HOMEWORK PROBLEM SET 3: DUE FEBRUARY 24, 2017

$110.302 \; {\rm DIFFERENTIAL} \; {\rm EQUATIONS} \\ {\rm PROFESSOR} \; {\rm RICHARD} \; {\rm BROWN} \\$

Question 1. Verify that the following differential equations are exact and then solve:

(a)
$$(y-x)e^x + (1+e^x)\frac{dy}{dx} = 0$$
, $y(1) = 1$.

(b)
$$\frac{dy}{dx} = -\frac{3x+4y}{4x-2y}, \quad y(0) = 2.$$

(c)
$$y\cos(xy) - \tan x + x\cos(xy)y' = 0$$
.

Question 2. Find a value of the constant a that renders the ODE

$$a(ye^{2xy} + x) - (2xe^{2xy} + \cos y)y' = 0$$

exact. Then solve it.

Question 3. Verify that the ODE

$$x^2y^3 + x(1+y^2)y' = 0$$

is not exact, but via multiplication by the function $\mu(x,y) = \frac{1}{xy^3}$, the new ODE is exact. Then solve the new ODE and show that the solution also solves the original ODE.

Question 4. Show that any separable, first-order differential equation is exact.

Question 5. Construct a bifurcation diagram for the ODE $y' = y^2 - (a-1)y$. Then determine the long term behavior of the solution to the ODE that satisfies y(0) = 2. Note that I have not told you the value of the parameter a, so you will have to classify the long-term behavior of your solution for all possible values of a.

Question 6. Do the Fish Problem on the next page.

Math 302: Ordinary Differential Equations Extra bifurcation problem: Harvesting Fish

Consider the population model for a species of fish in a lake

$$\frac{dP}{dt} = \frac{-P^2}{50} + 2P,$$

where P is measured in thousands of fish and t is measured in years. The US Fish and Wildlife Service, which is managing the lake, wants to issue fishing licenses for the harvesting of the fish (this amounts to a constant term being subtracted off of the right hand side above, which is a function of h, the number of licenses issued). Each fishing license is valid for the annual take of 3000 fish.

Draw a bifurcation diagram for the above ODE with the added parameter part, and answer the following questions.

- (a) What is the largest number of licenses that can be issued if the goal is to keep a stable population of fish in the lake over the long term?
- (b) If the largest number of licenses is actually issued, what is the expected long term stable population of fish in the lake?
- (c) Solve the IVP given by the above differential equation and the initial value P(0) = 2 (This corresponds to an initial population of 2000 fish in the lake, and an assumption that there will be no harvesting, h = 0).
- (d) As an expert consultant to the USFWS, discuss the ramifications of issuing the maximal number of licenses allowed by a mathematical model in the presence of real world issues which may temporary affect populations (drought, flooding, unlawful fishing, pollution, etc.)
- (e) What is your final recommendation, in terms of the number of licenses that should be issued, to the USFWS? Back this final recommendation up with sound reasoning.