields in physics to slope fields in differential equations and modeling, the notion of a vector
field allows us to recover measureable quantities from models defined only by equations of
motion. Here, we begin the study of their basic structure and properties.

Vector Fields. We start with a definition:

Definition 10.1. A vector field on Rn is a map F : X ⊂ Rn → Rn, as assignment of a vector
F(x) to every point x ∈ X.

Examples of vector fields include

• Force fields in physics,
• slope fields in differential equations, and
• fluid (air) flow in climate models.

A vector field is of class Cn precisely when F is Cn. This means that vectors vary in both
size and direction in a continuous (C0), or differentiable (Cn, n ≥ 1), etc.

Definition 10.2. A vector field is called a gradient field on Rn if F is the gradient of a
real-valued function f : X ⊂ Rn → R.

Let f : X ⊂ Rn → R be C1. Then ∇f : X ⊂ Rn → Rn. Here, we interpret this as a
vector field on X, a gradient field on X.

• Here, f is called a potential function for the gradient field F(x) = ∇f(x).
• Recall for f : R2 → R, the level sets of f are generically curves in the domain of f ,

which is the plane. For f a potential function of a gradient field,
(1) the level curves are equipotential sets, sets of equal potential, and
(2) the gradient field along these sets always is orthogonal to (the tangent lines of)

these sets.
(3) The gradient field always points in the direction of the most rapid increase of f

at each point.
(4) In contrast to a vector field, a real-valued function is sometimes called a scalar

field. The gradient takes a potential (scalar) field to a vector field.

Example 10.3. Given a scalar field f : X ⊂ Rn → R, finding its gradient field is straight-
forward: Take derivatives adn form the vector. But, given a gradient field, can one find a
potential for it? In Example 5 on page, 231, the author tells you that the gradient field

F(x, y, z) =

 3x2 + y2

2xy
x3 − 2z

 has potential f(x, y, z) = x3z + xy2 − z2, and “leave[s] it to you
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to verify...”. But without a candidate for a potential, how does one calculate one? The idea
is to un-differentiate!

Pretend that f : Rn → R is unspecified. But since we know F(x, y, z) = ∇f(x, y, z), then
we know the following:

(1)
∂f

∂y
= 2xy. Hence f(x, y, z) = xy2 + h(x, z). (Why is this? Because, the partial

derivative of f with respect to why would see every function of only x and z as a
constant. Hence, when un-differentiating, one has to account for this fact by speci-
fying the constant lost to differentiating (with respect to y) as something which is a
function of possibly everything except for y. Got it? So we already know something
about f . Namely, f is of the form f(x, y, z) = xy2 + h(x, z).

(2) Then
∂f

∂x
=

∂

∂x

[
xy2 + h(x, z)

]
= y2 +

∂h

∂x
(x, z) = 3x2z + y2. This is bacause the

last expression is the x-component of the gradient field F(x, y, z). Hence h(x, z) =
x3z + g(z), where g is some unknown function of only z. Now we know even more
about f . We know f(x, y, z) = xy2 + x3z + g(z).

(3) And lastly,
∂f

∂z
=

∂

∂z

[
xy2 + x3z + g(z)

]
= x3 + g′(z) = x3− 2z. But this means that

g′(z) = −2z, so that g(z) = −z2.

Hence we have f(x, y, z) = xy2 + x3z − z2.

Definition 10.4. A flow line, or a trajectory of a vector field F : X ⊂ Rn → Rn is a
differentiable curve x : I ⊂ R→ Rn that satisfies

(10.1) x′(t) = F (x(t)) , ∀t ∈ I.

Here, the velocity vector of the curve at every point in the domain of the curve equals to
vector field at that point. Finding such a path, given a vector field, is precisely the subject
of a field of mathematics called differential equations! But simply verifying that a given path
is a flow line of a vector field is a matter of just verifying Equation 10.1.

Example 10.5. Is the path x(t) =

[
e−t + 2e2t

−e−t + e2t

]
in the plane a flow line for the vector

field F(x) =

[
x + 2y

x

]
on R2?

The answer is yes, since

x′(t) =

[
−e−t + 4e2t

e−t + 2e2t

]
=

[
(e−t + 2e2t) + 2 (−e−t + e2t)

(e−t + e2t)

]
=

[
x(t) + 2y(t)

x(t)

]
= F (x(t)) .

Definition 10.6. An linear operator is a mapping from one linear (vector) space to another.

From linear algebra, this means that any matrix determines a linear operator from the
domain to the codomain. This also means that any linear transformation is also called a
linear operator. However, one can define linear spaces whose elements are functions, in
the following way: Two real-valued functions, defined on the same space, can be added
together to create another function from the same domain to the same codomain. Once
can also multiple any function by a real number to create a new function. Hence any linear
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combination of real-valued functions from a domain to R is again a function from the domain
to R. And since there exists an additive identity function (the 0-function), and an additive
inverse function for every function, the set of functions from a domain to R form a linear
space (like a vector space). However, these “function” spaces are not finite dimensional, and
hence there is not a finite basis, like for the standard vector spaces one sees in linear algebra.
But one can define linear maps between these function spaces, and they behave much like
the linear transformations you have seen in linear algebra. So think of linear operators as
maps taking functions to functions. Note that the notion of an operator being linear is just
the idea that the image of a linear combination of inputs is just a linear combination of the
images of the inputs, or

f(c1x + c2y) = c1f(x) + c2f(y).

Keep this in mind.

Definition 10.7. The del operator ∇ is the linear operator that takes a real-valued C1-
function f : X ⊂ Rn → R to its gradient vector field ∇f : X → Rn.

Some Notation: ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

in R3, or

∇ =


∂

∂x1

∂
∂x2
...
∂

∂xn

 = e1
∂

∂x1

+ e2
∂

∂x2

+ . . . + en
∂

∂xn

, in Rn.

This notation may seem a bit odd, but it is common, and implies

∇ ( ) =
n∑

i=1

ei
∂

∂xi

( ) =


∂

∂x1

∂
∂x2
...
∂

∂xn

 ( )

is to be interpreted as

∇f = ∇(f) =


∂

∂x1

∂
∂x2
...
∂

∂xn

 (f) =


∂f
∂x1

∂f
∂x2
...
∂f
∂xn

 .

Definition 10.8. For a C1-vector field F : X ⊂ Rn → Rn, the divergence of F, denoted
div F, or ∇ · F, is the scalar function

div F = ∇ · F =
n∑

i=1

∂Fi

∂xi

=
∂F1

∂x1

+
∂F2

∂x2

+ . . . +
∂Fn

∂xn

,

for x = (x1, . . . , xn) ∈ X, and F(x) =

 F1(x)
...

Fn(x)

.

Some notes:
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• Here div F(x) = ∇ · F(x) =


∂

∂x1

∂
∂x2
...
∂

∂xn

 ·


F1(x)
F2(x)

...
Fn(x)

 uses the Dot Product, although

the product on each component is meant to indicate “apply the partial operator to
the component function”.
• We will prove this later on in the course, but the divergence of a vector field measures

the infinitesimal volume change caused by the vector field.
• A vector field F, where ∇ · F = 0 is called incompressible.
• Viewed as an operator, ∇ can operate on functions in different ways:

(1) As the gradient of a scalar field ∇f , for f : X ⊂ Rn → R;
(2) As the divergence of a vector field ∇ · F, for F : X ⊂ Rn → Rn; And
(3) as the curl of a vector field ∇× F, but only in R3.

Definition 10.9. For a C1-vector field F : X ⊂ R3 → R3, the curl of F, denoted curl F, or
∇× F, is

∇× F =


∂
∂x

∂
∂y

∂
∂z

×
 F1

F2

F3

 =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i−
(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k.

More Notes:

• It is worth noticing that (1) the gradient of a scalar field is a vector field, (2) the
divergence of a vector field is a scalar field, and (3) the curl of a vector field (in R3)
is a vector field.
• We will again prove this later, but the curl of a vector field measures the infinitesimal

twist in the vector field along the vector field at each point.
• If, for F : X ⊂ R3 → R3, we have ∇× F = 0 everywhere, we say F is irrotational.

Example 10.10. The vector field F(x, y, z) =

 y
−x

0

 rotates each xy-plane at z = c. Here

∇× F =


∂
∂x

∂
∂y

∂
∂z

×
 y
−x

0

 =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

∣∣∣∣∣∣
=

(
∂

∂y
(0)− ∂

∂z
(−x)

)
i−
(

∂

∂x
(0)− ∂

∂z
(y)

)
j +

(
∂

∂x
(−x)− ∂

∂y
(y)

)
k = −2k.

Notice, by the definition and properties of the cross product, that, as a vector field ∇ × F
must be orthogonal to F at every point.
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Example 10.11. Explosions and Implosions in R3: For G(x, y, z) = ±c

 x
y
z

, for c ∈ R,

we have ∇×G = 0. These vector fields are irrotational.

Exercise 1. Show all constant vector fields H(x, y, z) =

 c1
c2
c3

 are irrotational.

And here are some beautiful facts, whose calculations provide excellent practice:

Exercise 2. Show that a gradient vector field in R3 is irrotational. That is, for f : X ⊂
R3 → R a C2-function, show that ∇× (∇f) = 0.

Exercise 3. Show that the curl of a vector field in R3 is incompressible. That is, for
F : X ⊂ R3 → R3 a C2-vector field, show that ∇ · (∇× F) = 0.


