HOMEWORK PROBLEM SET 7: DUE MARCH 31, 2017

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. Solve the following:

(a)
$$y''' - 3y'' + 3y' - y = 0$$
.

(b)
$$\frac{d^4y}{dx^4} = 4\frac{d^3y}{dx^3} - 4\frac{d^2y}{dx^2}$$
.

(c)
$$\ddot{x} - \ddot{x} + \dot{x} - x = 0$$
, $x(0) = 2$, $\dot{x}(0) = -1$, $\ddot{x}(0) = -2$.

(d)
$$y''' - y'' - y' + y = 2e^{-t} + 3$$
.

Question 2. Determine the interval on which the solution to the IVP

$$(x-1)y^{(12)} + (x+1)y^{(4)} = (\tan x)y, \quad y(0) = 1, \quad y'(0) = \dots = y^{(4)}(0) = 0,$$
$$y^{(5)}(0) = -6, \quad y^{(6)}(0) = \dots = y^{(11)}(0) = \pi$$

is sure to exist and be unique.

Question 3. Verify that if y_1 is a solution of

$$y''' + p_1(t)y'' + p_2(t)y' + p_3(t)y = 0,$$

then the solution guess $y = v(t)y_1(t)$ leads to the following second order linear homogeneous ODE in v':

$$y_1v''' + (3y_1' + p_1y_1)v'' + (3y_1'' + 2p_1y_1' + p_2y_1)v' = 0.$$

Question 4. Transform the following into a system of first-order equations:

(a)
$$t^2y'' + ty' + \left(t^2 - \frac{1}{4}\right)y = 0.$$

(b)
$$u'' + p(t)u' + q(t)u = g(t)$$
, $u(0) = u_0$, $u'(0) = u'_0$.

Question 5. For the system

$$\dot{x}_1 = 3x_1 - 2x_2, \quad x_1(0) = 3$$

$$\dot{x}_2 = 2x_1 - 2x_2, \quad x_2(0) = \frac{1}{2},$$

do the following:

- (a) Transform the following system into a single equation of second order by solving the first equation for one of the variables and substituting this into the second equation, thereby creating a second order equation in one of the two variables.
- (b) Solve the second-order equation that you found in the previous part and then determine the solution for the other variable.
- (c) Find the particular solution and then graph it as a parameterized curve in the x_1x_2 plane, for $t \ge 0$.

1

Question 6. Consider the linear homogeneous system

$$x' = p_{11}(t)x + p_{12}(t)y,$$

$$y' = p_{21}(t)x + p_{22}(t)y.$$

Show that if $x = x_1(t), y = y_1(t)$ and $x = x_2(t), y = y_2(t)$ are two solutions to the given system, then $x = c_1x_1(t) + c_2x_2(t), y = c_1y_1(t) + c_2y_2(t)$ is also a solution for any constants $c_1, c_2 \in \mathbb{R}$. This is again the Principle of Superposition.

Question 7. Show that the following vector functions solve the given ODE systems:

(a)
$$\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \mathbf{x}, \quad \mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} e^{2t}.$$

(b) $\mathbf{x}' = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \mathbf{x}, \quad \mathbf{x} = \begin{bmatrix} 6 \\ -8 \\ -4 \end{bmatrix} e^{-t} + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} e^{2t}.$

Question 8. For $A = \begin{bmatrix} 1+i & -1+2i \\ 3+2i & 2-i \end{bmatrix}$ and $B = \begin{bmatrix} i & 3 \\ 2 & -2i \end{bmatrix}$, find

- (a) A 2B.
- **(b)** 3A + B.
- (c) BA.
- (d) AB.

Question 9. Find all eigenvectors and eigenvalues of the matrices $A = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$.

Question 10. Solve the linear system

$$x_1 + 2x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 1$$
$$x_1 - x_2 + 2x_3 = 1.$$

Question 11. Either show that the following sets of vectors are linearly independent, or find a linear relation between them (the T means transpose):

(a)
$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$$
, $\mathbf{x}^{(2)} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$, $\mathbf{x}^{(3)} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$.
(b) $\mathbf{x}^{(1)} = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}^T$, $\mathbf{x}^{(2)} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, $\mathbf{x}^{(3)} = \begin{bmatrix} -1 & 2 & 0 \end{bmatrix}^T$.

Question 12. For

$$\mathbf{x}^{(1)}(t) = \begin{bmatrix} e^t \\ te^t \end{bmatrix}, \quad \mathbf{x}^{(2)}(t) = \begin{bmatrix} 1 \\ t \end{bmatrix},$$

show that, for each choice of $t \in [0,1]$, the vectors $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linear dependent. Then show that as vector functions, $\mathbf{x}^{(1)}(t)$ and $\mathbf{x}^{(2)}(t)$ are linearly independent on [0,1].