HOMEWORK PROBLEM SET 10: DUE APRIL 21, 2017

110.302 DIFFERENTIAL EQUATIONS PROFESSOR RICHARD BROWN

Question 1. For the following systems, find a general solution, draw a direction field and plot enough trajectories to fully characterize the nature of the solutions to the system.

(a)
$$\mathbf{x}' = \begin{bmatrix} -\frac{3}{2} & 1\\ -\frac{1}{4} & -\frac{1}{2} \end{bmatrix} \mathbf{x}$$
.

(b)
$$\mathbf{x}' = \begin{bmatrix} -4 & 8 \\ -2 & 4 \end{bmatrix} \mathbf{x}$$
.

Question 2. Solve the IVP

$$\mathbf{x}' = \frac{1}{2} \begin{bmatrix} 4 & 3 \\ -3 & -2 \end{bmatrix} \mathbf{x}, \quad \mathbf{x}(0) = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

and draw the solution in the phase plane. Then also graph each component of the solution as functions of t.

Question 3. Show that all solutions to

$$\mathbf{x}' = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mathbf{x}$$

approach the origin as $t \to \infty$ if and only if a + d < 0 and ad - bc > 0.

Question 4. For each of the following systems, do the following: (1) calculate the eigenvalues and eigenvectors; (2) classify the equilibrium at the origin, both in its type and its stability; and (3) Sketch a phase portrait.

(a)
$$\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 2 & -2 \end{bmatrix} \mathbf{x}$$
.

(b)
$$\mathbf{x}' = \begin{bmatrix} 1 & -4 \\ 4 & -7 \end{bmatrix} \mathbf{x}.$$

(c)
$$\mathbf{x}' = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix} \mathbf{x}$$
.

(d)
$$\mathbf{x}' = \begin{bmatrix} 3 & -2 \\ 4 & -1 \end{bmatrix} \mathbf{x}$$
.

Question 5. The linear, second-order, homogeneous, autonomous, ODE with constant coefficients

$$m\frac{d^2u}{dt^2} + c\frac{du}{dt} + ku = 0,$$

where m, c, k > 0 are all constants, models a spring-mass system with damping. Write this ODE as a first-order system, where x = u, and y = u'. Show that the origin (x = 0) and y = 0 is a critical point, and analyze the nature and stability of this critical point as a function of the parameters m, c, and k.

Question 6. (What Figure 9.1.9 on page 507 of the text means.) Given the ODE system

$$\mathbf{x}' = A\mathbf{x} = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mathbf{x},$$

let $p = \operatorname{tr} A = a + d$, and let $q = \det A = ad - bc$, and finally let $\Delta = p^2 - 4q$. Show that the critical point at the origin is a:

- (a) Node if q > 0 and $\Delta \ge 0$;
- (b) Saddle if q < 0;
- (c) Spiral Node if $p \neq 0$ and $\Delta < 0$;
- (d) Center if p = 0 and q > 0.
- (e) Also show that, if the two solutions to the characteristic equation of A are r_1 and r_2 , that it is always the case that $p = r_1 + r_2$ and $q = r_1 r_2$.
- (f) Show that the critical point at the origin is asymptotically stable if q > 0 and p < 0.
- (g) Show that the critical point at the origin is stable if q > 0 and p = 0.
- (h) Show that the critical point at the origin is unstable if q < 0 or p > 0.

Question 7. For each system, (1) find all critical points, (2) use a computer or hand draw a direction field and sketch a few trajectories near the critical points, and (3) determine as best as one can the type and stability of each critical point.

(a)
$$\frac{dx}{dt} = -xy + x$$
, $\frac{dy}{dt} = y + 2xy$.

(b)
$$\frac{dx}{dt} = 2x - x^2 - xy$$
, $\frac{dy}{dt} = 3y - 2y^2 - 3xy$.

Question 8. For each system, (1) find a function H(x,y) = c satisfied by the trajectories, and (2) plot several level curves of H, indicting the direction of travel for increasing t.

(a)
$$\frac{dx}{dt} = 2y$$
, $\frac{dy}{dt} = 8x$.

(b)
$$\frac{dx}{dt} = y$$
, $\frac{dy}{dt} = -\sin x$ (this is the undamped pendulum.)