\relax \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces The plane $\ensuremath {\mathbb R}^2$.\relax }}{1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \newlabel{fig:Plane}{{1.1}{1}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{}{Real Euclidean Space $\ensuremath {\mathbb R}^n$.}}{1}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Points versus vectors, as elements of $\ensuremath {\mathbb R}^2$.\relax }}{2}} \newlabel{fig:PointVector}{{1.2}{2}} \newlabel{eqn:linind}{{1.1}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces The standard bases in $\ensuremath {\mathbb R}^2$ and $\ensuremath {\mathbb R}^3$.\relax }}{4}} \newlabel{fig:R2R3}{{1.3}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces The $xy$-plane in $R^3$.\relax }}{4}} \newlabel{fig:xyPlane}{{1.4}{4}} \newlabel{ex:2DSubspace}{{1.7}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces $V=\textbf {span}\left \{\mathbf {a},\mathbf {b}\right \}$.\relax }}{5}} \newlabel{fig:Subspace}{{1.5}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces A line in $\ensuremath {\mathbb R}^3$ as the intersection of 2 planes.\relax }}{6}} \newlabel{fig:R3Line}{{1.6}{6}} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{17.25pt} \newlabel{tocindent1}{0pt} \newlabel{tocindent2}{0pt} \newlabel{tocindent3}{0pt}