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Synopsis. During the last lectures of this course, I have decided to lecture on the structure of
differential forms from the perspective of multi-linear algebra and n-forms on vector spaces.
This is basically not done in the book. This allows me to give a much more foundational
treatment of just what forms are and not just how they work. We learn their structure,
how to integrate them and how to differentiate them, all with an eye toward what works
regardless of the dimension. We show how many of the things we learned in the past, from
the Product Rule and the Substitution Method in Calculus I to the Change of Variables
Theorem and Fubini’s Theorem in Calculus III, are all just examples of a much more general
structure. We then finish with the Generalized Stokes’ Theorem, and show how the various
big theorems of Gauss, Stokes and Green are also simply particular examples. We end with
the same result of the Fundamental Theorem of Calculus. In fact, one can easily say that the
Generalized Stokes Theorem is just the Fundamental Theorem of Multivariable Calculus.

Some (multi-)linear algebra. To start, let V be a n-dimensional vector space on R. Then
the points v ∈ V are called vectors, where

v =


v1
v2
...
vn

 , vi ∈ R, ∀i = 1, 2, . . . , n.

A linear functional, or a linear 1-form, or a covector is a linear map f : V → R, where

f(av + bw) = af(v) + bf(w), ∀v,w ∈ V, ∀a, b ∈ R.

The set of all covectors of V is again an n-dimensional vector spacecalled the dual space to
V , and denoted V ∗. Note that, for the most part, we will stick with finte dimensional vector
spaces.

What is a basis for V ∗? Recall the standard basis for V , {e1, e2, . . . , en}, where ei is the
n-vector all of whose entries is 0, except for the i entry, which is 1. Then, for each i, denote
e∗i : V → R, the map e∗i (v) = vi that strips off the i entry of v. Note that this is a linear
map on V . In this way, the set of linear maps {e∗1, e∗2, . . . , e∗n} form a basis for V ∗, so that
any covector (element of V ∗) can be written as a linear combination of these:

v∗ =


v1
v2
...
vn

 ·
(

n∑
i=1

e∗i

)
= v1e

∗
1 + v2e

∗
2 + . . . + vne

∗
n,

1
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for v1, . . . , vn ∈ R. Then v∗ : Rn → R is a (finite-dimensional) operator, defined by

v∗(w) = v1e
∗
1(w) + v2e

∗
2(w) + . . . + vne

∗
n(w)

= v1w1 + v2w2 + . . . + vnwn

= v ·w = vTw

=
[
v1 v2 · · · vn

] 
w1

w2
...
wn

 .

Some notes:

• In this way, we often write linear functionals (covectors) as row vectors.
• The Dot Product

dot : Rn × Rn → R, dot(v,w) = v ·w

is not a linear function. It is on each factor, though, and is sometimes called a 2-linear
function, and is an example of a multilinear function. One can create a version of
the Dot Product function with one slot already filled. That is an example of a linear
functional. Indeed, v∗( ) = dot(v, ).
• In R3, each p ∈ R3 has a tangent space TpR3, which is another copy of R3, but with

its origin at p. It is a different space!!

For coordinates (x1, . . . , xn) on Rn, define a coordinate system on TpRn as (dx1, . . . , dxn),
where dxi is the infinitesimal change in the xi-direction at p. Here, each dxi is a linear
functional on TpR

n since, for v ∈ TpRn, dxi(v) = vi.

Notes:

• Think of a parameterized hypersurface S ⊂ Rn, with p ∈ S, and it is easier to see
how a vector v tangent to S at p is actually in TpS and not actually in S.
• This definition of dxi, as a coordinate of the tangent space to Rn, works because

coordinates themselves are actually linear functionals on a space (at least the Carte-
sian ones). They are projections onto the factors of Rn in a sense, which are linear
functions.

To see this in more detail, let p =

[
p1
p2

]
. Then, endowing R2 with the coordinates x and

y, we can write x : R2 → R, and y : R2 → R, defining them as the functions x(p) = p1, and
y(p) = p2. These coordinate functions are linear functions and hence differentiable, with

Dxp : TpR2 → R, Dxp(v) = dot(e1,v) =
[

1 0
] [ v1

v2

]
= v1, and

Dyp : TpR2 → R, Dyp(v) = dot(e2,v) =
[

0 1
] [ v1

v2

]
= v2.
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Now use this to define coordinates directly on TpR2, by (dx, dy), where

dx = Dxp = dot(e1, ), and

dy = Dyp = dot(e2, ).

Example 20.1. Let v ∈ R3 so that v = v1i+v2j+v3k. Then the functions x, y, z : R3 → R,
defined by

x(v) = dot(i,v) = v1,

y(v) = dot(j,v) = v2, and

z(v) = dot(k,v) = v3

comprise the coordinates of R3. However, we often “abuse notation” for convenience and
understandability and simply write

v =

 x
y
z

 ∈ R3.

Using the above, we can write a linear functional on Rn as

ω = a1dx1 + a2dx2 + . . . + andxn = a · dx = adx,

where a is the coefficient vector, and dx =


dx1

dx2
...

dxn

 is the basis of coefficient covectors

(corresponding to the coordinates) in Rn.

Example 20.2. Let a =

 1
2
3

 and v =

 −4
−5
−6

. Then the linear functional on R3

corresponding to a acts on R3, and takes the vector v ∈ R3 to

ω(v) = a1dx1(v) + a2dx2(v) + a3dx3(v)

= a1v1 + a + 2v2 + a3v3 = a · v
= 1(−4) + 2(−5) + 3(−6) = −32.

Example 20.3. Also, keep in mind where each of these objects “live”: Let p =

[
1
1

]
be a

point in the plane and v =

[
−1
−2

]
∈ TpR2. Then while we envision v as a vector “in R2”

based at p, it is really a vector based at the origin of the tangent space TpR2 to the plane
at p.

Example 20.4. Let I = [a, b] ⊂ R, and c : I → R2 be a C1-curve. Since, for p ∈ c(I) ⊂ R2,
TpR2 is not the same plane as R2 (it has different coordinates, with a different origin), we
can write the tangent line `p via the coordinates of TpR2, since `p is the set of all tangent
vectors to c at p, so `p ⊂ TpR2. Hence the equation for `p in TpR2 is:

dy = (constant)dx.
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So what is this constant?

Let c : [0, 2]→ R2 be defined by c(t) = (t, t2). Then, in the xy-plane, the equation for the

line `p at p =

[
1
1

]
is

(y − 1) = 2(x− 1), or y = 2x− 1.

However, in TpR2, the equation for the line `p is dy = 2dx, or dy
dx

= 2. Do you see where the
notation for the derivative comes from now??


