HOMEWORK PROBLEM SET 12: DUE MAY 5, 2017

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. For the given first-order IVPs, do the following: (1) Approximate the solution at t = 2 by using Euler's Method with a step size of h = .5, (2) solve the ODE and calculate the difference between your approximate solution and the actual solution.

- (a) y' = 3 + t y, y(0) = 1.
- **(b)** y' = 2y 3t, y(0) = 1.

Question 2. Suppose that x(t) solves the ODE $\dot{x} = \sqrt{x+t}$. Use Euler's Method to approximate x(4) knowing x(1) = 3. Use a step size of h = .5.

Question 3. For the following, find the function that transforms to the expression given:

- (a) $F(s) = \frac{3}{s^2 + 4}$.
- **(b)** $F(s) = \frac{2}{s^2 + 3s 4}$.
- (c) $F(s) = \frac{4}{(s-1)^3}$.

Question 4. For the following, Use the Laplace Transform to solve the following IVPs:

- (a) y'' y' 6y = 0, y(0) = 1, y'(0) = -1.
- **(b)** y'' 4y' + 4y = 0, y(0) = 1, y'(0) = 1.
- (c) $y^{(4)} y = 0$, y(0) = y''(0) = 1, y'(0) = y'''(0) = 0.

Question 5. Find the Laplace transform of the function y(t) that satisfies the IVP

$$y'' + y = \begin{cases} t & 0 \le t < 1\\ 2 - t & 1 \le t < 2\\ 0 & t \ge 2, \end{cases} \quad y(0) = y'(0) = 0.$$

You do not need to find y(t).

Question 6. Sketch g(t) on the interval $t \ge 0$ and find its Laplace Transform:

- (a) $g(t) = u_1(t) + 2u_2(t) 6u_4(t)$.
- **(b)** $g(t) = f(t-2)u_2(t)$, where $f(t) = t^2$.
- (c) $g(t) = u_2(t)(t-3) (t-2)u_3(t)$.

Question 7. Solve the IVPs: [This is optional. But give these a try!]

(a)
$$y'' + 3y' + 2y = h(t)$$
, $y(0) = y'(0) = 0$, $h(t) = \begin{cases} 1 & 0 \le t < 10 \\ 0 & t \ge 10. \end{cases}$

(b)
$$y'' + 2y' + 2y = f(t)$$
, $y(0) = 0$, $y'(0) = 1$, $f(t) = \begin{cases} 1 & \pi \le t < 2\pi \\ 0 & 0 \le t < 10 \text{ and } t \ge 2\pi. \end{cases}$