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LECTURE 1: PRELIMINARIES.

110.211 HONORS MULTIVARIABLE CALCULUS
PROFESSOR RICHARD BROWN

Synopsis. This first lecture is just a bit of Linear Algebra backstory: As an introduction
to the course, I thought to play with the structure of Euclidean space and linear algebra
just to establish notation and begin the conversation. I also used a bit of Mathematica for
visualization. It is listed on the course site.

Helpful Documents. Mathematica: IntersectingPlanes.

Figure 1.1. The plane R2.

Real Euclidean Space Rn. The real plane is often
described as the set of all ordered pairs of real num-
bers. We can write this as

R2 = R× R =
{

(x, y)
∣∣ x, y ∈ R

}
.

The way the plane R2 is built out of two copies of the
real line R is an example of a Cartesian product, a
way of building a new set (called a product set) out
of two sets, whose elements are pairs of elements of
the two component sets, called factors, both R in this
case. The set R2 is useful when studying functional
relationships between sets because we can study the
pairing given by the function as a subset living inside
R2 by assigning the values of the input variable to the function x to one of the ordere3d
pairs, and the output variable y = f(x) to the other (See Figure 1.1). This gives us a visual
depiction of the functional relationship which facilitates the study of its properties.

We can construct a form of addition in the set R2 by using the notion of addition in R
and forming an addition in R2 component-wise:

(a, b) + (c, d) = (a + c, b + d).

With this addition (and the identity element (0, 0) and an inverse (−a,−b) for every set
element (a, b)), we can turn R2 into a group. Here we would call R2 = R × R the direct
product of the two groups R. (A direct product is a Cartesian product on the underlying
sets with whatever added structure the individual sets have and give to the product.) We
can also multiply elements of R2 by real numbers (scalars multiplication), where

c · (a, b) = (ca, cb)

and these two notions behave well together.

Now R is also a field, but R2 is not: One cannot construct a good notion of multiplication
in R2 that satisfies all of the field axioms. However, with the notion of addition of ordered
pairs, along with scalar multiplication, we can give R2 the structure of a vector space over
R.
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Definition 1.1. A linear or vector space over a field is a set V of objects together with two
operations which can be added together and multiplied by field elements in a “compatible”
way.

It is common, in a linear space, to call the individual set elements “vectors”. We also
say that R2 is a vector space over R. But it will be a good idea to make a very important
distinction:

Using Figure 1.2 as a guide, we will distinguish between points in R2, given by all 2-tuples
of numbers written as

R2 =
{
p = (x, y)

∣∣ x, y ∈ R
}
,

and vectors in R2, denoted as the set of all possible 2× 1-matrices, or 2-vectors

R2 =

{
p =

[
x
y

] ∣∣∣∣ x, y ∈ R
}
.

Figure 1.2. Points versus vectors, as elements of R2.

Some notes:

• Technically speaking, these two descriptions of the plane are quite different, even as
there are equivalent. Note that this is a mathematical term that does need defining.
For now we will leave it as is.
• In time, we will need to be able to define vectors based at arbitrary points in R2.

Noticing a difference between points and vectors (with the same entries) as descrip-
tions of the elements of the plane will help greatly later on when we define and
understand vector fields.
• We can add still more structure to R2; a notion of a scalar product, sometimes called

a dot product or an inner product on vectors (equivalently points):[
a
b

]
·
[
c
d

]
= ac + bd ∈ R.

With this new structure, the plane becomes an example of an inner product space.
This is very useful for vector spaces, since with this new structure, we can define
notions of a distance between vectors, a vector’s size, the angle between vectors, etc.
And with these notions of measurement, the plane R2, as an inner product space,
becomes a Euclidean Space (a space where one can do Euclidean geometry).
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• Absolutely all of this still works with n-tuples of numbers: Define, for n ∈ N,

Rn = R× R× . . .× R =
{
x = (x1, x2, . . . , xn)

∣∣ xi ∈ R, for i = 0, 1, . . . , n
}

=

x =


x1

x2
...
xn


∣∣∣∣∣∣∣∣ xi ∈ R, for i = 0, 1, . . . , n

 .

Now, a set of k n-vectors v1,v2, . . . ,vk ∈ Rn are called linearly independent if for real
scalars ci, i = 1, . . . , k,

(1.1) c1v1 + c2v2 + . . . + ckvk = 0

is only solved by c1 = c2 = . . . = ck = 0. If this is true, then none of the vectors can be
written as a linear combination of the others.

Example 1.2. v1 =

 1
0
1

, v2 =

 2
1
1

, and v3 =

 1
−1

2

 are linearly dependent since

3v1−v2−v3 = 0. Thus, for instance, one can write v3 as a linear combination of the others;

3v1 − v2 = v3.

If one can find n vectors that are linearly independent in Rn, then this set of n vectors
can act as a basis, in that any vector in Rn can then be written as a linear combination of
these. So if v1,v2, . . . ,vn ∈ Rn are linearly independent (that is, if they form a basis), then

Rn = span {v1,v2, . . . ,vn}

=

x =

 x1
...
xn

 ∣∣∣∣∣∣ x = c1v1 + . . . + cnvn, ci ∈ R

 .

Here, the term span {·} is just the set of all linear combinations of....

An interesting side note: Using v1,v2, . . . ,vn ∈ Rn as a basis for Rn, the lines through
the origin formed by taking the set of all multiples of each vector vi can serve as axes for a
coordinate system on Rn. Indeed, if each vi serves as a unit of measurement (a measuring
stick) on the line that it helps to create, then the cis in any linear combination of basis
vectors are the coordinates in that coordinate system, and different from what would be
considered the standard one.

Example 1.3. Construct the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
...
0
1

 .

These vectors form a basis of Rn, since Rn = span {e1, e2, . . . , en}. This is called the standard
basis for Rn. See Figure 1.3 below.
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Figure 1.3. The standard bases in R2 and R3.

Note that these standard bases are used to define the equivalence between the notion of
Rn defined as points and the notion of Rn defined as n-vectors.

Definition 1.4. A linear or vector subspace W of a vector space V is a subset of the elements
of V that satisfy

(1) 0 ∈ W ⊂ V ,
(2) If w1,w2 ∈ W , then w1 + w2 ∈ W , and
(3) if w ∈ W , then for all c ∈ R, cw ∈ W .

It is good to note here that ALL vector subspaces pass through the origin (contain the
zero-vector).

Figure 1.4. The xy-plane in R3.

And going back to Equation 1.1, note that for any
k ∈ N, the set of n-vectors span {v1,v2, . . . ,vk} is
ALWAYS a linear subspace of Rn. How big it is as
a subspace depends on the number of vis are linearly
independent.

Example 1.5. The set span


 1

0
0

 ,

 0
2
0

 ,

 2
3
0


is commonly referred to as the xy-plane in R3, thinking of the standard coordinates in R3.
The span of these three vectors only makes a plane in three space since the third vector is
simply twice the first plus 3/2 times the second. A basis for the span of these three 3-vectors
can readily be the first two vectors in the standard basis of R3. Note that one can also call
this linear subspace the (z = 0)-plane. In this way, the xy-plane is a version of R2 sitting
inside R3 as a subspace of all vectors with 0 in the last component. See Figure 1.4.

Example 1.6. span


 1

2
3

 ,

 2
4
6

 ,

 3
6
9

 is a line passing through the origin in R3.

Example 1.7. Let V = span

a =

 1
2
3

 , b =

 2
−2

3

. Then V ⊂ R3 is a 2-dimensional

subspace, since a and b are linearly independent (recall that the dimension of a (finite-
dimensional) vector space is the number of elements in any basis), and V ⊂ R3 will look like
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a plane passing through the origin (See Figure 1.5, with a and b in red). The two 3-vectors

c =

 1
−4

0

 , d =

 3
1
2


differ in that c (shown in blue in Figure 1.5 is IN the plane V , while d (shown in green
in the figure) is not. Indeed, c = −a + b, but there are not constants ca, cb ∈ R, where
caa + cbb = d. We would say that d is linearly independent from V .

Further, by Example 1.7, we can view the lines passing through a and b as coordinate axes
for V , and on each axis, use the length of the contained vector as the unit length along that
axis, marking, for example, 0 at the origin and 1 at the head of a. This provides a coordinate
system directly on V , using the ordered pair (ca, cb) as the coordinates in V . Thus the vector
c ∈ V ⊂ R3 corresponds to the point (3, 1, 2) ∈ R3, but in the coordinates defined directly
on V by the basis {a,b}, c ∈ V corresponds to the point (−1, 1) in the parameterization of
V given by the basis. The idea of placing coordinates directly on a subspace instead of using
the ambient coordinates of the larger space is an important one. We will spend much time
on this.

Figure 1.5. V = span {a,b}.

One way to describe a subspace like V ∈ R3 is through
another form of multiplication of vectors, this one where
the product of two 3-vectors is again a 3-vector. (Note
that this is extremely rare and for now is limited to R3.)
The cross product of two vectors a × b = n is a vector
normal (as in zero dot product) to both a and b. Hence,
for any vector n, the set of all vectors normal to n is a two
dimensional subspace V ∈ R3. And, if n is given as the
cross product of two linearly independent vectors a and
b, then a and b serve as a basis for V . Indeed, endow R3

with the coordinates x, y, and z. Then the equation

n ·

 x
y
z

 =

 nx

ny

nz

 ·
 x

y
z

 = 0 = nxx + nyy + nzz,

defines a plane passing through the origin in R3. In Ex-
ample 1.7, we have

n =

 nx

ny

nz

 =

 1
2
3

×
 2
−2

3

 =

 2(3)− 3(2)
−(1)3 + 3(2)
1(−2)− 2(2)

 =

 12
3
−6

 .

Thus the vector (sub)space V is defined

V =


 x

y
z

 ∈ R3

∣∣∣∣∣∣ 12x + 3y − 6z = 0

 .

Check for yourself that, for the vectors Example 1.7, a,b, c ∈ V , but d 6∈ V .
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Figure 1.6. A line in R3 as
the intersection of 2 planes.

One conclusion that can be drawn from this is that one can define
a plane in R3 via a single equation. But then, what is the equation
of a line in R3?. Here is an example:

Example 1.8. Consider the solution set for the set of equations:

x + 2y + 3z = 4 (eq1)
2x− 2y + 3z = 1 (eq2)

}
2 equations in 3 unknowns.

So what does this solution set in R3 look like? To see, solve as best
as one can:

(eq1) + (eq2) : 3x + 6z = 5
2(eq1)− (eq2) : 6y + 3z = 7

.

Then

x =
5− 6z

3
, y =

7− 3z

6
, z is free.

Better yet, we can place a single parameter t directly on this set by setting z = t, so that
x = 5−6t

3
and y = 7−3t

6
, along with z = t makes a parameterized curve (a line) in R3. One

could also write this as a function (using vector notation):

c : R→ R3, c(t) =

 5−6t
3

7−3t
6

t

 .

Note that, in this parameterization, we still have 3 equations in 4 unknowns. Do you notice
a pattern between the number of equations, the number of unknowns and the “size” of the
space of solutions?

So, roughly speaking, a space V is called linear if any linear combination of two elements
in V is still in V . So what, then, is a linear function?

Definition 1.9. A function f : R→ R is called linear if

f(c1x1 + c2x2) = c1f(x1) + c2f(x2), ∀x1, x2 ∈ R, c1, c2 ∈ R/

Notes:

(1) With appropriate changes, this works equally well for f : Rn → Rm.
(2) Using this definition, then, the function f(x) = 3x is linear, but the function g(x) =

3x + 1 is NOT! To see this,

g(2 + 3) = g(5) = 3(5) + 1 = 16

6= g(2) + g(3) = (3(2) + 1) + (3(3) + 1) = 17.

The issue here is that for a function to be linear, the origin of the domain (the input
space) must be mapped to the origin of the output space, so that f(0) = 0. But here
g(0) = 1. And thus, g(x) is not linear. It is an example of an affine function, one
that can be seen as a composition of a linear function and a translation.

(3) Let f : Rn → Rm be linear. Then, given a basis {v1, . . . ,vn} for the domain Rn, we
can write any x ∈ Rn as

x = c1v1 + . . . + cnvn.
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Then, since f is linear, we have

f(x) = f(c1v1 + . . . + cnvn) = c1f(v1) + . . . + cnf(vn)

= m

{ | |
f(v1) . . . f(vn)
| |


︸ ︷︷ ︸

n

 c1
...
cn

 = Am×nx.

Hence, any linear map between vector spaces can always be represented by a matrix.


