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Preface

The following text comprises the content of a course I have designed and have
been running at Johns Hopkins University since the Spring of 2007. It is a senior
(read: 400-level) analysis course in the basic tools, techniques, theory and devel-
opment of what is sometimes called the modern theory of dynamical systems. The
modern theory, as best as I can define it, is a focus on the study and structure of
dynamical systems as little more than the study of the properties of one-parameter
groups of transformations on a topological space, and what these transformations
say about the properties of either the space or the group that is acting. It is a
pure mathematical endeavor in that we study the material simply for the struc-
ture inherent in the constructions, and not for any particular application or outside
influence. It is understood that many of the topics comprising this theory have
natural, beautiful and important applications, some of which actually dictate the
need for the analysis. But the true motivation for the study is little more than the
fact that it is beautiful, rich in nuance and relevance in many tangential areas of
mathematics, and that it is there.

When I originally pitched this course to the faculty here at Hopkins, there was
no course like it in our department. We have a well-developed engineering school,
filled with exceptionally bright and ambitious students, which along with strong
natural and social science programs provide a ready audience for a course on the
pure mathematical study of the theory behind what makes a mathematical model
and why do we study them. We have a sister department here at Homewood,
the Applied Mathematics and Statistics Department, which also offers a course in
dynamical systems. However, their course seemed to focus on the nature and study
of particular models that arise often in other classes, and then to mine those models
for relevant information to better understand them. But as a student of the field,
I understood that a course on the very nature of using functions as models and
then studying their properties in terms of the dynamical information inherent in
them was currently missing from our collective curriculum. Hence the birth of this
course.

In my personal and humble opinion, it continues to be difficult to find a good
text that satisfies all of the properties I think would constitute the perfect text
for a course such as this one: (1) a focus on the pure mathematical theory of the
abstract dynamical system, (2) advanced enough that the course can utilize the
relevant topological, analytical and algebraic nature of the topic without requiring
so much prerequisite knowledge as to limit enrollment to just mathematicians, (3)
rich enough to develop a good strong story to tell which provides a solid foundation
for later individual study, and (4) basic enough so that students in the natural
sciences and engineering can access the entirety of the content given only the basic
foundational material of vector calculus, linear algebra and differential equations.
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iv PREFACE

It is a tall order, this is understood. However, it can be accomplished, I believe,
and this text is my attempt at accomplishment.

The original text I chose for the course is the text A First Course in Dynamics,
by Boris Hasselblatt and Anatole Katok (Cambridge University Press: 2003). A
wonderfully designed story-line from two transformational mathematicians in the
field, I saw the development line they took, from the notion of simple dynamics
to the more complicated, as proper and intuitive. I think their focus on using
the properties of functions and that of the spaces they are acting upon to develop
material is the correct one for this “modern” approach. And their reuse of particular
examples over and over again as the story progresses is a strong one. However, in
the years I have been teaching and revising the course, I have found myself, adding
material, redesigning the focus and the schedule, and building in a slightly different
storyline. All of this diverging from the text. Encouraged by my students and my
general thrill at the field, I decided to create my version of a text. This manuscript
is this version.

What the reader will find in this text is my view of the basic foundational
ideas that comprise a first (and one semester) course in the modern theory of
dynamical systems. It is geared toward the upper-level undergraduate student
studying either mathematics, or engineering or the natural and social sciences with
a strong emphasis in learning the theory the way a mathematician would want to
teach the theory. It is a proof-based course. However, when I teach the course, I do
understand that some of my students do not have experience in writing mathematics
in general and proofs in particular. Hence I use the content of the course as a way to
also introduce these students to the development of ideas instead of just calculation.
It is my hope that these students, upon finishing this course, will begin to look at
the models and analysis they see in their other applied classes with an eye to the
nature of the model and not just to its mechanics. They are studying to be scholars
in their chosen field. Their ability to really “see” the mathematical structure of
their tools will be necessary for them to contribute to their field.

This course (this text) is designed to be accessible to a student who has had a
good foundational course in the following:

● vector calculus, at least up to the topics of surface integration and the
“big three” theorems of Green, Stokes and Gauss;

● linear algebra, through linear transformations, kernels and images, eigenspaces,
orthonormal bases and symmetric matrices; and

● differential equations, with general first and second order equations, linear
systems theory, nonlinear analysis, existence and uniqueness of first order
solutions, and the like.

While I make it clear in my class that analysis and algebra are not necessary
prerequisites, this course cannot run without a solid knowledge of the convergence of
general sequences in a space, the properties of what makes a set a topological space,
and the workings of a group. Hence in the text we introduce these ideas as needed,
sometimes through development and sometimes simply through introduction and
use. I have found that most of these advanced topics are readily used and workable
for students even if they are not fully explored within the confines of a university
course. Certainly, having sat through courses in advanced algebra and analysis
will be beneficial, but I believe they are not necessary. The text to follow, like
all proper endeavors in mathematics, should be seen as a work in progress. The
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storyline, similar to that of Hasselblatt and Katok, is to begin with basic definitions
of just what is a dynamical system. Once the idea of the dynamical content of a
function or differential equation is established, we take the reader a number of
topics and examples, starting with the notion of simple dynamical systems to the
more complicated, all the while, developing the language and tools to allow the
study to continue. Where possible and illustrative, we bring in applications to base
our mathematical study in a more general context, and to provide the reader with
examples of the contributing influence the sciences has had on the general theory.
We pepper the sections with exercises to broaden the scope of the topic in current
discussion, and to extend the theory into areas thought to be of tangential interest
to the reader. And we end the text at a place where the course I teach ends, on
a notion of dynamical complexity, topological entropy, which is still a active area
of research. It is my hope that this last topic can serve as a landing on which to
begin a more individualized, higher-level study, allowing the reader to further their
scholarly endeavor now that the basics have been established.

I am thankful to the mathematical community for facilitating this work, both
here at Hopkins and beyond. And I hope that this text contributes to the learning
of high-level mathematics by both students of mathematics as well as students
whose study requires mathematical prowess.



CHAPTER 1

What is a Dynamical System?

1.1. Definitions

As a mathematical discipline, the study of dynamical systems most likely orig-
inated at the end of the 19th century through the work of Henri Poincare in his
study of celestial mechanics (footnote this: See Scholarpedia[History of DS]). Once
the equations describing the movement of the planets around the sun are formu-
lated (that is, once the mathematical model is constructed), looking for solutions as
a means to describe the planets’ motion and make predictions of positions in time
is the next step. But when finding solutions to sets of equations is seemingly too
complicated or impossible, one is left with studying the mathematical structure of
the model to somehow and creatively narrow down the possible solution functions.
This view of studying the nature and structure of the equations in a mathematical
model for clues as to the nature and structure of its solutions is the general idea
behind the techniques and theory of what we now call dynamical systems. Being
only a 100+ years old, the mathematical concept of a dynamical system is a rela-
tively new idea. And since it really is a focused study of the nature of functions of
a single (usually), real (usually) independent variable, it is a subdiscipline of what
mathematicians call real analysis. However, one can say that dynamical systems
draws its theory and techniques from many areas of mathematics, from analysis
to geometry and topology, and into algebra. One might call mathematical areas
like geometry, topology and dynamics second generation mathematics, since they
tend to bridge other more pure areas in their theories. But as the study of what is
actually means to model phenomena via functions and equations, dynamical sys-
tems is sometimes called the mathematical study of any mathematical concept that
evolves over time. So as a means to define this concept more precisely, we begin
with arguably a most general and yet least helpful statement:

Definition 1.1. A dynamical system is a mathematical formalization for any
fixed rule which describes the dependence of the position of a point in some ambient
space on a parameter.

● The parameter here, usually referred to as “time” due to its reference to
application in the sciences, take values in the real numbers. Usually, these
values come in two varieties:
(1) discrete (think of the natural numbers N or the integers Z), or
(2) continuous (defined by some single interval in R).

The parameter can sometimes take values in much more general spaces,
for instance, like subsets of C, Rn, the quaternions, or indeed any set
with the structure of an algebraic group. However, classically speaking, a
dynamical system really involves a parameter that takes values only in a
subset of R. We will hold to this convention.

1



2 1. WHAT IS A DYNAMICAL SYSTEM?

● The ambient space has a “state” to it in the sense that all of its points
have a marked position which can change as one varies the parameter.
Roughly, every point has a position relative to the other points and a
complete set of (generalized) coordinates on the space often provide this
notion of position. Fixing the coordinates and allowing the parameter
to vary, one can create a functional relationship between the points at
one value of the parameter and those at another parameter value. In
general, this notion of relative point positions in a space and functional
relationships on that space involves the notion of a topology on a set. A
topology gives a set the mathematical property of a space; It endows the
elements of a set with a notion of nearness to each other and allows for
functions on a set to have properties like continuity, differentiability, and
such. We will expound more on this later. We call this ambient space the
state space: it is the set of all possible states a dynamical system can be
in at any parameter value (at any moment of time.)

● The fixed rule is usually a recipe for going from one state to the next in
the ordering specified by the parameter. For discrete dynamical systems,
it is often given as a function. The function, from the state space to itself,
takes each point to its next state. The future states of a point are found
by applying the same function to the state space over and over again. If
possible, the past states of a point can be found by applying the inverse
of the function. This defines the dynamical system recursively via the
function. In continuous systems, where it is more involved to define what
the successor to a parameter value may be, the continuous movement of
points in a space may be defined by a differential equation, equal to that
of the function in a discrete system in that it describes implicitly the
method of going from one state to the next (defined only infinitesimally).
The solution to an ODE (or system of them) would be a function whose
domain contains the points of the state space and the parameter and
taking values back in the state space (the codomain). Often, this latter
function is called the evolution of the system, providing a way of going
from any particular state to any other state reachable from that initial
state via a value of the parameter. As we will see, such a function can be
shown to exist, and its properties can often be studied, but in general, it
will NOT be known a priori, or even knowable a posteriori.

Remark 1.2. It is common in this area of mathematics that the terms fixed-
rule and evolution are used more or less interchangeably, and both referring to the
same objects without distinction. In this book, we will differentiate the two as
described above. Namely, the fixed rule will remain the recursively defined recipe
for movement within a dynamical system, and the evolution will be reserved for the
functional form of the movement of points. Thus the ODE is simply the fixed-rule,
while the general solution, if it can be found, is the evolution, for example.

While this idea of a dynamical system is far too general to be very useful, it
is instructive. Before creating a more constructive definition, let’s look at some
classical examples:
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1.1.1. Ordinary Differential Equations (ODEs). Given the first-order,
autonomous (vector)-ODE,

(1.1.1) ẋ = f(x),

a solution, if it exists, is a vector of functions x(t) = [x1(t) x2(t) ⋯ xn(t)]T pa-
rameterized by a real variable t ∈ R where the common domain of the coordinate
functions is some subinterval of R. [Develop this idea of autonomous verses non-
autonomous ODEs as a dynamical system].

Recall that one fairly general form for first-order systems of ODEs is ẋ = f(x, t),
with the independent variable t explicitly represented on the right-hand side. An
ODE (or system) is called autonomous if t is not explicitly represented, and non-

autonomous when t is explicit in the ODE. For example ẋ = tx2

4
= f(x, t) is

non-autonomous, while ẋ = x
4
= f(x) is autonomous. We sometimes also call

autonomous systems time-invariant when the independent variable actually does
represent time. The important property of an autonomous ODE is that the laws
of motion at any point in time are the same as at any other point in time; the
laws of motion are invariant under translations in time. If a first-order system like
Equation 1.1.1 is autonomous, then the right-hand side represents a vector field in
the state space that doesn’t change in time. This means that going from one state
to the next will be the same no matter when the motion starts. With time explicit
in the function f(x, t), the vector field would be changing as time progresses. See
Figure 1.

Figure 1. Vector fields on R under non-autonomous (left) and
autonomous (right) ODEs.

Of course, it is always possible to render a non-autonomous, vector-ODE into
an autonomous one simply by creating a new state variable equal to the independent
time variable, rendering it a dependent variable, and creating a new independent
variable as the new time. This increases the size of the state vectors by one, and
introduces a new first-order ODE into the system. However, there are two points
to consider: (1) the newest ODE is just the time derivative set to 1, and (2) there is
really no advantage to this rendering in terms of solvability. Plus, this really is little
different from the standard trick of turning a second-order ODE into a first-order
system by creating a new dependent variable and setting it equal to the velocity
of the “other” dependent variable. Although, in this latter case, there are distinct
advantage to doing so. We will explore this later. Here, for our autonomous system
in Equation 1.1.1, we have:

● The ODE itself is the fixed rule, describing the infinitesimal way to go
from one state to the next by an infinitesimal change in the value of
the parameter t. Solving the ODE means finding the unknown function
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x(t), at least up to a set of constants determined by some initial state
of the system. The inclusion of initial data provide this initial state of
the variables of the system, making the system an Initial Value Problem
(IVP). A solution to an IVP, x(t), for valid values of t, provides the various
“other” states that the system can reach (either forward or backward in
time) as compared to the initial state. Collecting up all the functions
x(t) for all valid sets of initial data (basically, finding the expression that
writes the constants of integration of the general solution to the ODE in
terms of the initial data variables), into one big function IS the evolution.

● This type of a dynamical system is called continuous, since the parameter
t will take values in some domain (an interval with non-empty interior) in
R. Dynamical systems like this arising from ODEs are also called flows,
since the various IVP solutions in phase space look like the flow lines of a
fluid in phase space flowing along the slope field (vector field defined by
the ODE).

● In this particular example, the state space is the n-dimensional space
parameterized by the n-dependent variables that comprise the vector x(t).
Usually, these coordinate functions are simply (subsets of) R, so that the
state space is (a subset of) Rn. But there is no restriction that coordinates
be rectilinear and no restriction that the state space be Euclidean. In fact,
flows on spheres and other non-Euclidean spaces are very interesting to
study. Regardless of the properties of the state space, solutions live in it as
parameterized curves. These solution curves are often called trajectories.
We also call this state space the phase space.

Remark 1.3. One should be careful about not confusing a state space, the
space of all possible states of a system, with the configuration space of, say, a
physical system governed by Newton’s Second Law of Motion. For example, the
set of all positions of a pendulum at any moment of time is simply the circle. This
would be the configuration space, the space of all possible configurations. But
without knowing the velocity of the pendulum at any particular configuration, one
cannot predict future configurations of the system (See Figure 2). The state space,
in the case of the pendulum, involves both the position of the pendulum and its
velocity (we will see why in a later chapter.) For a standard ODE system like the
general one above, the state space, phase space and configuration space all coincide.
We will elaborate more on this later.

Figure 2. Different velocities render different future configurations.
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So autonomous, first-order ODEs are examples of continuous dynamical sys-
tems (actually differentiable dynamical systems). Solving the ODE (finding the
vector of functions x(t)), means finding the rule which stipulates any state of a
point in some other parameter value given the state of the point at a starting state.
But as we will soon see, when thinking of ODEs as dynamical systems, we have a
different perspective on what we are looking for in solving the ODE.

1.1.2. Maps. Given any set X and a function f ∶ X → X from X to itself,
one can form a dynamical system by simply applying the function over and over
(iteratively) to X. When the set has a topology on it (a mathematically precise
notion of an “open subset”, allowing us to talk about the positions of points in
relation to each other), we can then discuss whether the function f is continuous
or not. When X has a topology, it is called a space, and a continuous function
f ∶X →X is called a map.

● We will always assume that the sets we specify in our examples are spaces,
but will detail the topology only as needed. Mostly our state spaces will
exist as subsets of real space Rn. Here, one such notion of the nearness
of points will result from a precise definition of a distance between points
given by a metric. In this context, there should be little confusion. Here
the state space is X, with the positions of its points given by coordinates
on X (defined by the topology.)

● the fixed rule is the map f , which is also sometimes called a cascade.
● In a purely formal way, f defines the evolution (recursively) by composi-

tion with itself. Indeed, x ∈X, define x0 = x, and x1 = f(x0). Then

x2 = f(x1) = f(f(x0)) = f2(x0),
and for all n ∈ N, (the natural numbers)

xn = f(xn−1) = f(f(xn−2)) =
n times

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
f(f(⋯f(f(x0))⋯)) = fn(x0).

● Maps are examples of discrete dynamical systems. Some examples of dis-
crete dynamical systems you may have heard of include discretized ODEs,
including difference equations and time-t maps. Also, fractal construc-
tions like Julia sets and the associated Mandelbrot arising from maps of
the complex plane to itself (although, precisely speaking, the Mandelbrot
Set is actually a kind of parameter space of a dynamical system, record-
ing particular information about an entire family of parameterized maps.
Some objects that are not considered to be constructed by dynamical sys-
tems (at least not directly) include fractals like Sierpinski’s carpet, Cantor
sets, and Fibonacci’s Rabbits (given by a second order recursion). Again,
we will get to these.

Besides these classic ideas of a dynamical system, there are much more abstract
notions of a dynamical system:

1.1.3. Symbolic Dynamics. Given a set of symbols M = {A,B,C, . . .}, con-
sider the “space” of all bi-infinite sequences of these symbols (infinite on both sides)

ΩM = {(. . . , x−2, x−1, x0, x1, x2, . . .)∣ i ∈ Z, xi ∈M} .
One can consider ΩM as the space of all functions from Z to M : each function is
just an assignment of a letter in M to each integer in Z. Now let f ∶ ΩM → ΩM
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be the shift map: on each sequence, it simply takes i↦ i+ 1; each sequence goes to
another sequence which looks like a shift of the original one.

Note. We can always consider this (very large) set of infinite sequences as
a space once we give it a topology like I mentioned. This would involve defining
open subsets for this set, and we can do this through ε-balls by defining a notion of
distance between sequences (a metric). For those who know analysis, what would
be a good metric for this set to make it a space using the metric topology? We will
define one when we discuss metrics later on. For now, simply think of this example
as something to think about. Later and in context, we will focus on this type of
dynamical system and it will make more sense.

This discrete dynamical system is sometimes used as a new dynamical system
to study the properties of an old dynamical system whose properties were hard
to study. Other times it is used as a model space for a whole class of dynamical
systems that behave similarly. We will revisit this dynamical system and its uses
later.

Sometimes, in a time-dependent system, the actual dynamical system will need
to be constructed before it can be studied.

1.1.4. Billiards. Consider two mass-m point-beads moving at constant (pos-
sibly different) speeds along a finite length wire, with perfectly elastic collisions
both with each other and with the walls. Recall that this means that the total
kinetic energy and the total momentum of the constituent parts is each collision is
preserved, so that while energy may be transferred between the point-beads in a
collision, no energy is absorbed, either by a wall or another bead. Note that this
also means that, while the velocity of a bead may reverse direction at times (after a
collision with a wall) or switch with the velocity of the other bead (when the beads
collide), there are only a few distinct velocities take by the beads in the system.
In this manner, velocity is not really a variable in this system. So the state space
is still only the set of all positions of the beads. The velocities do play a role in
movement around the state space, however.

As an exercise (this is Exercise 1 below), parameterize the wire from wall to
wall as a closed, bounded interval in R. What does the state space look like in this
case, then? Taking the position of each bead as a coordinate, the state space is
just a triangle in the plane. Work this out. What are the vertices of this triangle?
Does it accurately describe ALL of the states of the system? Are the edges of the
triangle part of the state space? Are the vertices? And once you correctly describe
the state space, what will motion look like in it as the beads move along the wire
at their designated velocities? In other words, How does the dynamical system
evolve?

We will revisit this model in detail later as an early example of a type of
dynamical system called a billiard.

Exercise 1. One way to view the state space, the set of all states of the two
point-beads, is to simply view each bead’s position as a coordinate along the wire
(in a closed subset of R). Then the state of the system at a moment in time can be
viewed as a point in the plane. Parameterize the wire by the interval [0,1]. Then
construct the state space as a closed subset of R2. For given bead velocities v1 and
v2, describe the motion in the state space by drawing in a representative trajectory.
Do this for the following data:
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a. v1 = 0, v2 /= 0.
b. v1/v2 a rational number.
c. v1/v2 an irrational number.

By looking at trajectories that get close to a corner, can you describe what happens
to a trajectory that intersects a corner directly?

Figure 3. An
example of a
non-convex bil-
liard.

Now consider a single point-ball moving at
a constant velocity inside a closed, bounded
region of R2, where the boundary is smooth
and collisions with the boundary are specular
(mirror-like, where again this means that the
angle of incidence is equal to the angle of reflec-
tion). See Figure 3. Some questions to ponder:

(1) How does the shape of the region af-
fect the types of paths the ball can tra-
verse?

(2) Are there closed paths (periodic
ones)?

(3) Can there be a dense path (one that
eventually gets arbitrarily close to any
particular point in the region?

There is a method to study the type of dynamical system called a billiard
by creating a discrete dynamical system to record movement and collecting only
essential information. In this discrete dynamical system, regardless of the shape of
the region, the state space is a cylinder. Can you see it? If so, what would be the
evolution?

1.1.5. Higher-order recursions. Maps
as dynamical systems are examples of first-
order recursions, since for f ∶ X → X,
xn = f(xn−1) and each element of a se-
quence {xn}n∈N only depends on the pre-
vious element. The famous Rabbits of
Leonardo of Pisa is a beautiful example of
a type of growth that is not exponential,
but something called asymptotically expo-
nential. We will explore this more later.
For now, though, we give a brief description: Place a newborn pair of breeding
rabbits in a closed environment. Rabbits of this species produce another pair of
rabbits each month after they become fertile (and they never die nor do they ex-
perience menopause). Each new pair of rabbits (again, neglect the incest, gender
and DNA issues) becomes fertile after a month and starts producing each month
starting in the second month. How many rabbits are there after 10 years?

Month an jn bn total pairs

1 0 0 1 1

2 0 1 0 1

3 1 0 1 2

4 1 1 1 3

5 2 1 2 5

6 3 2 3 8

7 5 3 5 13

Given the chart in months, we see a
way to fashion an expression governing
the number of pairs at the end of any
given month: Start with rn, the num-
ber of pairs of rabbits in the nth month.
Rabbits here will come in three types:
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Adults an, juveniles jn, and newborns
bn, so that rn = an + jn + bn. Looking
at the chart, we can see that there are

constraints on these numbers:

(1) the number of newborns at the (n+1)st stage equals the number of adults
at the nth stage plus the number of juveniles at the nth stage, so that

bn+1 = an + jn.

(2) This is also precisely equal to the number of adults at the (n+ 1)st stage,
so that

an+1 = an + jn.
(3) and finally, the number of juveniles a the (n+1)st stage is just the number

of newborns at the nth stage, so that

jn+1 = bn.

Thus, we have

rn = an + jn + bn = (an−1 + jn−1) + bn−1 + (an−1 + jn−1).

And since in the last set of parentheses, we have an−1 = an−2 + jn−2 and jn−1 = bn−2,
we can substitute these in to get

rn = an + jn + bn = (an−1 + jn−1) + bn−1 + (an−1 + jn−1)
= an−1 + jn−1 + bn−1 + an−2 + jn−2 + bn−2 = rn−1 + rn−2.

Hence the pattern is ruled by a second-order recursion rn = rn−1 + rn−2 with
initial data r0 = r1 = 1. Being a second order recursion, we cannot go to the next
state from a current state without also knowing the previous state. This is an
example of a model which is not a dynamical system as stated. We can make it
one (in the same fashion that one would use to turn a higher-order ODE into a
first-order system, that is), but we will need a bit more structure, which we will
introduce later.

Now, with this general idea of what a dynamical system actually is, along
with numerous examples, we give a much more accurate and useful definition of a
dynamical system:

Definition 1.4. A dynamical system is a triple (S,T ,Φ), where S is the state
space (or phase space), T is the parameter space, and

Φ ∶ (S × T ) Ð→ S

is the evolution.

Some notes:

● In the previous discussion, the fixed rule was a map or an ODE which
would only define recursively what the evolution would be. In this defi-
nition, Φ defines the entire system, mapping where each point s ∈ S goes
for each parameter value τ ∈ T . It is the functional form of the fixed rule,
unraveling the recursion and allowing one to go from a starting point to
any point reachable by that point given a value of the parameter.
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● In ODEs, Φ plays the role of the general solution, as a 1-parameter family
of solutions (literally a 1-parameter family of transformations of phase
space): In this general solution, one knows for ANY specified starting
value where it will be for ANY valid parameter value, all in one function
of two variables.

Example 1.5. In the Malthusian growth model, ẋ = kx, with k ∈ R,
and x(t) ≥ 0 a population, the general solution is given by x(t) = x0e

kt,
for x0 ∈ R+

0 = [0,∞), the unspecified initial value at t = 0. (The notation
R+

0 comes from the strictly positive real numbers R+ together with the
value 0.) Really, the model works for x0 ∈ R, but if the model represents
population growth, then initial populations can ONLY be nonnegative,
right? Here, S = R+

0 , T = R and Φ(s, t) = sekt.

Example 1.6. Let ẋ = −x2t, x(0) = x0 > 0. Using the technique
commonly referred to as separation of variables, we can integrate to find
an expression for the general solution as x(t) = 1

t2

2 +C
. And since x0 = 1

C

(you should definitely do these calculations explicitly!), we get

Φ(x0, t) =
1

t2

2
+ 1
x0

= 2x0

x0t2 + 2
.

Here, we are given S = R+, and we can choose T = R. Question: Do
you see any issues with allowing x0 < 0? Let x0 = −2, and describe the
particular solution on the interval t ∈ (0,2).

Exercise 2. Integrate to find the general solution above for the Initial
Value Problem ẋ = −x2t, x(0) = x0 > 0.

● In discrete dynamics, for a map f ∶ X → X, we would need a single
expression to write Φ(x,n) = fn(x). This is not always easy or doable,
as it would involve finding a functional form for a recursive relation. Try
doing this with f a general polynomial of degree more than 1.

Example 1.7. Let f ∶ R → R be defined by f(x) = rx, for r ∈ R+.
Then Φ(x,n) = rnx.

Example 1.8. For Leonardo of Pisa’s (also known as Fibonacci, in
case you recognized the pattern of the sequence) rabbits, we will have to
use the recursion to calculate every month’s population to get to the 10-
year mark. However, if we could find a functional form for the recursion,
giving population in terms of month, we could than simply plug in 12 ⋅
10 = 120 months to calculate the population after 10 years. The latter
functional form is the evolution Φ in the definition of a dynamical system
above. How does one find this? We will see.

Exercise 3. Find a closed form expression for the evolution of f(x) = rx + a,
in the case where −1 < r < 1 and a are constants. Also determine the unique point
where f(x) = x in this case.

Exercise 4. For g(x) = x2+1, write out the first four iterates gi(x), i = 1,2,3,4.
Then look for a pattern with which to write out the nth iterate, gn(x). Do you
see the difficulty? Now if your only interest was to know what the convergence
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properties of {gn(x)}n∈N was for arbitrary starting values x0, what can you assert?
And can you prove your assertions?.

In general, finding Φ (in essence, solving the dynamical system) is very difficult
if not impossible, and certainly often impractical and/or tedious. However, it is
often the case that the purpose of studying a dynamical system is not to actually
solve it. Rather, it is to gain insight as to the structure of its solutions. Really, we
are trying to make qualitative statements about the system rather than quantitative
ones. Think about what you did when studying nonlinear systems of first order
ODEs in any standard undergraduate course in differential equations. Think about
what you did when studying autonomous first order ODEs.

Before embarking on a more systematic exploration of dynamical systems, here
is another less rigorous definition of a dynamical system:

Definition 1.9. Dynamical Systems as a field of study attempts to understand
the structure of a changing mathematical system by identifying and analyzing the
things that do not change.

There are many ways to identify and classify this notion of an unchanging
quantity amidst a changing system. But the general idea is that if a quantity
within a system does not change while the system as a whole is evolving, then that
quantity holds a special status as a symmetry. Identifying symmetries can allow
one to possibly locate and identify solutions to an ODE. Or one can use a symmetry
to create a new system, simpler than the previous, where the symmetry has been
factored out, either reducing the number of variables or the size of the system.

More specifically, here are some of the more common notions:

● Invariance: First integrals: Sometimes a quantity, defined as a function
on all or part of the phase space, is constant along the solution curves of
the system. If one could create a new coordinate system of phase space
where one coordinate is the value of the first integral, then the solution
curves correspond to constant values of this coordinate. The coordinate
becomes useless to the system, and it can be discarded. The new system
then has less degrees of freedom than the original. Phase space volume: In
a conservative vector field, as we will see, if we take a small ball of points
of a certain volume and then flow along the solution curves to the vector
field, the ball of points will typically bend and stretch in very complicated
ways. But it will remain an open set, and its total volume will remain
the same. This is phase volume preservation, and it says a lot about the
behavior and types of solution curves.

● Symmetry: Periodicity: Sometimes individual solution curves (or sets of
them) are closed, and solutions retrace their steps over certain intervals of
time. If the entire system behaves like this, the direction of the flow con-
tains limited information about the solution curves of the system. One can
in a sense factor out the periodicity, revealing more about the remaining
directions of the state space. Or even near an isolated singular periodic
solution, one can discretize the system at the period of the periodic orbit.
This discretized system has a lower order, or number of variables, then
the original.

● Asymptotics: In certain autonomous ODEs (systems where the time is
not explicitly expressed in the system), one can start at any moment in



1.1. DEFINITIONS 11

time and the evolution depends only on the starting time. In systems
like these, the long-term behavior of solutions may be more important
than where they are in any particular moment in time. In a sense, one
studies the asymptotics of the system, instead of attempting to solve.
Special solutions like equilibria and limit cycles are easy to find, and their
properties become important elements of the analysis.

Example 1.10. In an exact differential equation

M(x, y) dx +N(x, y) dy =M(x, y) +N(x, y)dy
dx

= 0,

we have My = ∂M
∂y

= ∂N
∂x

= Nx. We know then that there exists a function φ(x, y),
where ∂φ

∂x
= M and ∂φ

∂y
= N . Indeed, given a twice differentiable function φ(x, y)

defined on a domain in the plane, it’s level sets are equations φ(x, y) = C, for C a
real constant. Each level set defines y implicitly as a function of x. Thinking of y
as tied to x implicitly, differentiate φ(x, y) = C with respect to x and get

dφ

dx
= ∂φ
∂x

+ ∂φ
∂y

dy

dx
= 0.

This last equation will match the original ODE precisely if the two above properties
hold. The interpretation then is: The solutions to the ODE correspond to the level
sets of the function φ. We can say that that solutions to the ODE “are forced to
live” on the level sets of φ. Thus, we can write the general solution set (at least
implicitly) as φ(x, y) = C, again a 1-parameter family of solutions. Here φ is a first
integral of the flow given by the ODE, a concept we will define precisely in context
later.

Exercise 5. Solve the differential equation 12−3x2+(4−2y) dy
dx

= 0 and express
the general solution in terms of the initial condition y(x0) = y0. This is your function
φ(x, y).

Example 1.11. Newton-Raphson: Finding a root of a (twice differentiable)
function f ∶ R→ R leads to a discrete dynamical system xn = g(xn−1), where

g(x) = x − f(x)
f ′(x) .

One here does not need to actually solve the dynamical system (find a form for
the function Φ). Instead, all that is needed is to satisfy some basic properties of
f to know that if you start sufficiently close to a root, the long-term (asymptotic)
behavior of any starting point IS a root.

Exercise 6. One can use the Intermediate Value Theorem in single variable
calculus to conclude that there is a root to the polynomial f(x) = x3 − 3x+ 1 in the
unit interval I = [0,1] (check this!). For starting values every tenth on I, iterate
g(x) to estimate this root to three decimal places (it converges quite quickly!). Now
try to explain what is happening when you get to both x0 = .9 and x0 = 1.

Example 1.12. Autonomous ODEs: One can integrate the autonomous first-
order ODE

y′ = f(y) = (y − 2)(y + 1), y(0) = y0,
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since it is separable, and the integration will involve a bit of partial fraction decom-
posing. The solution is

(1.1.2) y(t) = Ce
3t + 2

1 −Ce3t
.

Exercise 7. Calculate Equation 1.1.2 for the ODE in Example 1.12.

Exercise 8. Now find the evolution for the ODE in Example 1.12 (this means
write the general solution in terms of y0 instead of the constant of integration C.)

But really, is the explicit solution necessary? One can simply draw the phase
line as in Figure 4,

Figure 4. The phase line of y′ = (y − 2)(y + 1).

From this schematic view of the long-term tendencies of each solution, one can
glean a lot of information about the solutions of the equation. For instance, the
equilibrium solutions occur at y(t) ≡ −1 and y(t) ≡ 2, and that the equilibrium at
−1 is asymptotically stable (the one at 2 is unstable). Thus, if long-term behavior
is all that is necessary to understand the system, then we have:

lim
t→∞

y(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if y0 < 2
2 if y0 = 2
∞ if y0 > 2.

In both these last two examples, actually solving the dynamical system isn’t
necessary to gain important and possibly sufficient information about the system.

1.2. The viewpoint

Dynamical Systems, as a field of study, is a type of mathematical analysis;
the study of the formal properties of sets of objects and the structures defined
on them (think functions, spaces, etc.) You encountered analysis in your calculus
classes, although there, one focuses on the more technical aspects of calculating and
determining the properties of functions defined on a particular set, the real line R.
Indeed, the properties of functions and the spaces that serve as their domains
(and codomains) are intimately intertwined in sometimes obvious and often subtle
ways. For example, in a celebrated theorem by Luitzen E. J. Brouwer [1912], any
continuous function from a compact, convex space to itself must contain at least
one point where its image under the function is the same as the point itself (a fixed
point of the function.) This fact has been celebrated in various ways over the years;
often cited as the meaning of the phrase ”one cannot comb the hair of a bowling
ball”. This property has enormous implications for not simply the function we
apply to the space, but for the space itself. The consequences of a theorem like
this are evident even on the beginning stages of math, like calculus and differential
equations.



1.2. THE VIEWPOINT 13

In general, studying how a map moves around the points of the space is to study
the dynamical content of the map. Where the points go, upon repeated iteration
of a map on a space, or how solutions of a differential equation behave once their
parameter domain is known is to study the system dynamically. If most or all
of the solutions tend to look alike, or if the diversity of the ways a collection of
iterates of a point under a map is small, then we say that the dynamics are simple.
In essence, they are easy to describe, or it does not take a lot of information to
describe them. In contrast, if different solutions to the ODE can do many different
things, or if it takes a lot of information to describe how many different ways a map
can move distinct points around in a space, we say that the dynamics are complex
or complicated. One may say that a dynamical system is more interesting if it is
more complicated to describe, although that is certainly a subjective term.

Solving a dynamical system, or finding an explicit expression for the evolution,
is typically not the general goal of an analysis of a dynamical system. Many non-
linear systems of ODEs are difficult if not impossible to solve. Rather, the goal of
an analysis of a dynamical system is the general description of the movement of
points under the map or the ODE.

In the following chapters, we will develop a language and methods of analysis to
study the dynamical content of various kinds of dynamical systems. We will survey
both discrete and continuous dynamical systems that exhibit a host of phenomena,
and mine these situations for ways to classify and characterize the behavior of the
iterates of a map (or solutions of the ODE). We will show how the properties of the
maps and the spaces they use as domains affect the dynamics of their interaction.
We will start with situations that display relatively simple dynamics, and progress
through situations and applications of increasing complexity (complicated behav-
ior). In all of these situations, we will keep the maps and spaces as easy to define
and work with as possible, to keep the focus directly on the dynamics.

Perhaps the best way to end this chapter is on a more philosophical note, and
allow a possible raison d’etre for why dynamical systems even exists as a field of
study enmeshed in the world of analysis, topology and geometry:

Definition 1.13. Dynamical systems is the study of the information contained
in and the effects of groups of transformations of a space.

For a discrete dynamical system defined by a map on a space, the properties of
the map as well as those of the space, will affect how points are moved around the
space. As we will see, maps with certain properties can only do certain things, and
if the space has a particular property, like the compact, convex space above, then
certain things must be true (or may not), like a fixed-point free transformation.
Dynamics is the exploration of these ideas, and we will take this view throughout
this text.





CHAPTER 2

Simple Dynamics

2.1. Preliminaries

2.1.1. A simple system. To motivate our first discussion and set the playing
field for an exploration of some simple dynamical systems, recall some general
theory of first-order autonomous ODEs in one dimension: Let

ẋ = f(x), x(0) = x0

be an IVP (again, an ODE with an initial value) where the function f(x) is a dif-
ferentiable function on all of R. From any standard course in differential equations,
this means that solutions will exist and be uniquely defined for all values of t ∈ R
near t = 0 and for all values of x0 ∈ R. Recall that the general solution of this ODE
will be a 1-parameter family of functions x(t) parameterized by x0. In reality, one
would first use some sort of integration technique (as best as one can; remember
this ODE is always separable, although 1

f(x) may not be easy to integrate. As

an example, consider f(x) = ex2

) to find x(t) parameterized by some constant of
integration C. Then one would solve for the value of C given a value of x0. Indeed,
one could solve generally for C as a function of x0, and then substitute this into
the general solution, to get

x(t, x0) ∶ R ×R→ R
as the evolution. Then, for each choice of x0, we would get a function xx0(t) ∶ R→ R
as the particular solution to the IVP. We will use the notation with a subscript for
x0 to accentuate that the role of x0 is that of a parameter. Specifying a value
means solving the IVP for that value of x0. Leaving x0 unspecified means that we
are looking for a particular solution at a fixed value of x0. The resulting graph of
xx0(t) would “live” in the tx-plane as a curve (the trajectory) passing through the
point (0, x0). Graphing a bunch of representative trajectories gives a good idea of
what the evolution looks like. You did this in your differential equations course
when you created phase portraits.

Example 2.1. Let ẋ = kx, with k ∈ R a constant. Here, a general solution
to the ODE is given by x(t) = Cekt. If, instead, we were given the IVP ẋ = kx,
x(0) = x0, the particular solution would be x(t) = x0e

kt. The trajectories would
look like graphs of standard exponential functions (as long as k /= 0) in the tx-plane.
Below in Figure 1 are the three cases which look substantially different from each
other: When k > 0, k = 0, and k > 0.

Recall in higher dimensions, ẋ = f(x), we typically do not graph solutions
explicitly as functions of t. Rather, we use the t-parameterization of solutions

x(t) = [x1(t) x2(t) ⋯ xn(t)]T to trace out a curve directly in the x-space. This
space, whose coordinates are the set of dependent variables x1, x2, . . . , xn, is called

15
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Figure 1. Sample solutions for xx0(t) = x0e
kt.

the phase-space (sometimes the tx-plane from above, or more generally the tx-space
is called the trajectory space to mark the distinction). The diagrams in the plane
that correspond to linear systems with a saddle at the origin, or a spiral sink are
examples of phase planes with representative trajectories. Often, particularly in
phase space, trajectories are also called orbits.

Example 2.2. The linear system IVP ẋ = −y, ẏ = x, x(0) = 1, y(0) = 0 has
the particular solution x(t) = cos t, y(t) = sin t. Graphing the trajectory, according
to the above, means graphing the curve in the txy-space, a copy of R3. While
informative, it may be a little tricky to fully “see” what is going on. But the orbit,
graphed in the xy-plane, which is the phase space, is the familiar unit circle (circle
of radius 1 centered at the origin). Here t ∈ R is the coordinate directly on the
circle, and even the fact that it overwrites itself infinitely often is not a serious
sacrifice to understanding. See Figure 2.

Figure 2. Solution curve x(t) = cos t, y(t) = sin(t) in trajectory
space and the phase plane.
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Even for autonomous ODEs in one-dependent variable, we designed a schematic
diagram called a phase-line to give a qualitative description of the “motion” of
solutions to ẋ = f(x).

Example 2.3. The phase lines for ẋ = kx for the three cases in Figure 1 are
below the graphs. The proper way to think of these lines is as simply a copy of
the vertical axis (the x-axis in this case of the tx-plane) in each of the graphs,
marking the equilibrium solutions as special points, and indicating the direction of
change of the x-variable as t increases. All relevant information about the long-
term behavior is encoded in these phase lines. In fact, these lines ARE the 1-
dimensional phase spaces of the ODE, and the arrows simply indicate the direction
of the parameterized x(t) inside the line. It is hard to actually see the parameterized
curves, since they all run over the top of each other. This is why we graph solutions
in 1-variable ODEs using t explicitly, while for ODEs in two or more dependent
variables, we graph using t implicitly, as the coordinate directly ON the curve in
the phase space.

2.1.2. The time-t map. Again, for ẋ = f(x), x(0) = x0, the general solution
x(t, x0) ∶ R ×R→ R is a 1-parameter family of solutions, written as xx0(t), param-
eterized by x0. However, we can also think of this family of curves in a much more
powerful way: As a 1-parameter family of transformations of the phase space! To
see this, rewrite the general solution as ϕ(t, x0) ∶ R ×R→ R instead of the possibly
confusing notation x(t, x0). Now instead of thinking of x0 as the parameter, fixing
the second argument and varying the first as the independent variable, do it the
other way: Fix a value of t, and allow the variable x0 = x (the starting point) to
vary. Then we get for t = t0:

ϕ(t0, x) ∶ R ×R→ R, ϕt0(x) ∶ R→ R, x(0) Ð→ x(t0).
As t varies, every point x ∈ R (thought of as the initial point x(0), gets “mapped” to
its new position at x(t0). Since all solutions are uniquely defined, this is a function
for each value of t0, and will have some very nice properties. But this alternate way
of looking at the solutions of an ODE, as a family of transformations of its phase
space, is the true dynamical view, and one we will explore frequently.

Place a picture of how points move around phase space at time t0. Viewing
this as solely a transformation of phase space is the dynamical view.

Let X denote any particular topological space. For now, though, just think of
X as some subset of the real space Rn, something you are familiar with.

Definition 2.4. For f ∶X →X a map, define the set

Ox = {y ∈X ∣ y = fn(x), n ∈ N}

as the (forward) orbit of x ∈X under f .

Some notes:

● We define Ox as a set of points in X, but it is really more than just a set.
It is a collection of points in X ordered, or parameterized, by the natural
numbers: a sequence. Hence we often write Ox = {x, f(x), f2(x), . . .} to

note the order, or for xn+1 = f(xn), Ox = {x0, x1, x2, . . .}.
● If f is invertible, we can also then define the backward orbit

O−
x = {y ∈X ∣ y = f−n(x), n ∈ N} ,
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or the full orbit

Ox = {y ∈X ∣ y = fn(x), n ∈ Z} ,

rewriting the forward orbit then as O+
x. However, at times, even for in-

vertible maps, we are only concerned with the forward orbit and simply
write Ox, using context for clarity.

Consider the discrete dynamical system f ∶ R → R, given by f(x) = rx, r > 0.
What do the orbits look like? Basically, for x ∈ R, we get

Ox = {x, rx, r2x, r3x, . . . , rnx, . . .} .

In fact, we can “solve” this dynamical system by constructing the evolution

Φ(x,n) = rnx.

Do the orbits change in nature as one varies the value of r? How about when r is
allowed to be negative? How does this relate to the ordinary differential equation
ẋ = kx?

Definition 2.5. For t ≥ 0, the time-t map of a continuous dynamical system
is the transformation of state space which takes x(0) to x(t).

Example 2.6. Let k < 0 in ẋ = kx, with x(0) = x0. Here, the state space is R
(the phase space, as opposed to the trajectory space R2), and the general solution
is Φ(x0, t) = x0e

kt (the evolution of the dynamical system is Φ(x, t) = xekt. Notice
that

Φ(x,0) = x, while Φ(x,1) = ekx.

Figure 3. The time-t map for some
positive time of ẋ = kx, k < 0.

Hence the time-1 map is
simply multiplication by
r = ek. The time-1 map
is the discrete dynamical
system on R given by the
function above f(x) = rx.
In this case, r = ek, where
k < 0, so that 0 < r = ek <
1. See Figure 2.1.2. Now
how do the orbits behave?

Exercise 9. Given
any dynamical system, de-
scribe the time-0 map.

Definition 2.7. For a
discrete dynamical system
f ∶X →X, a fixed point is a point x∗ ∈X, where f(x∗) = x∗, or where

Ox∗ = {x∗, x∗, x∗, . . .} .

The orbit of a fixed point is also called a trivial orbit. All other orbits are called
non-trivial.



2.1. PRELIMINARIES 19

In our example above, f ∶ R → R, f(x) = ekx, k < 0, we have x = 0 as the
ONLY fixed point. This corresponds nicely with the unique particular solution to
the ODE ẋ = kx corresponding to the equilibrium x(t) ≡ 0.

So what else can we say about the “structure” of the orbits? That is, what
else can we say about the “dynamics” of this dynamical system? For starters,
the forward orbit of a given x0 will look like the graph of the discrete function
fx0

∶ N → R2, fx0(n) = x0e
kn. Notice how this orbit follows the trajectory of x0 of

the continuous dynamical system ẋ = kx. Here, f is the time-1 map of the ODE.
Notice also that, as a transformation of phase space (the x-axis), f is not just a
continuous function but a differentiable one, with 0 < f ′(x) = ek < 1, ∀x ∈ R. The
orbit of the fixed point at x = 0, as a sequence, certainly converges to 0. But here
ALL orbits have this property, and we can say

∀x ∈ R, lim
n→∞

Ox = 0, or Ox Ð→ 0.

Figure 4. The forward orbit of f(x) =

xek lives on a solution to ẋ = kx, k < 0.

This gives a sense of
what we will mean by a
dynamical system exhibit-
ing simple dynamics: If
with very little effort or
additional structure, one
can completely describe
the nature of all of the or-
bits of the system. Here,
there is one fixed point,
and all orbits converge to
this fixed point.

Definition 2.8. For a
discrete dynamical system,
a smooth curve (or set of

curves) ` in state space is called an orbit line if ∀x ∈ `, Ox ⊂ `.

Example 2.9. The orbit lines for time-t maps of ODEs are the trajectories of
the ODE.

Exercise 10. Go back to Figure 1. Describe completely the orbit structure of
the discrete dynamical system f(x) = rx for other two cases, when r = 1 and r > 1
(corresponding to r = ek, for k = 0 and k > 0, respectively). That is, classify all
possible different types of orbits, in terms of whether they are fixed or not, where
they go as sequences, and such. You will find that even here, the dynamics are
simple, but at least for the k > 0 case, one has to be a little more careful about
accurately describing where orbits go.

Exercise 11. As in the previous exercise, describe the dynamics of the discrete
dynamical system f(x) = rx, when r < 0 (again, there are cases here). In particular,
what do the orbit lines look like in this case? You will find that this case does not,
in general, correspond to a time-t map of the ODE ẋ = kx for any value of k (why
not?)

Exercise 12. Show that there does not exist a first-order, autonomous ODE
where the map f(x) = rx corresponds to the time-1 map, when r < 0.
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Exercise 13. Construct a second-order ODE whose time-1 map is f(x) = rx,
where r < 0 is any given constant.

Exercise 14. For the discrete dynamical system f ∶ R → R, f(x) = rx + b,
calculate the evolution in closed form. Then completely describe the orbit structure
when b /= 0, noting in particular the different cases for different values of r ∈ R.

Remark 2.10. Is there really any difference in the dynamical content of the
discrete dynamical systems given by the linear map f ∶ R → R, f(x) = kx, and the
affine map g(x) = kx + b? By a linear change of variables (a translation here), one
can change one to the other in a way that orbits go to orbits. And if this is so,
is there any real need to study the more general affine map g once we know all of
the characteristics of maps like f? We will explore this idea later in the concept
of topological conjugation; the idea that two dynamical systems can be equivalent.
For now, a simple exercise:

Exercise 15. For k /= 1, and f and g as in Remark 2.10 find a linear change of
variables h ∶ R→ R that satisfies the condition that g○h(x) = h○f(x) (equivalently,
that f(x) = h−1 ○ g ○ h(x).

Exercise 16. Given ẋ = f(x), f ∈ C1(R), recall that an equilibrium solution is
defined as a constant function x(t) ≡ c which solves the ODE. They can be found by
solving f(x) = 0 (remember this?) Instead, define an equilibrium solution x(t) as
follows: A solution x(t) to ẋ = f(x) is called an equilibrium solution if there exists
t1 /= t2 in the domain of x(t) where x(t1) = x(t2). Show that this new definition is
equivalent to the old one.

Exercise 17. For the first-order autonomous ODE dp
dt

= p
2
− 450, do the fol-

lowing:

● Solve the ODE by separating variables. Justify explicitly why the absolute
value signs are not necessary when writing the general solution as a single
expression.

● Calculate the time-1 map for this ODE flow.
● Discuss the simple dynamics of this discrete dynamical system given by

the time-1 map.

2.1.3. Contractions. The above questions are all good to explore. For now,
the above example f(x) = ekx, where k < 0, is an excellent example of a particular
class of dynamical systems which we will discuss presently.

Definition 2.11. A metric on a subset of Euclidean space X ⊂ Rn is a function
d ∶X ×X → R where

(1) d(x, y) ≥ 0, ∀x, y ∈X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x), ∀x, y ∈X.
(3) d(x, y) + d(y, z) ≥ d(x, z), ∀x, y, z ∈X.

One such choice of metric is the “standard Euclidean distance” metric

d(x,y) =
¿
ÁÁÀ

n

∑
i=1

(xi − yi)2,

where x = (x1, x2, . . . , xn) ∈ Rn. Note that for n = 1, this metric reduces to d(x, y) =√
(x − y)2 = ∣x − y∣.
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Exercise 18. Explicitly show that the standard Euclidean distance metric is
indeed a metric by showing that it satisfies the three conditions.

Exercise 19. On Rn, define a notion of distance by d(x,y) = ∑ni=1 ∣xi − yi∣.
Show this notion of distance is a metric. (For n = 2, this is sometimes called the
taxicab or the Manhattan metric. Can you see why?)

Exercise 20. Again, on Rn, show that

d(x,y) = max{∣x1 − y1∣, ∣x2 − y2∣, . . . , ∣xn − yn∣}
is a metric. (This norm is referred to as the maximum metric, or max metric.)

Remark 2.12. One can define notions of distance between points in vector
spaces via vector norms. All of the previous three examples above are members
of a family of distances defined by vector norms called the Lp-norms or simply p-
norms. Euclidean distance corresponds to p = 2, the Manhattan distance is p = 1,
and the last, the maximum metric comes from the ∞-norm or maximum norm. All
are defined via the p-norm

∣∣x∣∣p = (∑∣xi∣p)
1
p .

The ∞-norm is so-named since it is the norm formed by letting pÐ→∞.

Exercise 21. On R2, consider a notion of distance defined by the following:

d(x,y) = { ∣x1 − y1∣ if x1 /= y1

∣x2 − y2∣ if x1 = y1.

This is similar to a lexicographical ordering of points in the plane. Show that this
notion of distance is NOT a metric on R2.

Exercise 22. The original definition of a circle as a planar figure comes directly
from Euclid himself: A circle is the set of points in the plane equidistant from a
particular point. Naturally, using the Euclidean metric, a circle is what you know
well as a circle. Show that circles in the taxicab metric on R2 are squares whose
diagonals are parallel to the coordinate axes.

Exercise 23. Following on the previous exercise, construct a metric on R2

whose circles are squares whose sides are parallel to the coordinate axes. (Hint:
Rotate the taxicab metric.)

Exercise 24. Let S be a circle of radius r > 0 centered at the origin of R2.
It’s circumference is 2πr. Euclidean distance in the plane does restrict to a metric
directly on the circle. Here instead, construct a metric on the circle using arc-length,
and verify that it is a metric. (Be careful about measuring distance correctly.)

Remark 2.13. When discussing points in Euclidean space, it is conventional
to denote scalars (elements of R) with a variable in italics, and vectors (elements
of Rn, n > 1) as a variable in boldface. Thus x = (x1, x2, . . . , xn). In the above
definition of a metric, we didn’t specify whether X was a subset of R or something
larger. In the absence of more information regarding a space X, we will always
use simple italics for its points, so that x ∈ X, even if it is possible that X = R5,
for example. We will only resort to the vector notation when it is assured that we
are specifically talking about vectors of a certain size. This is common in higher
mathematics like topology.
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Definition 2.14. A map f ∶ X ⊂ Rn → Rm, is called Lipschitz continuous
(with constant λ), or λ-Lipschitz, if

(2.1.1) d (f(x), f(y)) ≤ λd(x, y), ∀x, y ∈X.
Some notes:

● The set X can always inherit the metric on Rn simply by declaring that
the distance between two points in X is defined by the their distance in
Rn (See Exercise 24). So subsets of Rn are always metric spaces. This
includes the subset of Rm that is the range of f , often called the image
of f , denoted f(X) ∈ Rm. One can always define a different metric on X
(or its image) if one wants. But the fact that X is a metric space comes
for free, as they sometimes say.

● λ is a bound on the stretching ability (comparing the distances between
the images of points in relation to the distance between their original
positions) of f on X. This is actually a stronger form of continuity called
uniform continuity: Lipschitz functions are always continuous, but there
are continuous functions that are not Lipschitz. Basically, if the ratio of
the distance between two images f(x) and f(y) to the distance between
x and y is bounded by λ across all of X, then f is λ-Lipschitz.

● To get a better sense for Lipschitz continuity, consider the following: On a
bounded interval in R, polynomials are always Lipschitz continuous. But
on R itself, only the constants and the linear polynomials are λ-Lipschitz.
Rational functions, on the other hand, even though they are continuous
and differentiable on their domains, are not Lipschitz continuous on any
interval whose closure contains a vertical asymptote. sinx is 1-Lipschitz
on R, but tanx is not Lipshitz continuous on its domain. And a function
like ex?

● It should be obvious that λ > 0. Why?
● We can define

Lip(f) = sup
x/=y

d (f(x), f(y))
d(x, y) ,

which is the infimum of all λ’s that satisfy Equation 2.1.1. When we
speak of specific values of λ for a λ-Lipschitz function, we typically use
λ = Lip(f), if known.

Exercise 25. Show for f ∶ R→ R that Lipschitz continuity implies continuity.

Exercise 26. Let f(x) = 1
x

. Show f is Lipschitz continuous on any domain
(a, b), a > 0, a < b ≤ ∞, and for any particular choice of a and b, produce the
constant λ. Then show that f is not Lipschitz continuous on (0,∞).

Exercise 27. Show that h(x) = ∣x∣ is Lipschitz continuous on R and produce
Lip(h).

Exercise 28. Show that g(x) = ex is NOT Lipschitz continuous on R.

Exercise 29. For a given non-negative λ, construct a function whose domain
in all of R, that is precisely λ-Lipschitz continuous on I = (−∞,2) ∪ (2,∞) but not
Lipschitz continuous.

Exercise 30. Produce a function that is continuous on I = [−1,1] but not
Lipschitz continuous there.
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It should be clear now that, for a real-valued function on R, since we are
measuring ratios of image distances to point distances, the derivative of f , if it
exists, can say a lot about Lipschitz continuity. One must be careful about the
domain, however:

Proposition 2.15. Let f ∶ I ⊂ R → R be differentiable on an open interval I,
where ∀x ∈ I, we have ∣f ′(x)∣ ≤ λ. Then f is λ-Lipschitz.

Proof. Really, this is simply an application of the Mean Value Theorem: For
a function f differentiable on a bounded, open interval (a, b) and continuous on its

closure, there is at least one point c ∈ (a, b) where f ′(c) = f(b)−f(a)
b−a , the average

total change of the function over [a, b]. Here then, for any x, y ∈ I (thus ALL of
[x, y] ∈ I even when I is neither closed nor bounded), there will be at least one c ∈ I
where

d (f(x), f(y)) = ∣f(x) − f(y)∣ = ∣f ′(c)∣∣x − y∣ ≤ λ∣x − y∣ = λd(x, y).
�

Definition 2.16. A λ-Lipschitz function f ∶ X ⊂ Rn → Rm on a metric space
X is called a contraction if λ < 1.

Note here that the definition here for a contraction as well as the general defi-
nition above of Lipschitz continuity both allow for the domain and range to be two
different metric spaces. When using the function f as the fixed rule of a discrete
dynamical system, however, we want the codomain and domain to be the same,
and would define f ∶ X → X to be a contraction if it is Lipschitz continuous with
λ < 1.

Example 2.17. Back to the previous example f ∶ R → R, f(x) = ekx, the
time-1 map of the ODE ẋ = kx. Given that f ′(x) = ek everywhere, in the case that
k < 0, the map f is a contraction on ALL of R. Indeed, using the Euclidean metric
in R, we have

d(f(x), f(y)) = ∣ekx − eky∣ = ∣ek(x − y)∣ = ∣ek∣∣x − y∣ = ek ∣x − y∣ = λ∣x − y∣
for all x, y ∈ R, where λ = ek < 1.

Exercise 31. Without using derivative information, show that f(x) = ax + b
is a-Lipschitz on R.

Exercise 32. Again without using derivative information, show that the mono-
mial xn, n ∈ N is nan−1-Lipschitz on the interval [0, a]

Exercise 33. Find a for the largest interval [0, a] where f(x) = 3x2 − 2 is a
contraction.

Before we continue, we need to clarify some of the properties of the intervals
we will be using in our dynamical systems. Here are a couple of definitions:

Definition 2.18. A subset U ∈ R is called bounded if there exists a number
M > 0 so that ∀x ∈ U , we have ∣x∣ <M .

Definition 2.19. An interval I is called closed in R if it contains all of its limit
points. If the interval is bounded (as a subset of R), then this means that I includes
its endpoints. But closed intervals need not be bounded. Hence closed intervals in
R take one of the forms [a, b], (−∞, b], [a,∞) or (−∞,∞), for −∞ < a ≤ b < ∞.
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Definition 2.20. Let I = [a, b] ∈ R be a closed, bounded interval, and f ∶ I → I
a map. We say f is continuously differentiable, or simply differentiable on I, if f is
differentiable on (a, b) and differentiable from the right at a and from the left at b.
In essence, this means that f ′(x) is continuous on I.

Proposition 2.21. Let f ∶ I → I be continuously differentiable on I, a closed,
bounded interval, with ∣f ′(x)∣ < 1 ∀x ∈ I. Then f is a contraction.

Proof. f ′(x) is continuous on I so it will achieve its maximum there by the
Extreme Value Theorem, and

max
x∈I

∣f ′(x)∣ = λ < 1.

Now apply Proposition 2.15. �

Note. If I is not closed, or is not bounded, this may NOT be true. See Exer-
cise 34.

Exercise 34. Show f(x) = 2
√
x is NOT a contraction on (1,∞).

Definition 2.22. For f ∶X →X a map, a point x ∈X is called periodic (with
period n) if ∃n ∈ N such that fn(x) = x. The smallest such natural number is called
the prime period of x.

Notes:

● If n = 1, then x is a fixed point.
● Define

Fix(f) = {x ∈X ∣ f(x) = x}

Pern(f) = {x ∈X ∣ fn(x) = x}

Per(f) = {x ∈X ∣ ∃n ∈ N such that fn(x) = x} .

Keep in mind that these sets are definitely not mutually exclusive, and
for m,n ∈ N, Perm(f) ⊂ Pern(f) precisely when m∣n (when n is an integer
multiple of m.)

2.2. The Contraction Principle

Lipschitz continuous functions, in a rough sense, are fairly well-behaved when
it comes to iteration. Basically, the distance between the images of two points in
a domain of a Lipschitz continuous function are bounded relative to the original
distance between the two points. Thus upon iteration, in the situation when the
domain and the codomain are the same, two orbits that start close together cannot
diverge faster than exponentially (recall that near a vertical asymptote of a rational
function, this is not so.) When the Lipschitz constant is less than 1, then the images
of points are actually closer together than their original distances. This has great
consequences when trying to understand how orbits behave when viewing a map as
a discrete dynamical system. Basically, in a Lipschitz contraction, all of the orbits
can be described rather simply, as they all wind up going to the same place in the
long term. We will say, in this case, that the map exhibits simple dynamics.
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2.2.1. Contractions on intervals. For discrete dynamical systems defined
on (subsets of) the real line, we can generalize that contractions have some special
properties. One very special feature is that the fixed point set is always non-empty,
but very small in size:

Theorem 2.23 (the Contraction Principle). Let I ⊂ R be a closed interval, and
f ∶ I → I a λ-contraction. Then f has a unique fixed point x0, and

∣fn(x) − x0∣ ≤ λn ∣x − x0∣ .

Some notes before we prove this theorem:

● ∀x ∈ I, Ox Ð→ x0 as a sequence exponentially due to the factor λn, where
0 < λ < 1.

● As stated, this is only a result valid on subsets of R, for now.
● As a way to understand this theorem, first think about why a contraction

cannot have more than on fixed point:

Exercise 35. Show, without using the Contraction Principle, that a
contraction cannot have two fixed points.

● For the proof of the theorem, we will need a convenient fact from Analysis:
That the idea of a sequence converging in real space is the same as the
fact that the sequence is Cauchy:

Definition 2.24. For N ∈ N, a sequence {x1, x2, . . .} ∈ RN is called Cauchy if
∀ε > 0, ∃A > 0 such that ∀m,n ≥ A, d(xm, xn) < ε.

Proposition 2.25. A sequence in RN , N ∈ N converges iff it is Cauchy.

Proof of Contraction Principle (in R). The proof of this theorem will
consists of three parts: (1) That the orbit of an arbitrary point converges to some-
thing in the interval; (2) that any two orbits also converge (point-wise); and (3)
that the thing all of these orbits converge to is actually an orbit (the orbit of a fixed
point).

We start with the first of these. Choose x ∈ I. It should be obvious since f is
a map on I that Ox ∈ I. Now, for m,n ∈ N, where we can assume without any loss
of generality that m ≥ n. Then

∣fm(x) − fn(x)∣ = ∣fm(x) − fm−1(x) + fm−1(x) − fm−2(x) + fm−2(x) − . . .
−fn+1(x) + fn+1(x) − fn(x)∣

= ∣
m−1

∑
r=n

(fr+1(x) − fr(x))∣.
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This is a clever form of “addition by zero”, and allows us to see additional structure
not obvious in the calculation. Thus

∣fm(x) − fn(x)∣ = ∣
m−1

∑
r=n

(fr+1(x) − fr(x))∣

≤
m−1

∑
r=n

∣fr+1(x) − fr(x)∣ (triangle inequality in the matric space)

≤
m−1

∑
r=n

λr ∣f(x) − x∣ (r applications of the Lipschitz condition)

= ∣f(x) − x∣
m−1

∑
r=n

λr

= ∣f(x) − x∣λ
n − λm
1 − λ (partial sum of a geometric series)

≤ λn

1 − λ ∣f(x) − x∣.

The conclusion from all of this is that, as n gets large (under the assumption
that m ≥ n, this means that m gets large also), the right hand side of the last
inequality gets small. And n can always be chosen large enough so that the distance
between late terms in the sequence is less than some chosen ε. Hence, Ox is a Cauchy
sequence. Hence it must converge to something. As I is closed, it must converge
to something in I. Let’s call this number x0.

Now, applying the Lipschitz condition to the nth iterate of f leads directly to
the condition that

∣fn(x) − fn(y)∣ ≤ λn ∣x − y∣ ,
so that every two orbits also converge to each other. Hence every orbit converges
to this number x0.

And finally, we can show that x0 is actually a fixed point solution for f . To see
this, again ∀x ∈ I, and ∀n ∈ N,

∣x0 − f(x0)∣ = ∣x0 − fn(x) + fn(x) − fn+1(x) + fn+1(x) − f(x0)∣
≤ ∣x0 − fn(x)∣ + ∣fn(x) − fn+1(x)∣ + ∣fn+1(x) − f(x0)∣
≤ ∣x0 − fn(x)∣ + λn ∣x − f(x)∣ + λ ∣fn(x) − x0∣
= (1 + λ) ∣x0 − fn(x)∣ + λn ∣x − f(x)∣ .

Again, the steps are straightforward. The first step is another clever addition
of zero, and the second is the triangle inequality. The third involves using the
Lipschitz condition on two of the terms, and the last is a clean up of the leftovers.
However, this last inequality is the most important. It must be valid for every
choice of n ∈ N. Hence choosing an increasing sequence of values for n, we see that
as n → ∞, both ∣x0 − fn(x)∣ Ð→ 0 and λn Ð→ 0. Hence, it must be the case that
∣x0 − f(x0)∣ = 0 or x0 = f(x0). Thus, x0 is a fixed point solution for f on I and the
theorem is established. �

Example 2.26. f(x) = √
x on the interval [1,∞) is a 1

2
-contraction. Why?

f ∈ C1 and 0 < f ′(x) = 1

2
√
x
≤ 1

2
on [1,∞), and strictly less than 1

2
on (1,∞).

Thus, by Proposition 2.15, f is 1
2
-Lipschitz. So by the Contraction Principle, then,

there is a unique fixed point for this discrete dynamical system. Can you find it?
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Exercise 36. Without using any derivative information (that is, without using
Propositions 2.15 or 2.21 above), show that f(x) = √

x is a 1
2
-contraction on [1,∞).

Exercise 37. Find all periodic points (to an accuracy of 1
1000

) of the discrete
dynamical system given by the map f(x) = ln(x−1)+5 on the interval I = [2,100].

2.2.2. Contractions in several variables. The Contraction Principle in
several variables is basically the same as that of one variable. The only differ-
ence, really, is that the absolute signs are replaced by the more general metric in
Rn. To start, recall in any metric space X, we can define a small open set via the
strict inequality:

Bε(x) = {y ∈X∣d(x, y) < ε} .

Definition 2.27. A subset U ∈ X is called open if ∀x ∈ U , ∃ε > 0 such that
Bε(x) ∈ U . And U ∈X is called closed if its complement in X is open.

Note that for any x ∈ U , where U is open in X, we say U is a neighborhood of
x in X, and write U(x) ∈X.

Definition 2.28. a point x ∈X is called a boundary point of a subset U ∈X if
every neighborhood of x contains at least one point in U and one point not in U .

Definition 2.29. a subset U ∈ X is called closed in X if it contains all of its
boundary points in X.

In a loose sense, one can think of a closed subset of real space as a set of solutions
to either equations or inequalities of the form ≤ or ≥. In this fashion, curves in the
plane and surfaces in R3 are closed sets, although ones without interior points
(every point is a boundary point). Often, in vector calculus, though, the closed
sets constructed as domains for functions are open sets together with their closure,
formed by adding to the open set the set of all boundary points.

Example 2.30. For U(x) = Bε(x) the open ε-ball centered at x ∈ Rn, its closure
is

U(x) = Bε(x) = {y ∈X∣d(x, y) ≤ ε} .

The boundary of U(x), sometimes written ∂U , is the set of all points y ∈ Rn where
d(x, y) = ε. From vector calculus, recall that this is the (n-1)-dimensional sphere in
Rn of radius ε centered at x.

Keep this in mind as we generalize the Contraction Principle from R to Rn,
n > 1.

Theorem 2.31 (The Contraction Principle). Let X ⊂ Rn be closed and f ∶X →
X a λ-contraction. Then f has a unique fixed point x0 ∈X and ∀x ∈X,

d (fn(x), x0) ≤ λnd (x,x0) .

Notes:

● Again, we say here that the “dynamics are simple”. The orbit of every
point in x does exactly the same thing: Converge exponentially to the
fixed point solution x0.

● This also means that every orbit converges to every other orbit also!
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● What about periodic points? Can contractions have Periodic points other
than fixed points. The answer is no:

Exercise 38. Show that a contraction cannot have a non-trivial pe-
riodic point (periodic point of prime period greater than 1.)

● The Contraction Principle is also called the Contraction Mapping Theo-
rem, or sometimes the Banach Fixed Point Theorem.

Recall in dimension-1, the derivative of f (if it exists) can help to define the
Lipschitz constant (Recall Propositions 2.15 and 2.21 above.) How about in several
dimensions? In this context, recall that for a C1 function f ∶ X ⊂ Rn → Rn, the
derivative at x ∈ X, dfx ∶ TxRn → Tf(x)Rn is a linear map from TxRn to Tf(x)Rn.
The points in the domain X where the n × n-matrix dfx is of maximal rank are
called regular. At a domain point, we can use the Euclidean norm for vectors to
define a matrix norm for dfx as the maximal stretching ability of the unit vectors
in the tangent space:

∣∣dfx∣∣ = max
∣∣v∣∣=1

∣∣dfx(v)∣∣ .

This non-negative number is not difficult to find for an n × n matrix A: If A is
symmetric, then ∣∣A∣∣ is just the spectral radius ρ(A), the absolute value of the

largest (in magnitude) eigenvalue of A. For general n × n A, it is
√
ρ(ATA).

With this, there are two “derivative”-versions of the Contraction Principle of
note. The first is a sort of “global version” since the result holds over the entire
domain. We will require that the space be strictly convex, however (See Figure 5).

Definition 2.32. A subset X ∈ Rn is convex if for any two points x, y ∈X, the
straight line segment joining x and y lies entirely in X. X is called strictly convex,
if for any two boundary points x, y ∈ X, the line segment joining x to y intersects
the boundary of X only at x and y.

Figure 5. Convexity: Non-convex, convex, but not strictly, and
strictly convex sets, respectively.

Theorem 2.33 (Global version). If X is the closure of a strictly convex set in
Rn, and f ∶ X → Rn a C1-map with ∣∣dfx∣∣ ≤ λ < 1, ∀x ∈ X, then f has a unique
fixed point x0, and ∀x ∈X,

d(fn(x), x0) ≤ λnd(x,x0).
Note here that, technically, we really want that f is differentiable on the interior

of X and continuous on the boundary.

Exercise 39. Let f ∶ R2 → R2 be the affine map f(x, y) = ( 1
2
x + 1

3
y,− 1

2
x + 1

2
y + 1).

Find the fixed point of f , and show that f is a contraction on R2.
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This next version is a local version, and presents a very useful tool for the
analysis of what happens near (in a neighborhood of) a fixed point:

Theorem 2.34 (Local version). Let f be differentiable with a fixed point x0

such that all of the eigenvalues of the derivative matrix dfx0 have absolute values
less than 1. Then there exists ε > 0 and an open neighborhood U(x0) = Bε(x0) such

that on the closure U of U , f(U) ⊂ U and f is a contraction on U .

Thus, on U , which will be a strictly convex set, the global version above applies.
To see these two versions in action, here are two applications:

2.2.3. Application: Newton-Raphson Method. An iterative procedure
for the location of a root of a C2-function f ∶ R → R, called the Newton-Raphson
Method, is an application of the local version of the contraction principle. This
method is part of a series of approximation methods that utilize the Taylor Poly-
nomials of a function to help identify important features of the function, and is
typically found in most standard calculus texts as an application using the tangent
line approximation to a function. Here, let f be C1 near an unknown root x∗.
Then, for a point x0 near the root, the tangent line approximation to f at x0 is

f(x) − f(x0) = f ′(x0) (x − x0) .

Under relatively mild conditions for f and for x0 “close” enough to x∗, the tangent
line function f(x) = f(x0) + f ′(x0) (x − x0) will also have a root. Call this point
x1. Solving the tangent line function for x1, we get

x1 = x0 −
f(x0)
f ′(x0)

.

Again, under mild conditions on f , the number x1 lies closer to x∗ than x0, and
can serve as a new approximation to x∗.

Repeating this procedure yields a discrete dynamical system given by xn+1 =
g(xn), where g(x) = x − f(x)

f ′(x) . Some things to note:

● If f is C2 near the root x∗, then as long as f ′(x) does not vanish in a
neighborhood of x∗, then g is C1 there. And

g′(x) = 1 − (f ′(x))2 − f(x)f ′′(x)
(f ′(x))2

= f(x)f
′′(x)

(f ′(x))2
.

● If there exists an open interval containing x∗, and if on this interval, there
are positive constants δ,M , where ∣f ′(x)∣ > δ (f ′ doesn’t get too small),
and ∣f ′′(x)∣ <M (f ′′ doesn’t get too large), then g′(x) is bounded.

● Notice that if x∗ is considered a root of f , then g′(x∗) = f(x∗)f ′′(x∗)
(f ′(x∗))2 = 0

and g(x∗) = x∗− f(x∗)
f ′(x∗) = x∗. Hence g fixes the root of f and, by continuity,

“near x∗” g′(x) will remain small in magnitude.

All this points to the contention that there will exist a small (closed) ε-neighborhood

Bε(x∗) about x∗, where ∣g′(x)∣ < 1 for all x ∈ Bε(x∗). (Remember that the deriv-
ative of g is 0 at x∗, is continuous in a neighborhood of x∗ and cannot grow too
quickly around x∗ due to the two constraints on the derivatives of f . Once we have
this, then by Proposition 2.21, g will form a contraction on B. Thus we have:
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Proposition 2.35. Let f ∶ R→ R be C2 with a root x∗. If ∃δ,M > 0, such that
∣f ′(x)∣ > δ and ∣f ′′(x)∣ <M on an open interval containing x∗, then

g(x) = x − f(x)
f ′(x) .

is a contraction near x∗ with fixed point x∗.

2.2.4. Application: Existence and Uniqueness of ODE solutions. A
global version example of the contraction principle above involves the standard
proof of the existence and uniqueness of solutions to the first-order IVP

(2.2.1) ẏ = f(t, y), y(t0) = y0

in a neighborhood of (t0, y0) in the t, y-plane. The proof uses a dynamical approach,
again with a first approximation and then successive iterations using a technique
attributed to Charles Picard and known as Picard Iterations.

Theorem 2.36 (Picard-Lindelöf Theorem). Suppose f(t, y) is continuous in
some rectangle

R = {(t, y) ∈ R2 ∣ α < t < β, γ < y < δ} ,

containing the initial point (t0, y0), and f is Lipschitz continuous in y on R. Then,
in some interval t0 − ε < t < t0 + ε contained in α < t < β, there is a unique solution
y = φ(t) of Equation 2.2.1.

To prove this theorem, we will need to understand a bit about how spaces of
functions behave. To start, recall from linear algebra that an (real) operator is
simply a function f ∶ U → V whose domain and codomain are (real) vector spaces.
An (real) operator is called linear if ∀x, y ∈ U and c1, c2 ∈ R, we have

f(c1x + c2y) = c1f(x) + c2f(y).
Linear operators where both dim(U) = n and dim(V ) = m are finite-dimensional
can be represented by matrices, so that f(x) = Ax, A an m×n matrix. Real-valued
continuous functions on R also form a vector space using addition of functions and
scalar multiplication as the operations. One can form linear operators on spaces
of functions like this one also, but the operator is not represented a as matrix. A

good example is the derivative operator
d

dx
which acts on the vector space of all

differentiable, real-valued functions of one independent variable, and takes them to
other (in this case, at least) continuous functions. Think

d

dx
(x2 + sinx) = 2x + cosx.

This operator is linear due to the Sum and Constant Multiple Rules found in any
standard single variable calculus text. There are numerous technical difficulties
in discussing linear operators in general, but for now, simply accept this general
description.

Back to the case at hand, any possible solution y = φ(t) (if it exists) to Equa-
tion 2.2.1 must be a differentiable function that satisfies

(2.2.2) φ(t) = y0 + ∫
t

t0
f(s, φ(s))ds

for all t in some interval containing t0.
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Exercise 40. Show that this is true (Hint: Simply differentiate to recover the
ODE.)

At this point, existence of a solution to the ODE is assured in the case that
f(t, y) is continuous on R, as the integral will then exist at least on some smaller
interval t0 − ε < t < t0 + ε contained inside α < t < β. Note the following:

● One reason a solution may not exist all the way out to the edge of R?
What if the edge of R is an asymptote in the t variable?

● A function does not have to be continuous to be integrable (step functions
are one example of integrable functions that are not continuous. However,
the integral of a step function IS continuous. And if f(t, y) included a step-
like function in Equation 2.2.1, solutions may still exist and be continuous.

As for uniqueness, suppose f(t, y) is continuous as above, and consider the
following operator T , whose domain is the space of all differentiable functions on
R, which takes a function ψ(t) to its image T (ψ(t)) (which we will denote Tψ to
help remove some of the parentheses) defined by

Tψ = y0 + ∫
t

t0
f(s,ψ(s))ds.

We can apply T to many functions ψ(t) and the image will be a different function
Tψ (but still a function of t; see Example 2.37 below). However, looking back at
Equation 2.2.2, if we apply T to an actual solution φ(t) to the IVP, the image Tφ
should be the same as φ. A solution will be a fixed point of the discrete dynamical
system formed by T on the space of functions defined and continuous on R, since
Tφ = φ.

Exercise 41. Find all fixed points for the derivative operator d
dx

whose domain
is all differentiable functions on R.

Hence, instead of looking for solutions to the IVP, we can instead look for fixed
points of the operator T . How do we do this? Fortunately, this operator T has the
nice property that it is a contraction.

proof of Theorem. By assumption, f(t, y) is Lipschitz continuous in y on
R. Hence there is a constant M > 0 where

∣f(t, y) − f(t, y1)∣ ≤M ∣y − y1∣, ∀y, y1 ∈ R.

Choose a small number ε = C
M

, where C < 1. And define a distance within the set
of continuous functions on the closed interval I = [t0 − ε, t0 + ε] by

d(g, h) = max
t∈I

∣g(t) − h(t)∣ .
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Then we have

d(Tg,Th) = max
t∈I

∣Tg(t) − Th(t)∣(2.2.3)

= max
t∈I

∣y0 + ∫
t

t0
f(s, g(s))ds − y0 − ∫

t

t0
f(s, h(s))ds∣(2.2.4)

= max
t∈I

∣∫
t

t0
f(s, g(s)) − f(s, h(s))ds∣(2.2.5)

≤ max
t∈I ∫

t

t0
∣f(s, g(s)) − f(s, h(s))∣ds(2.2.6)

≤ max
t∈I ∫

t

t0
M ∣g(s) − h(s)∣ ds(2.2.7)

≤ max
t∈I ∫

t

t0
M ⋅ d(g, h)ds(2.2.8)

≤ max
t∈I

{M ⋅ d(g, h) ⋅ ∣t − t0∣}(2.2.9)

Exercise 42. The justifications of going from Step 2.2.5 to 2.2.6, Step 2.2.6 to
2.2.7, and Step 2.2.8 to 2.2.9 are adaptations of major concepts and/or theorems
from Calculus I-II to functions of more than one independent variable. Find what
theorems these are and show that these are valid justifications. Can you see now
why the Lipschitz continuity of f is a necessary hypothesis to the theorem?

Exercise 43. Justify why the remaining steps are true.

Now notice in the last inequality that since I = [t0 − ε, t0 + ε], we have that

∣t − t0∣ ≤ ε =
C

M
.

Hence

d(Tg,Th) ≤ max
t∈I

{M ⋅ d(g, h) ⋅ ∣t − t0∣}

≤ M ⋅ d(g, h) ⋅ C
M

= C ⋅ d(g, h).

Hence T is a C-contraction and there is a unique fixed point φ (which is a
solution to the original IVP) on the interval I. Here

φ(t) = Tφ(t) = y0 + ∫
t

t0
f(s, φ(s))ds.

�

We can actually use this construction to construct a solution to an ODE:

Example 2.37. Solve the IVP y′ = 2t(1 + y), y(0) = 0 using the above Picard
iterations construction.

Here, f(t, y) = 2t(1 + y) is a polynomial in both t and y, so that f is obviously
continuous in both variables, as well as Lipschitz continuous in y, on the whole
plane R2. Hence unique solutions exist everywhere. To actually find a solution,
start with an initial guess. An obvious one is

φ0(t) = 0.
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Notice that this choice of φ0(t) does not solve the ODE. But since the operator T
is a contraction, iterating will lead us to a solution: Here φn+1(t) = Tφn(t). We get

φ1(t) = Tφ0(t) = y0 + ∫
t

0
2s(1 + φn(s))ds = ∫

t

0
2s(1 + 0)ds = t2

φ2(t) = Tφ1(t) = y0 + ∫
t

0
2s(1 + φ1(s))ds = ∫

t

0
2s(1 + s2)ds = t2 + 1

2
t4,

φ3(t) = Tφ2(t) = y0 + ∫
t

0
2s(1 + φ2(s))ds

= ∫
t

0
2s(1 + s2 + 1

2
s4) ds = t2 + 1

2
t4 + 1

6
t6,

φ4(t) = Tφ3(t) = y0 + ∫
t

0
2s(1 + φ3(s))ds

= ∫
t

0
2s(1 + s2 + 1

2
s4 + 1

6
s6) ds = t2 + 1

2
t4 + 1

6
t6 + 1

24
t8.

Exercise 44. Find the pattern and write out a finite series expression for
φn(t). Hint: Use induction.

Exercise 45. Find a closed form expression for lim
n→∞

φn(t) and show that it is

a solution of the IVP.

Exercise 46. Now rewrite the original ODE in a standard form as a first-order
linear equation, and solve.

To understand why Lipschitz continuity in the dependent variable y is a nec-
essary condition for uniqueness of solutions, consider the following example:

Example 2.38. Let ẏ = y 2
3 , y(0) = 0 a first-order, autonomous IVP. It should

be clear that y(t) ≡ 0 is a solution. But so is

yc(t) = {
1
27

(t + c)3
t < −c

0 t ≥ −c ∀c ≥ 0.

There are lots of solutions passing through the origin in ty-trajectory space. So-
lutions exist but are definitely not unique here. What has failed in establishing

uniqueness of solutions to this IVP in the Picard-Lindelöf Theorem? Here f(y) = y 2
3

is certainly continuous at y = 0, but it is NOT Lipshitz continuous there. In fact,

f ′(y) = 2
3
y−

1
3 is not differentiable at y = 0, and lim

y→0
f ′(y) = ∞.

Exercise 47. Verify that the family of curves yc(t) above solve the IVP, and
derive this family by solving the IVP as a separable ODE.

Exercise 48. Verify that f(y) = y 2
3 is not Lipschitz continuous at y = 0.

2.2.5. Application: Heron of Alexandria. Start with the beautiful idea
that the arithmetic mean of 2 positive real numbers a, b > 0, namely, a+b

2
is always

greater than the geometric mean, defined as the square root of their product:

1

2
(a + b) ≥

√
ab

′

with equality only when a = b. Sometimes this is called the AMGM Inequality.
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Figure
6. Visualization
of the AMGM
Inequality.

Geometrically, one can visualize the AMGM
Inequality via the following (See Figure 6): Let
Ba and Bb be 2 disks of respective diameters
a, b > 0 resting on the real line and touching (as-
sume a ≥ b just for the sake of argument.) Then
the line connecting their center has length pre-
cisely a+b

2
, the arithmetic mean. Using this line

as the hypotenuse of a right triangle by drop-
ping a vertical from the center of the larger ball
(in Figure 6, it is Ba), the vertical side has
length a−b

2
and the horizontal side has length√

ab. Do you see the result now?

Exercise 49. Calculate the lengths of the
two sides adjacent to the right angle here.

Exercise 50. Show algebraically that, for a, b > 0, 1
2
(a+b) ≥

√
ab, with equality

iff a = b.

A Greek mathematician and engineer, Heron of Alexandria is credited with
being the first to write down an iterated method of approximating the numeric
value of the principle square root of a positive number in the first century of the
Common Era in his work “Metrica”. The method itself evidently goes back to the
Babylonians. The method of Heron is simple enough: Let N > 0. We consider a
way to approximate

√
N .

(1) Choose a whole number a > 0 near
√
N as an approximation. A good

choice would be the root of the closest perfect square. Then a2 approxi-
mates N . But then N

a
also approximates

√
N , and. in fact, lies “on the

other side” of
√
N , meaning that

√
N lies between the two numbers a and

N
a

, no matter which is larger. See Figure 1.

(2) The algebraic mean 1
2
(a + N

a
) is a new approximation to

√
N which is

closer to
√
N than at least the farther of a and N

a
.

(3) If a better approximation to
√
N is desired, repeat with 1

2
(a + N

a
) as the

new a.

In our modern terminology, for N > 0, let f ∶ R+ → R+ be the function f(x) =
1
2
(x + N

x
). For x0 > 0 any guess, let xi+1 = f(xi). Then f has a unique fixed point

at x =
√
N .

Now there are many ways to show that this method converges ∀x0 > 0 and

∀N > 0. For example, one could calculate the length of the intervals `n = ∣∣(xn, Nxn )∣∣
and show that lim

n→∞
`n = 0, while

√
N ∈ (xn, Nxn ), ∀n ∈ N.

Exercise 51. Show `n+1 ≤ 1
2
`n, ∀n ∈ N. Thus the interval lengths decay

exponentially.

Also, an interesting fact arises from the iterations of f : The new estimate
at each stage is ALWAYS an overestimate. This is due directly to the AMGM
Inequality. Thus the sequence {xi}∞i=1 is a decreasing sequence, bounded below by√
N . Thus, it must converge.
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Exercise 52. Show that this is enough to establish that lim
n→∞

xn =
√
N .

Exercise 53. Show that Heron’s Method is equivalent to the Newton-Raphson
Method when locating the positive root of g(x) = x2 −N .

Exercise 54. Show that the AMGM Inequality provides a constructive proof
of the following optimization problems from calculus:

a. Among all positive numbers with a given product, the sum is minimal when the
numbers coincide.

b. Among all positive numbers with a given sum, the product is maximal when the
numbers coincide.

c. Among all quadrilaterals with the same perimeter, the square has the largest
area.

Exercise 55. Show that, for N > 0, the family of functions

fN ∶ R+ → R+, fN(x) = 1

2
(x + N

x
)

are not contractions. Then find the largest interval IN ⊂ R, containing
√
N , where

fN ∣
IN

is a 1
2
-contraction.

Exercise 56. Approximate
√

110using Herons method, to an accuracy of .001.
Try this using a starting value of 10 and then again for a starting value of 1, noting
the difference in convergence properties.

2.3. Interval Maps

The Contraction Principle above is a facet of some dynamical systems which
display what is called “simple dynamics”: With very little information about the
system (map or ODE), one can say just about everything there is to say about
the system. Another way to put this is to say that, in a contraction, all orbits
do exactly the same thing. Which is, they all converge to the same fixed point
(equilibrium solution in the case of a continuous dynamical system.) We can build
on this idea by now beginning a study of a relatively simple family of discrete
dynamical systems that display slightly more complicated behavior.

Figure 7. A typical C0-
map f ∶ [0,1] → [0,1].

Let f ∶ I → I be a continuous map,
where I = [0,1] (we will say f is a C0-
map on I, or f ∈ C0(I, I)). The graph
of f sits inside the unit square [0,1]2 =
[0,1] × [0,1] ⊂ R2.

2.3.1. Cobwebbing. This graph
intersects the line y = x at precisely the
points where y = f(x) = x, or the fixed
points of the dynamical system given by
f on I. Recall that the dynamical sys-
tem is formed by iterating f on I, and
all of the forward iterates of x0 under
f comprise the orbit of x0, Ox0 , where

Ox0 = {x0, x1 = f(x0), x2 = f(x1) = f2(x0), . . .} .
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One can track Ox0 in I (and in [0,1]2)
visually via the notion of cobwebbing. We use the example of f(x) = x2 on I to
illustrate:

Figure 8. A cobweb of
f(x) = x2 on [0,1].

Choose a starting value x0 ∈ I. Un-
der f , the next term in the orbit is
x1 = f(x0). Vertically, it is the height
of the graph of f over x0. Making it the
new input value to f means finding its
corresponding place on the horizontal
axis. This is easy to see visually. The
vertical line x = x0 crosses the graph of
f at the height x1 = f(x0). The hor-
izontal line y = x1 = f(x0) crosses the
diagonal y = x precisely at the point
(x1, x1). Taking the output x1 and
making it the new input to f (iterat-
ing the function) means finding where
the vertical line through this point will

again intersect the graph of f (at one point). That point will be at the height
x2 = f(x1) and constitutes the second value of the sequence Ox0 . By only zig-
zagging this way – moving vertically from the y = x line to the graph of f and
then horizontally back to the y = x line – we can document the orbit of the point
x0 without actually calculating the explicit function values. While this technique
is only as accurate as the drawing of the graph, it is an excellent way to “see” an
orbit without calculating it.

Specific to this example f(x) = x2 on I, we have two fixed points: x = 0 and x = 1
(the graph crosses the y = x line at these points). And if x0 is chosen to be strictly
less than 1, then we can easily conclude via the cobweb that Ox0 Ð→ 0. Visually, it
makes sense. Analytically, it is also intuitive; squaring a number between 0 and 1
always makes it smaller but keeping it positive. However, can you prove that every
orbit goes to 0 except for the orbit O1? We will do something like this shortly.

Exercise 57. Cobweb the following functions and describe the dynamics as
completely as you are able:

a. f(x) = x3 on [−1,1] b. g(x) = ln(x + 1) on [0,∞) c. h(x) = x2
−3

x−2
on R

d. k(x) = − 5
3
(x2

− x) on [0,1] e. `(x) = − 10
3
(x2

− x) on [0,1]
.

2.3.2. Fixed point stability. What happens to orbits near a fixed point of
a discrete dynamical system (equilibrium solutions to a continuous one) are of pro-
found importance in an analysis of a mathematical model. Often, the fixed points
are the only easily discoverable orbits of a hard-to-solve system. They play the role
of a “steady-state” of the system. And like for functions in general, knowledge of a
function’s derivatives at a point say important things about how a function behaves
near a point. To begin this analysis, we will need some definitions which will allow
us to talk about the nature of fixed points in terms of what happens around them.
This language is a lot like the way we classified equilibrium solutions in the ODEs
class. For the moment, think of X as simply an interval in R with the metric just
the absolute value of the difference between two points. These definitions are for
all metric spaces X, though. The only caveat here is that in higher dimensions,
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there are some more subtle things that can happen near a fixed point, as we will
see.

Definition 2.39. Let x0 be a fixed point of the C0-map f ∶ X → X. Then x0

is said to be

● Poisson stable if ∀ε > 0, ∃δ > 0 such that ∀x ∈ X, if d(x,x0) < δ, then
∀n ∈ N d(fn(x), x0) < ε.

● asymptotically stable, an attractor, or a sink if ∃ε > 0 such that ∀x ∈X, if
d(x,x0) < ε, then Ox Ð→ x0.

● a repeller or a source if ∃ε > 0 such that ∀x ∈ X, if 0 < d(x,x0) < ε, then
∃N ∈ N such that ∀n > N , d(fn(x), x0) > ε.

Do we need semi-stable here for one-dimensional fixed points?
The basic idea behind this classification is the following: Asymptotically sta-

ble means that there is a neighborhood of the fixed point where f restricted to
that neighborhood is a contraction with x0 as the sole fixed point. Poisson sta-
ble means that given any small neighborhood of the fixed point, I can choose a
smaller neighborhood where if I start in the smaller neighborhood, the forward
orbit never leaves the larger neighborhood. Asymptotically stable points are al-
ways Poisson stable, but not necessarily vice versa. And a fixed point is a re-
peller if in a small neighborhood of the fixed point, all points that are not the
fixed point itself have forward orbit that leave the neighborhood and never return.

Example 2.40. f(x) = 1 − x on [0,1] has
a unique fixed point x∗ = 1

2
. This fixed point is

Poisson stable, but not asymptotically stable.
To see this, simply let δ = ε and write out the
definition.

Remark 2.41. Recall from your Differen-
tial Equations class (or wait until Chapter 4),
in the classification of 2×2, first-order, homoge-
neous, linear ODE systems, one can classify the
type of the equilibrium solution at the origin via
a knowledge of the eigenvalues of the coefficient
matrix. In this classification, the sink (negative eigenvalues) was the asymptoti-
cally stable equilibrium, the source was the repeller, and the center (recall where
the two eigenvalues were purely imaginary complex conjugates) was the Poisson
stable equilibrium,

Example 2.42. Back to Figure 8 the graph of f(x) = x2 on [0,1]. This
dynamical system has two fixed points. One can see visually via the cobweb that
x = 0 is asymptotically stable. Also, x = 1 is unstable and a repeller.

Exercise 58. Show analytically that x = 0 is an attractor while x = 1 is a
repeller. That is, show that the fixed points satisfy the respective definitions.

In this class, we will spend
a fair amount of time on the
maps f ∶ [0,1] → [0,1]. There
are basically two reasons for
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this: 1) They have applications
beyond simple interval maps,
and 2) maps of the unit in-
terval are really all one need
study when studying intervals.
To see the second point, let
f ∶ R → R, but suppose that
there exists a closed interval
[a, b], b > a (a single point
is considered a closed interval,
so the condition that b > a
means something with an inte-
rior), where

f ∣[a,b] ∶ [a, b] → [a, b].

● Dynamically speaking, what happens to f(x) under iteration on [a, b] is
no different from what happens to g(y) on [0,1] under the linear transfor-
mation of coordinates y = x−a

b−a , where one must transform both the input
and output variables appropriately.)

Exercise 59. Find the map g ∶ [0,1] → [0,1] on the unit interval in
the plane that is equivalent dynamically to the map f(x) = x3 on [−1,1].

● Let f be continuous on an unbounded interval I, either on one side or both.
Then in the case that f has bounded image (possibly f has horizontal
asymptotes, but this is not necessary), then one can simply study the new
dynamical system formed by f , where the domain is the interval f(I), the
set of first image points f(x), for x ∈ I.

● Combining both of these items into one may also be useful: For example, a
coordinate transformation can map an unbounded interval to a bounded
one (e.g., g(x) = 1

x
, mapping [1,∞) onto (0,1], or h(x) = 2

π
tan−1(x),

taking R to the interval (−1,1)). Under proper care with regard to the
orbits, one can transform the dynamical system to one on the bounded
interval. We shall elaborate on this later.

It is usually an f(x) from above that appears in applications, and mathemat-
ically we usually only study maps like g(y). For an example, let’s go back to the
Newton Raphson Method for root location. First, a quick definition:

Definition 2.43. A fixed point x0 for f ∶ I → I where f ∈ C1 is called super-
attracting if f ′(x0) = 0. (Why? See the picture.)

Proposition 2.44. Let f ∶ R → R be C2 with a root r. If ∃δ > 0, M > 0 such
that ∣f ′(x)∣ > δ and ∣f ′′(x)∣ <M on a neighborhood of r, then r is a superattracting
fixed point of

F (x) = x − f(x)
f ′(x) .

Proof. As we have already calculated, F ′(r) = f(r)f
′′(r)

[f ′(r)]2
= 0. �
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Figure 9. Follow the cobwebs to see how quickly nearby orbits
converge to a superattractor vis a vis an attractor.

We can go further, and I will state this part without proof: Since f is C2,
then F is C1. Calculating F ′(x) and knowing that it is both continuous and 0 at
x = r, there will be a small, closed interval [a, b], b > a with r in the interior, where
∣F ′(x)∣ < 1. One can show that, restricted to this interval,

F ∣[a,b] ∶ [a, b] → [a, b]

is a λ-contraction, with a superattracting fixed point at r. In this case, all orbits
of F converge exponentially to r by λ2, even thought F is simply a λ-contraction.

As a final note before moving on to interval maps, a logical question to ask
here is: Just how large is the interval [a, b] on which F is a contraction? This is
important for the Newton-Raphson Method. Convergence is guaranteed when one
chooses an approximation to a root that is “close enough”. But what does close
enough actually mean? Of course, this depends severely on the properties of the
original function f . But to gauge the edges of an interval like [a, b], we offer:

Definition 2.45. Let f ∶ X → X be a discrete dynamical system with an
attracting fixed point x ∈X. Then the set

Bx = {y ∈ x ∣ Oy Ð→ x}

is called the basin of attraction of x for f .

Essentially, Bx is the collection of all starting values of orbits that converge to
x. Often, this set is quite easy to describe; For f ∶X →X a contraction with fixed
point x0, Bx0

=X. Everything converges to the unique fixed point. However, as we
will see, there are instances where this set is very complicated. As an indication of
possible issues, consider the root search for a function f ∶ R → R with at least two
roots, both of which satisfy the conditions for convergence of the method “near”
each the root. The individual basins of attraction for the two attractors should be
open intervals, given the conditions for f . But must they come in one piece? The
two basins cannot intersect, however (why not?) But can they butt up against each
other? And if a starting point is in neither basin, there does it’s orbit go. IN time,
we will explore these issues and more. But for now, let’s move on to maps that are
slightly more complicated than contractions.
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2.3.3. Monotonic maps. Interval maps are quite general, and display tons
of diverse and interesting behavior. To begin exploring this behavior, we will need
to restrict our choice of maps to those exhibiting somewhat mild behavior. The
first type designation is as follows:

Definition 2.46. A map f ∶ [a, b] → [a, b] be C0. We say f is

● increasing if for x > y, we have f(x) > f(y),
● nondecreasing if for x > y, we have f(x) ≥ f(y),
● non-increasing if for x > y, we have f(x) ≤ f(y),
● decreasing if for x > y, we have f(x) < f(y).

It is easy and intuitive to see how these definitions work. You should draw
some examples to differentiate these types. You should also work to understand
how these different types affect the dynamics a lot. For example, increasing and
non-decreasing maps can have many fixed points (actually, the map f(x) = x has
ALL points fixed!). While all non-increasing maps (hence all decreasing maps also)
can have only one fixed point each. Further, increasing maps cannot have points of
period two (why not?), while there does exist a decreasing map with ALL points
of period two (can you find it?). We will explore these in time. For now, we will
start with a fact shared by ALL interval maps:

Proposition 2.47. For the C0 map f ∶ [a, b] → [a, b], where a, b ∈ R, f must
have a fixed point.

Figure 10. An interval
map on [a, b]

Visually, this should make sense.
Imagine trying to draw the graph of a
continuous function in the unit square
in a way that it does NOT intersect the
diagonal, “fixed point” line. When you
get tired of trying, read on.

Proof. Suppose for now that f
has no fixed point on (a, b) (this seems
plausible, since our example above
f(x) = x2 on [0,1] satisfies this crite-
rion). Then, it must be the case that
for all x ∈ (a, b), either (1) f(x) > x,
or (2) f(x) < x. This means that the
entire graph of f lies above the diago-
nal, or below it, respectively (See Fig-
ure 10).

If we are in situation (1), then for
any choice of x ∈ (a, b), Ox will be an
increasing sequence in [a, b]. It is also

bounded above by b since the entire sequence lives in [a, b]. Recall from Calculus
the Monotone Sequence Theorem: Every bounded, monotone infinite sequence con-
verges. By definition, monotone means either (strictly) increasing or decreasing.
For case (2), the orbit is strictly decreasing, and will be bounded below since the
entire sequence live in the closed interval [a, b]. Thus we can say in each instance
that Ox Ð→ x0, for some x0 ∈ [a, b] (we can also say lim

n→∞
fn(x) = x0).
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What can this point x0 look like? Well, for starters, it must be a fixed point!
To see this,

f(x0) = f ( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = lim
n→∞

fn(x) = x0.

Since there are no fixed points in (a, b) by assumption, it must be the case that
either x0 = b (case (1)), or x0 = a (case (2)). �

Exercise 60. Reprove Proposition 2.47 using the Intermediate Value Theorem
on the function g(x) = f(x) − x.

This last proof immediately tells us the following:

Proposition 2.48. Let the C0-map f ∶ [a, b] → [a, b] be non-decreasing, and
suppose there are no fixed points on (a, b). Then either

● exactly one end point is fixed and ∀x ∈ [a, b], Ox converges to the fixed
end point, or

● Both end points are fixed, one is an attractor and the other is a repeller.

And if in the second case above, f is also increasing, then ∀x ∈ (a, b), Ox is forward
asymptotic to one end point, and backward asymptotic to the other.

Example 2.49. Let g(x) = √
x on the closed interval [1, b] for any b > 1. This

is an example of the first situation in the proposition. Here, actually, we can let
g(x) have the closed interval [1,∞) as its domain, and we gain the same result.

One does have to be careful here, though, as the related function k(x) =
√
x

2
on

[1,∞) has no fixed points at all.

Example 2.50. For the second case, think f(x) = x2 on [0,1], illustrated in
Figure 8.

Exercise 61. For h(x) = x3 on I = [−1,1], both endpoints are fixed and
repellers. But h does not satisfy the hypotheses of the proposition. (why not?)
Hence the proposition does not apply to this function. However, h may be seen as
two separate dynamical systems existing side-by-side. Justify this and show that
the proposition holds for each of these “sub”-dynamical systems.

Place some more exercises here. Two important notes here:

● First, we can immediately see that the basin of attraction of the fixed point
in the first case of Proposition2.48 is the entire interval [a, b], while in the
second case it is everything except for the other fixed point (the repeller.)
One property of a basin of attraction is that it is an open set (every point
in the set contains a small open interval which is also completely in the
set.) This does not seem to be the case here. But it, in fact, is. The
interval [a, b], as a subset of R is closed (and bounded). But as a domain
(not sitting inside R for the purpose of serving as the plug-in points for
f), it is both open and closed as a topological space. In a sense, there is
no outside to [a, b] as a domain for f . It has open subsets, and these all
look like one of [a, c), (c, d), or (d, b], for a < c < d < b ∈ [a, b] and their
various unions and finite intersections. But [a, b] can be written as the
union of two overlapping open sets. Hence it is open, as a subset of [a, b].
And so is (a, b], for example. Hence the basins of attraction in both of
these cases are in fact open subsets of [a, b].
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● Recall from calculus (or even pre-calculus) that an increasing function
f ∶ I → R is called injective, or one-to-one, since for any two points x, y ∈
I, if f(x) = f(y), then x = y. One would say its graph satisfies the
Horizontal Line Test (remember this?) And one-to-one functions have
inverses f−1(x), or we say that f is invertible. However, for I = [a, b],
a function f ∶ I → I, specifically from I back to itself, is only invertible
if it satisfies certain precise criteria: It must be one-to-one and onto, or
surjective, and either f(a) = a and f(b) = b, or f(a) = b and f(b) = a.
Using the above examples, f(x) = x2 on I = [0,1] and h(x) = x3 on
I = [−1,1] are invertible, but g(x) is NOT invertible on [1, b] for any
b > 1. And, the function given in Figure 7 is also not invertible, even as it
is strictly increasing on I = [0,1].

Exercise 62. Show that an invertible map f ∶ I → I on I = [a, b], for b > a,
must satisfy all of the following (Hint: All of these can be shown by assuming the
property does not hold and then finding a contradiction.)

a. f is injective (one-to-one),
b. f is surjective (onto; the range must be all of I),
c. f must satisfy either f(a) = a and f(b) = b, or f(a) = b, and f(b) = a.

Hence we can revise the last statement as: And if, in addition, f is invertible,
then ∀x ∈ (a, b), Ox is forward asymptotic to one end point, and backward asymp-
totic to the other. Recall that if Ox is forward asymptotic to a point x0, we write
O+
x → x0. If backward asymptotic, we write O−

x → x0. This notion of an orbit
converging in both forward time and backward time is of enough importance in
dynamics that we classify some differing ways in which this can happen.

2.3.4. Homoclinic/heteroclinic points. Using the notation for the forward
and backward orbits introduced above, we can close in on a special property of
nondecreasing interval maps. First, we can now say definitively that

● In the first case of Proposition 2.48, ∀x ∈ [a, b], either O+
x Ð→ a or O+

x Ð→
b. Here, f will certainly look like a contraction. Must it be? Keep in mind
that the definition of a contraction is very precise, and maps that behave
like contractions may not actually be contractions. Think f(x) = x2 on
the closed interval [0, .6]. What is Lip(f) here?

● For f in the second case of Proposition 2.48, and with f invertible (in-
creasing), then ∀x ∈ (a, b), either O+

x Ð→ a and O−
x Ð→ b, or O+

x Ð→ b and
O−
x Ð→ a.

Let’s elaborate on this idea of forward/backward orbits. Suppose now that
f ∶X →X is a C0-map on some subset of Rn, and suppose ∃x ∈X, where

O−
x Ð→ a and O+

x Ð→ b.

Definition 2.51. x is said to be heteroclinic to a and b if a /= b, and homoclinic
to a if a = b.

You have certainly seen hetero-
clinic and homoclinic orbits before.
Think of the phase portrait of the un-
damped pendulum. It is the famous
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picture at left. Here the separatri-
ces are heteroclinic orbits from the un-
stable equilibrium solution at (2nπ,0),
n ∈ Z, and (2(n ± 1)π,0). Although, in
reality, there is a much more accurate
picture of the phase space of the un-
damped pendulum. The vertical vari-

able (representing the instantaneous velocity of the pendulum ball, actually) takes
values in R, while the horizontal variable (representing the angular position of the
pendulum ball with respect to downward vertical position) is in reality 2π-periodic.
Truly, it takes values in the circle S1:

(2.3.1) S1 = unit circle in R2 = {e2πiθ ∈ C∣ θ ∈ [0,1)} .

Thus, the phase space is really a cylinder, and in actual-
ity only has two equilibrium solutions; one at (0,0), and
the other at (π,0). In this view, which we will elaborate
on later, there are only two separatrices (both in red at
right), and both are homoclinic to the unstable equilib-
rium at (π,0). Also, it becomes clear once the picture
is understood that ALL orbits of the undamped pendu-
lum, except for the separatrices, are periodic. However,
the period of these orbits is certainly not all the same.
And there is NO bound to how long a period may actu-
ally be. See if you can fully grasp this.

Exercise 63. Show that there cannot exist homo-
clinic points for f a nondecreasing map on a closed,
bounded interval.

Exercise 64. Construct an example (with an explicit expression) of a continu-
ous C0-map of S1 that contains a homoclinic point. (Hint: In class we already have
an example of an interval map that, when modified, will satisfy the C0 construction.

Remark 2.52. Any continuous map on the unit interval with both endpoints
fixed can be viewed as a map on the circle by thinking of the interval and identifying
0 and 1 (you can use the map x↦ e2πix explicitly to see this). But can you construct
one that does not fix the endpoints? Can you construct one that is also differentiable
on all of the circle? And how does one graph (visualize) this function?

It turns out, forcing a map of an interval to be nondecreasing and forcing the
interval to be closed really restricts the types of dynamics that can happen. We
have:

Proposition 2.53. Let f ∶ [a, b] → [a, b] be C0 and nondecreasing. Then
∀x ∈ [a, b], either x is fixed, or asymptotic to a fixed point. And if f is increasing
(and thus invertible), then ∀x ∈ [a, b], either x is fixed or heteroclinic to adjacent
fixed points.

Clearly, the dynamics, although more complicated than for contraction maps,
are nonetheless rather simple for nondecreasing interval maps (and even more so for
invertible interval maps). Thus goes the second stop in our exploration of dynamical
systems from simple to complex.
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Figure 11. Increasing
functions trap orbits be-
tween fixed points.

Before moving on, here are a few
other things to think about: First, in
the case of non-decreasing maps, the or-
bits of points in between fixed points
are trapped in the interval bounded
by the fixed points (See Figure ??).
This has enormous implications, and
severely restricts what orbits can do
(we say it restricts the “orbit struc-
ture” of the map). It makes Proposi-
tion 2.48 above much more general and
consequential, since any nondecreasing
interval map is now simply a collection
of disjoint interval maps, each of one of
the types in the proposition. And sec-
ond, it helps to establish not only the
types of fixed points one can have for an
interval map, but the way fixed points
relate to each other within an interval

map.

Exercise 65. Let f be a nondecreasing map on a closed interval. Show if
x0 /= y0 are two fixed points of f , then ∀x ∈ (x0, y0), O+

x ⊂ (x0, y0).

Exercise 66. Let f be a C0 nondecreasing map on a closed interval. Show
that for every n ∈ N, Pern(f) = Fix(f). That is, there are no non nontrivial
periodic points of nondecreasing interval maps.

Exercise 67. Let f be a C0 nondecreasing map on [a, b], and x0 < y0 be two
adjacent fixed points (i.e., there are no fixed points in (x0, y0)). Show that x0 and
y0 cannot both be attractors or repellers.

Example 2.54. For f(x) =
√
x − 1+3 on I = [1,∞), determine the set Per(f).

We can address this question in a num-
ber of ways. First, notice that f
is a strictly increasing function since
f ′(x) = 1

2
√
x−1

> 0 on the interior of

I (it is not defined at x = 1.) Hence,
every orbit is monotonic (not necessar-
ily strictly, though. Why is this true?)
Hence, as a generalization of the con-
ditions of Proposition 2.53, every point
is either fixed or has an orbit asymp-
totic to a fixed point, OR is unbounded
(the consequence of an unbounded do-
main). At this point, you can conclude
that there are no non-trivial periodic
points, like in the above exercise. Now since the derivative is a strictly decreasing
function, if there is a fixed point at all, it will be unique (think about this also).
There is a fixed point x0 of this map (the technique of Exercise 60 will work here.)
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And, since f(x) > x on [1, x0), and f(x) < x on (x0,∞), the fixed point x0 is an

attractor. Hence Per(f) = {x0} = { 1
2
+

√
33
2

}, solving f(x) = x algebraically.

Perhaps there is an easier way: f(x) is certainly NOT a contraction, as for
all pairs of points x /= y ∈ [1, 5

4
], the distance between images is actually greater

than the original distances (check this!). In fact, on [1,∞), f is not even Lipschitz,
although you should show this fact.

Exercise 68. Show that f(x) =
√
x − 1 + 3 on I = [1,∞) is not a contraction.

However, consider that the image of I, f(I) = [3,∞), and restricted to f(I), f
is actually a λ-contraction, with λ = 1

2
√

3
. Hence, one could simply start iterating

after the first iterate, knowing that the long-term behavior of orbits, fixed and
periodic points, convergent orbits and stability, will all be the same. Thus, the
map f ∶ f(I) → f(I) is a contraction, and hence will have a unique fixed point and
no other periodic points. Thus the fixed point x0 found above is precisely all of
Per(f).

Remark 2.55. It would be tempting to call the map f above eventually con-
tracting, since it is a contraction on a forward iterate of the domain. However, this
is not the case here. As we will see in soon enough, there is a technical condition
that makes a map an eventual contraction, and there is a pathology at x = 1 here
(pay attention to the derivative as one approaches 1 from numbers larger than 1).
Suffice it to say that the language is not completely settled here.

Now take an increasing interval map f and vary it slightly. Usually, the dy-
namical behavior of the “perturbed” map stays the same (the number and type
of fixed points does not change, even though their position may vary a bit). This
may not be the case for a non-decreasing map: A slightly perturbed increasing map
will remain increasing, while a slightly perturbed map with a flat interval may not
remain nondecreasing. Think about that.

Figure 12. A bifurcation in an interval map.

Sometimes, a small change in an increasing map may lead to a big change is the
number and type of fixed points (i.e., a big dynamical change!). Consider the three
graphs above. Do you recognize this behavior? Have you ever seen a bifurcation in
a mechanical system with a parameter?

Maybe place here a discussion of the notion of structural stability for maps,
where increasing maps are structurally stable and nondecreasing maps are not in
general.
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2.4. First Return Maps

Recall that the time-1 map of an
ordinary differential equation defines a
discrete dynamical system on the phase
space. Indeed, for x ∈ Rn, the system
ẋ = f(x) defines the map φ1 ∶ Rn → Rn,
where φ1 ∶ x(0) ↦ x(1) is a transfor-
mation of Rn. Really, t = 1 is only one
such example, and any t will work, so
long as the system solutions are defined
(and unique, for the most part).

There is another kind of discrete
dynamical system that comes from a
continuous one: the First Return Map.
One can view the first return map as
a local version (only defined near inter-

esting orbits) of the more globally defined time-t map (defined over all of phase
space). Let’s start with a 2-dimensional version. Consider the first-order system of
ODEs in the plane in polar coordinates:

(2.4.1)
ṙ = r(1 − r)
θ̇ = 1

.

Without solving this system (although this
is not difficult as the equations are uncou-
pled; see Exercise 69), we can say a lot
about how solutions behave:

● The system is autonomous, so
when you start does not matter,
and the vector field is constant
over time,

● The only equilibrium solution is at
the origin. The second equation
in the system really states that no
point is fixed when θ is uniquely
defined (on [0,2π), that is) for a choice of point in the plane. But the
origin is special in polar coordinates.

● Considering the first equation in the system ṙ = r(1 − r) = f(r), r(t) ≡ 1
is another solution that corresponds to f(r) = 0. However, this solution
is only fixed in r. It is a periodic solution called a cycle. What is the
period?

● r(t) ≡ 1 is asymptotically stable as a cycle, and is called a limit cycle. Can
you see why?

Now define

I = { [α,β] ⊂ vertical axis ∣0 < α < 1, β > 1} .

For each x ∈ I, Call rx(t) the solution of Equa-
tion 2.4.1 passing through x at t = 0, so that
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x = rx(0). Let yx be the point in I which cor-
responds to the earliest positive time that the
resulting rx(t) again crosses I. (1) It must cross
again (why?), and (2), really yx = rx(2π). Then
the map φ ∶ x↦ yx defines a discrete dynamical

system on I.
Some properties of this discrete dynam-

ical system should be clear:

● The dynamics are simple on I:
There is a unique fixed point at
x = 1 corresponding to the limit
cycle crossing. This fixed point is
asymptotically stable so that ∀x ∈
I, Ox Ð→ 1. Thus this discrete
dynamical system behaves like a
contraction on I.

● The same can be said for the sys-
tem

(2.4.2)
ṙ = g(r) = r ( 1

2
− r) (r − 1) ( 3

2
− r)

θ̇ = −1
,

but only if I is chosen more carefully: Here choose

I = { [α,β] ⊂ vertical axis ∣ 1

2
< α < 1 < β < 3

2
} .

● You should draw pictures to verify this. In this last system, what happens
near the cycles r(t) ≡ 1

2
and r(t) ≡ 3

2
? Is there some kind of discrete

dynamical system in the form of a first return map near there also?

Exercise 69. Solve the system in Equation 2.4.1. (Hint: It is uncoupled, so
you can solve each equation separately.)

This part may be either discarded, or placed somewhere else (Chapter 4, where
we do this stuff in detail), or modified to allude to the later work.

Recall also that for any “nice” ODE in Rn (the definition of nice here is math-
ematical and subtle, though for now just think of one where the vector field is
differentiable), in a neighborhood of an equilibrium solution, one can “linearize”
the system. This means that, when possible, one can associate to this system a lin-
ear system whose equilibrium solution at the origin has the same properties as that
of the original system, at least near the equilibrium in study. Think of the tangent
line approximation of a function at a point and you get the idea of linearization
even for ODEs. Indeed, for the C1-system

ẋ = f(x, y)
ẏ = g(x, y),

if (x0, y0) is an equilibrium solution, then the associated system

[ ẋ
ẏ

] =
⎡⎢⎢⎢⎣

∂f
∂x

(x0, y0) ∂f
∂y

(x0, y0)
∂g
∂x

(x0, y0) ∂g
∂y

(x0, y0)
⎤⎥⎥⎥⎦
[ x
y

]

is the linearized ODE system in a neighborhood of (x0, y0).
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It is the main point of the celebrated Grobman-Hartman Theorem and the idea
behind what is called local linearization that under certain conditions of the ODE
system (that the vector field is C1; this is the “nice” I mentioned before) and for
certain classes of values of the eigenvalues of the linearized system, the origin of the
linearized system, as an equilibrium solution, with be of the same type and have
the same stability as that of (x0, y0). Keep this in mind.

Now, let x ∈ Rn and ẋ = f(x) be an ODE
system. Define φt ∶ Rn → Rn the transformation
of phase space given by the time-t map. Note
that this is a “slice”, for fixed t, of the flow in
trajectory space given by φ(x, t) ∶ Rn+1 → Rn+1,
so that

φt0(x) = φ(x, t)∣
t=t0

.

Let p be a T -periodic point which is NOT an
equilibrium solution (think of the point (1, π

2
) in the rθ-plane of the system in

Equation 2.4.1 above. There, T = 2π.
Then p ∈ Fix(φT ), but f(p) /= 0.

Lemma 2.56. 1 is an eigenvalue of the matrix DφTp .

The proof is quite straightforward and really a vector calculus calculation.
However, the implications are what is interesting here.

● For the time-T map which matches the period of the cycle perfectly, the
point p appears as a fixed point (every point on the cycle will share this
property.)

● The time-T map φT ∶ Rn → Rn is a transformation which takes the entire
phase space to itself, and is in general non-linear.

● Since p is fixed by φT , the derivative map DφTp ∶ TpRn → TpRn is simply
a linear transformation of the tangent space to Rn at the point p.

Proof. The directional derivative of φT in the direction of the cycle (the curve
parameterized by t, really) is the vector field f(p), and

f(p) = f (φT (p)) = d

ds
(φs (p))∣

s=T
= d

ds
[φT ○ φs (p)]∣

s=0
=DφTp (f(p)) .

The first equality is because p is T -periodic, the second is due to the definition of a
vector field given by an ODE, the third is because of the autonomous nature of the
ODE and the last..., well, work it out. The end effect is that we have constructed
the standard eigenvalue/eigenvector equation λv = Av, where here λ = 1, v = f(p)
and the derivative matrix is A. �

Definition 2.57. For p a T -periodic point, call the other eigenvalues of DφTp
the eigenvalues of p.

Remark 2.58. The cycle (the periodic solution to the ODE system) becomes
sort-of-like an equilibrium solution in many ways. It is another example of a closed,
bounded solution that limits to itself. Solutions that start nearby may or may
not stay nearby and may even converge to it. This give cycles the property of
stability, much like equilibria. Many mechanical systems do exhibit asymptotically
stable equilibrium states that are not characterized by the entire system staying
still (think of the undamped pendulum, or more precisely a damped pendulum with
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just the right forcing function). How to analyze the neighboring solutions to see if
a cycle is stable or not requires watching the evolution of these nearby solutions.
The time-t map, and its cousin the First Return map, are ways to do this.

Maybe find an example of a damped pendulum with a forcing function where
there is a asymptotically stable limit cycle (like a clock pendulum).

We end this section with a result that goes back to the notion of a contraction
map:

Proposition 2.59. If p is a periodic point with all of its eigenvalues of absolute
value strictly less than 1, then Op is an asymptotically stable limit cycle.

Here the tangent linear map at p carries the infinitesimal variance in the vector
field, which in turn betrays what the neighboring solutions do over time. The non-
infinitesimal version theoretically plays the same role. Construct X, the closure of
a small open subset of Rn−1 centered at p and normal to the vector field f(p) at
p (See the picture). Due to the continuity of the vector field given by the ODE
system, all solutions of the ODE system that start in X sufficiently close to p will
leave X, circle around, and again cross X. In the case where all solutions cross
again at time-T (the period of p), then the time-T map defines a discrete dynamical
system on X. In the case where this is not the case (usual in nonlinear systems),
then we neglect where the nearby solutions are at time T and simply look for where
they again cross X. This latter case is the difference between a time-T map and
the first return map. However, both of these constructions coalesce nicely into the
infinitesimal version. We will revisit this point maybe later.

Exercise 70. Solve the first order, autonomous non-linear ODE system in
cylindrical coordinates ṙ = 1

2
r(1 − r), θ̇ = 1, ż = −z and show that there exists

an asymptotically stable limit cycle (Hint: Since the system is incoupled, you can
solve each ODE separately.) What are the eigenvalues of the 2π-periodic point at
p = (1,0,0)?

We definitely need the picture here alluded to in the previous paragraph.

2.5. A Quadratic Interval Map: The Logistic Map

Like linear functions defined on the unit interval, discrete dynamical systems
constructed via maps whose expression is a quadratic polynomial have many inter-
esting properties. The ideal model for a study of quadratic maps of the interval is
the Logistic Map. Before defining it, however, let’s motivate its prominence.

Consider the standard linear map on the real line, f ∶ R → R, f(x) = rx.
As a model for population growth (or decay), we restrict the domain to be non-
negative (for a realistic population size) and the values for the parameter r to be
positive, so that fr ∶ [0,∞) → [0,∞), where r ≥ 0. Hence the recursive model is
xn+1 = f(xn) = rxn, and again Ox = {y ∈ [0,∞) ∣ y = fn(x) = rnx,n ∈ N}. It is a
good model for population growth when the population size is not affected by any
environmental conditions or resource access, and is considered “ideal” growth. One
way to view this is to say that in this case, “the growth factor r is constant and
independent of the size of the population (see figure).

However, realistically speaking, unlimited
population growth is unsustainable in any lim-
ited environment, and hence the actual growth
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factor winds up being dependent on the actual
size of the population. Things like crowding and
the finite allocation of resources typically mean
that larger population sizes usually experience
a dampened growth factor over time vis a vis
small populations (think of a small number of
fish in a large pond as opposed to a very large
number of fish in the same pond). Hence a bet-
ter model to simulate populations over time is to
allow the growth factor to vary with the pop-
ulation size. The easiest way to do this is to
replace the constant growth factor r, with one
that varies linearly with population size. Here then replace r with the expression
r0 − ax, where r0 is an ideal growth factor (for very small populations near 0), and
a is a positive constant (see figure). The model becomes

f ∶ R→ R, f(x) = (r0 − ax)x,
or with a change in variables

f ∶ R→ R, f(y) = λy(1 − y).
Keep in mind the limitations of the model as a guide to studying populations,
however. For λ a positive constant, f is positive only on the interval [0,1]. And
really only some values of λ make this a good model for populations. To understand
the last statement, you will need to actually see how λ relates to the constants r0

and a, and to study the graph of r0 − ax above as it relates to a population x.

Exercise 71. Do the change of variables that takes f(x) = (r0 − ax)x to
f(y) = λy(1 − y), writing λ as a function of a and r0.

Hence we will begin to study the dynamics of the map f ∶ [0,1] → [0,1],
f(x) = λx(1 − x), called the logistic map. We will eventually see just how rich and
complex the dynamics can actually be. For now, however, we will only spend time
on the values of λ where the dynamics are simple to describe. First some general
properties:

● f is only a map on the unit interval when λ ∈ [0,4]. Why does it fail for
other values of λ?

Exercise 72. Show that the logistic map f(x) = λx(1 − x) does not
produce a dynamical system on the interval [0,1], for λ /∈ [0,4].

● λ is sometimes called the fertility constant in population dynamics.
● We will use the notation fλ to emphasize the dependence of f on the

parameter.

Proposition 2.60. For λ ∈ [0,1], ∀x ∈ [0,1), we have Ox Ð→ 0.

Visually, the graph of fλ is a parabola open-
ing down with horizontal intercepts at x = 0,1.
The vertex is at ( 1

2
, λ

4
). And for λ ∈ [0,1], the

entire graph of fλ lies below the diagonal y = x
(see figure at left). Cobweb to see where the
orbits go.
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Proof. The fixed points of fλ satisfy
fλ(x) = x, or λx(1 − x) = x. This is solved
by either x = 0 or x = λ−1

λ
= 1 − 1

λ
. Hence for

0 ≤ λ ≤ 1, the only fixed point on the interval
[0,1] is x = 0. Also, ∀x ∈ [0,1], fλ(x) < x. This
implies that Ox is a decreasing sequence. As it

is obviously bounded below, it must converge.
Now choose a particular x ∈ [0,1] and notice that fλ(x) < 1

2
. Thus, after

one iteration of the map, every orbit lies inside of the subinterval [0, 1
2
]. So after

one iteration, fλ∣[0,1] is a discrete dynamical system on a closed, bounded interval

which is nondecreasing and has no fixed points on the interior (0, 1
2
). Then by

Proposition 2.48, the only fixed point is x = 0 and all orbits converge to it. �

Some notes:

● Both conditions, that the interval be closed, and that the map be nonde-
creasing, are necessary to apply Proposition 2.48. Since the original map
fλ was not nondecreasing, and the interval was open at 1, we needed to
modify the situation a bit to fit the lemma. The nice structure of the
graph of fλ allowed for this by looking for a future iterate where the map
would be nondecreasing. This is a common idea, and the basis for the
notion of a map being eventually nondecreasing. Look for this in other
maps in this class and beyond.

● The orbit O1 is special:

O1 = {1,0,0,0, . . .} .
The point x = 1 is called a pre-image of the fixed point x = 0. This
is often seen in maps which are not one-to-one. The orbit O1 is called
eventually fixed. There also exist eventually periodic points also. Both of
these can not exist in invertible maps (why?), but it is easy to see that
the quadratic map fλ is NOT invertible on [0,1]. But for now, realize
that Proposition 2.60 is actually valid for x ∈ [0,1], including x = 1. I left
it out originally due to its special nature.

● Were this logistic map with this range of λ to be used to model popula-
tions, one can conclude immediately the following:

All starting populations are doomed!

Think about that.

Now, let’s change our parameter range a bit, and consider some higher param-
eter values:

Proposition 2.61. For λ ∈ [1,3], ∀x ∈ (0,1), Ox Ð→ 1 − 1
λ

.

Remark 2.62. if this is true, then λ = 1 is a bifurcation value for the family of
maps fλ, since

● for λ ∈ [0,1], the fixed point x = 0 is an attractor, and
● for λ ∈ [1,3], the fixed point x = 0 is a repeller (do you see this?).

The idea of the proof is that on this range of values for λ, the graph of fλ
intersects the line y = x at two places, and these places are the two roots of x =
λx(1 − x) (see proof of Proposition 2.60 above.) At right are the graphs for three
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typical logistic maps, for λ = 1.5, λ = 2, and λ = 2.5. It turns out that showing the
fixed point xλ = 1 − 1

λ
is attractive is straightforward and left as an exercise.

Exercise 73. Show that for λ ∈ (1,3), there is an attracting fixed point of the
logistic map fλ(x) at x = 1 − 1

λ
.

However, showing that almost ev-
ery orbit converges to xλ is somewhat
more involved. I won’t do the proof in
class, as it is in the book. You should
work through it to understand it well,
since it raises some interesting ques-
tions. Like:

(1) What generates the need for
the two cases they describe in
the book?

(2) For what value(s) of λ is the
attracting fixed point super-
attracting?

(3) The endpoints of the interval
λ ∈ [1,3] are special and related in a very precise and interesting way.
The property they share indicates a central property of attractive fixed
an periodic points of C1-maps of the interval. Can you see this?

This proof needs to be here in detail and we need to remove the references to
the text.

Once we surpass the value λ = 3 for λ ∈ [0,4], things get trickier. We will
suspend our discussion of interval maps here for a bit and develop some more
machinery first.

2.6. More general metric spaces

There are easy-to-describe-and-visualize dynamical systems that occur on sub-
sets of Euclidean space which are not Euclidean. As long as we have a metric
on the space, it remains easy to discuss how points move around by their relative
distances from each other. So let’s generalize a bit and talk about metric spaces
without regard to how they sit in a Euclidean space. To this end, let X be a metric
space.

Definition 2.63. An ε-ball about a point x ∈X is the set

● (open) Bε(x) = {y ∈X ∣ d(x, y) < ε}, and

● (closed) Bε(x) = {y ∈X ∣ d(x, y) ≤ ε}.

Definition 2.64. A sequence {xi}∞i=1 ⊂ X is said to converge to x0 ∈ X, if
∀ε > 0, ∃N ∈ N such that ∀i ≥ N , d(xi, x0) < ε.

Definition 2.65. A sequence is Cauchy if ∀ε > 0, ∃N ∈ N such that ∀i, j ≥ N ,
d(xi, xj) < ε.

Remark 2.66. A metric space X is called complete if every Cauchy sequence
converges.
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Definition 2.67. A map f ∶X →X on a metric space X is called an isometry
if

∀x, y ∈X, d (f(x), f(y)) = d(x, y).
We can generalize this last definition to maps where the domain and the range

are two different spaces: f ∶X → Y , where both X and Y are metric spaces:

Definition 2.68. A map f ∶X → Y between two metric spaces X, with metric
dX , and Y , with metric dY , is called an isometry if

∀x1, x2 ∈X, dY (f(x1), f(x2)) = dX(x1, x2).
Definition 2.69. A map f ∶ X → Y between two metric spaces is called

continuous at x ∈ X if ∀ε > 0, ∃δ > 0, such that if ∀y ∈ X where dX(x, y) < δ, then
dY (f(x), f(y)) < ε.

This gives us an easy way to define what makes a function continuous at a
point when the spaces are not Euclidean but are metric spaces. We will need this
as we talk about common spaces in dynamical systems that are not like Rn but
still allow metrics on them. That a map on a space is continuous is a vital property
to possess if we are to be able to really talk at all about how orbits behave under
iteration of the map. For now, though, more definitions:

Definition 2.70. A continuous bijection (remember that a bijection is a con-
tinuous map which is also an injection, or one-to-one map, as well as a surjection,
or onto map) f ∶X → Y with a continuous inverse is called a homeomorphism.

Example 2.71. For any metric space (or any topological space in general!) X,
the identity map on X (f ∶ X → X, f(x) = x) is a homeomorphism. It is obviously
continuous (for any ε > 0, choose δ = ε), one-to-one and onto, and it is its own
inverse.

Example 2.72. The map h ∶ [0,1) → S1 given by h(x) = e2πix is continuous,
one-to-one and onto. It also has an inverse, but the inverse is NOT continuous.

Exercise 74. Show that h in Example 2.72 is continuous, one-to-one and onto.
Construct h−1 and show that it is not continuous.
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Example 2.73. Recall that linear maps f ∶ R→ R, f(x) = ax+ b are, of course,
invertible, as long as a /= 0. However, be careful of the domain: Let f(x) = 1

2
x + 1

2
on I = [0,1]. Here, f is certainly injective (it is non-decreasing, and a contraction!).
But it cannot have an inverse on I, since it is NOT onto I. In fact, if the domain is
I = [0,1], then the range of f is [ 1

2
,1]. So think about the following: For f ∶ I → I

to be a homeomorphism on a bounded I = [a, b], it must be both one-to-one and
onto I. What does that imply about the images of the endpoints?

Exercise 75. Show that for a homeomorphism f ∶ [a, b] → [a, b], it must be
the case that either f(a) = a and f(b) = b, or f(a) = b and f(b) = a.

Remark 2.74. When a homeomorphism exists between two spaces, the two
spaces are called homeomorphic and mathematically they are considered equivalent,
or the same space. Anything defined on a space or with it can be defined or used on
any other space that is homeomorphic to it. It is the chief way for mathematicians
to classify spaces according to their properties.

Figure 13. The annulus A ∈ R2 and the cylinder C ∈ R3 are
homeomorphic spaces.

Exercise 76. Given the annulus A and the cylinder C in Figure 13 (both
include their boundary circles, although the dimensions of C are given only as
radius s > 0 and height h > 0), show that they are homeomorphic by explicitly
constructing the maps f ∶ R2 → R3 which takes A to C, and g ∶ R3 → R2 which
takes C to A. (Hint: Use the obvious coordinate systems for the Euclidean spaces.)

Typically, on a metric space X, there are many metrics that one can define.
However, like the above notion of homeomorphism, many of them are basically the
same, and can be treated a equivalent. Others, maybe not. To understand this
better,

Definition 2.75. Let d1 and d2 be two metrics on a metric space X. Then we
say d1 and d2 are isometric if ∀x, y ∈X, d1(x, y) = d2(x, y).

Definition 2.76. Two metrics d1 and d2 on a metric space X are called (uni-
formly) equivalent if the identity map and its inverse are both Lipschitz continuous.

To elaborate on this last definition, we consider f ∶ X → X, f(x) = x, to be
the map that takes points in X using the metric d1 to points in x using the other
metric d2. This is like considering X as two different metric spaces, one with d1
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and the other with d2. In essence, then the definition says that ∃C,K ≥ 0 such
that ∀x, y ∈ X, both 1) d2 (f(x), f(y)) ≤ Cd1(x, y) and 2) d1 (f−1(x), f−1(y)) ≤
Kd2(x, y) hold. This simplifies using the identity map to 1) d2 (x, y) ≤ Cd1(x, y)
and 2) d1 (x, y) ≤ Kd2(x, y) everywhere. Of course, what this really only means is
that there are global bounds (over the space X, that is) on how the two metrics
differ.

Example 2.77. On R2, the Euclidean metric and the Manhattan metric are
uniformly equivalent. Recall from Remark 2.12 that these are the metrics that
come, respectively, from the p = 2-norm and the p = 1-norm. Call d2 the Euclidean
metric and d1 the Manhattan metric. Then we can show uniform equivalence via
the following:

(d1(x,y))2 = (∣x1 − y1∣ + ∣x2 − y2∣)2 ≥ ∣x1 − x2∣2 + ∣y1 − y2∣2 = (d2(x,y))2
.

Hence (d2(x,y))2 ≤ (d1(x,y))2
so that d2(x,y) ≤ d1(x,y).

Going the other way is a little trickier. Given the Cauchy-Schwartz Inequality

from Linear Algebra, (x ⋅ y)2 ≤ ∣∣x∣∣ ⋅ ∣∣y∣∣, we can say

d1(x,y) = ∣x1 − y1∣ + ∣x2 − y2∣
= ∣x1 − y1∣ ⋅ 1 + ∣x2 − y2∣ ⋅ 1

≤
√

(x1 − y1)2 + (x2 − y2)2
√

12 + 12 =
√

2 d2(x,y).
Hence

d1(x,y) ≤
√

2 d2(x,y) and d2(x,y) ≤ d1(x,y).

Exercise 77. Going back to Remark 2.12, show that the Euclidean and max-
imum metrics are also uniformly equivalent on R2.

One last definition:

Definition 2.78. A map f ∶ X → Y is called eventually contracting if ∃C > 0,
such that if ∀x, y ∈X and ∀n ∈ N,

d (fn(x), fn(y)) ≤ Cλnd(x, y)
for some 0 < λ < 1.

There are many maps that are definitely not contractions, yet ultimately behave
like one. Here is one:

Example 2.79. Let f2(x) = 2x(1−x) be the λ = 2-logistic map, restricted to the
open interval (0,1) (this cuts out the repelling fixed point at 0). This is the one with
the super-attracting fixed point at x = 1

2
. Here f2 is definitely NOT a contraction.

You can see this visually by inspecting the graph: Should the graph of a function
have a piece which is sloping up or down at a grade more than perfectly diagonal,
the function will stretch intervals there. See the graph. To see this analytically, let
x = 1

8
and y = 1

4
. Then f2(x) = 7

32
and f2(y) = 3

8
= 12

32
. Then

d (f2(x), f2(y)) = ∣12

32
− 7

32
∣ = 5

32
≤ C 4

32
= C 1

8
= C∣1

4
− 1

8
∣ = Cd(x, y)

only when C is some number greater than 1. However, eventually, every orbit gets
close to the only fixed point at x = 1

2
where the derivative is very flat. The function

f2, restricted to the interval [ 3
8
, 5

8
] is a 1

2
-contraction (Can you show this? Use the
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derivative!). And one can also show that f2 is 2-Lipschitz on all of (0,1). Thus,
one can conclude here that f2 is eventually contracting on (0,1), and ∀x, y ∈ (0,1),

d (f(x), f(y)) ≤ 4(1

2
)
n

d(x, y).

Exercise 78. Go back to the Example 2.54 f(x) =
√
x − 1 + 3 on the interval

I = [1,∞). Show that f is NOT an eventual contraction (Hint: Try to find a value
for C in Definition 2.78 that works in a neighborhood of x = 1.) Now show that f
IS an eventual contraction on any closed interval [b,∞), for 1 < b ≤ 5.

Here are some of the more common non-Euclidean metric spaces encountered
in dynamical systems:

2.6.1. The n-sphere. The n-dimensional sphere

Sn = {x ∈ Rn+1 ∣ ∣∣x∣∣ = 1} .

Here, the n ∈ N denotes the “size” of the space and not the space in which it exists
in this definition. In fact, the space called the n-sphere doesn’t actually exist in
any space unless we define it that way. We typically place the n-sphere in Rn+1 so
that we can place coordinates on it easily. For example, we can parameterize the
2-sphere via the function Ψ2 ∶D → R3, where D = [0,2π] × [0, π], by

(2.6.1) Ψ2(θ1, θ2) = (cos θ1 sin θ2, sin θ1 sin θ2, cos θ2) ,

as in Figure 14. And in general, for n ∈ N, the spherical coordinate system in Rn
provides a ready parameterization for Sn: In spherical coordinates (ρ, θ), the unit
sphere is simply the set of all points in Rn+1 with first coordinate 1. Hence all of
the other (angular) coordinates θ = (θ1, . . . , θn) parameterize the n-sphere.

Figure 14. A common parameterization of the 2-sphere S2.

Exercise 79. Find the pattern in parameterizing S1 by Ψ1 ∶ [0,2π] → R2,
where Ψ1(θ) = (cos θ, sin θ) and S2 by Equation 2.6.1, to construct an explicit
parameterization Ψn of Sn using the n-angles of the spherical coordinate system in
Rn+1. What are the ranges of each of your angular coordinates θi, i = 1, . . . , n?

Exercise 80. For the parameterization in Equation 2.6.1, one can view this
as a wraparound of the box at left of the figure onto the 2-sphere at right. Identify
where the four edges of the box go under the map Ψ2, and draw the images of these
four edges (the “seam” of the parameterization) onto the 2-sphere.
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2.6.2. The unit circle. Really this is the 1-dimensional sphere

S1 = {x ∈ R2 ∣ ∣∣x∣∣ = 1} .
However, we also can interpret the circle as the unit-modulus complex numbers

S1 = {z ∈ C ∣ ∣z∣ = 1} ,
= {eiθ ∈ C ∣ θ ∈ [0,2π)} ,

(compare this to Equation 2.3.1) and also in a more abstract sense as

S1 = {x ∈ R ∣ x ∈ [0,1]where 0 = 1} .
This last definition requires a bit of explanation. From Set Theory, we have the
following:

Definition 2.80. Given a set X, a partition PX on X is a set of disjoint,
exhaustive subsets of X.

Remark 2.81. You are already familiar with the term partition from Calculus.
For example, in the development of the notion of a definite integral of a function
defined on a closed, bounded interval I = [a, b] ∈ R, a < b, one defines a partition of I
into smaller intervals via a finite set of points in I, a = x0 < x1 < . . . < xn−1 < xn = b,
so that

[a, b] = [a = x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xn−1, xn = b].
This is slightly different from our current definition in that the intervals overlap on
their edges. For our current purpose in more generally, we require that the partition
elements be mutually exclusive and exhaustive.

Definition 2.82. An equivalence relation R on a set X is a collection of ele-
ments of X ×X, denoted (x, y) or x ∼R y, (or simply x ∼ y, when R is understood,)
such that

(1) x ∼R x, ∀x ∈X,
(2) x ∼R y iff y ∼R x, ∀x, y ∈X, and
(3) if x ∼R y and y ∼R z, then x ∼R z, ∀x, y, z ∈X.

Each x ∈X is an element of a unique equivalence class [x], a subset of X where

[x] = {y ∈X ∣ y ∼R x} .
And the set of all equivalence classes of X under R form a partition of X.

Furthermore, the set of all partition elements form a new set, called the quotient
set of the equivalence relation. Given X a topological space, one can always make
the quotient set into a space using the topology of X (it is called the quotient
topology). But it is a much deeper question exactly when the quotient set, made
into a space using the topology of X, has the same properties as that of X. But
for now, we say that for X a set with an equivalence relation R, the quotient set is
denoted Y =X/R, or sometimes Y =X/ .

Place some relatively simple equivalence relation examples here.

Example 2.83. Any function f ∶ X → R defines an equivalence relation on X.
Each element of the partition is simply the collection of all point that map to the
same point in the range of X:

[x] = {y ∈X ∣ f(y) = f(x)} .
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Recall in Calculus, we defined the inverse image of a point in the range of a function
as

f−1(c) = {x ∈X ∣ f(x) = c} .
Hence we can say that here that the equivalence class of a point x ∈X given by the
function f ∶X → R is simply the inverse image of the image of x, or [x] = f−1 (f(x)).
This is well-defined regardless of whether f even has an inverse, since the inverse
image of a function is only defined as a set. Think about this.

Figure
15. The
map
ρ ∶ R →
S1.

Using this last example, we have one more definition
of S1. namely, let r ∶ R→ S1 be a function r(x) = e2πix.
Then r(x) = r(y) iff x − y ∈ Z.

Exercise 81. Show that for r defined here, that
r(x) = r(y) iff x − y ∈ Z.

In this case, each point on the circle has as its in-
verse image under r all of the points in the real line
that are the same distance from the next highest inte-
ger (see Figure 15. Thus the map r looks like the real
line R infinitely coiled around the circle. In this way, we
commonly say that

S1 = R/Z.

Remark 2.84. Now the more abstract definition

S1 = {x ∈ R ∣ x ∈ [0,1] where 0 = 1}
should make more sense. In a way, one can take the unit
interval in R, pluck it out of R, curve it around to the
point where one can “join” its two endpoints together
to make the circle. We say the two end points are now
identified, and the space S1, while still having a well-
defined parameter on it, isn’t sitting in an ambient space
anymore. Note also that the new space is still closed and bounded, but it has NO
boundary. Intervals in R cannot have these properties simultaneously. But the
circle, still one dimensional, is not a subset of R.

Another interesting consequence of this idea involves how to view functions on
S1 via a vis those on R. Let f ∶ R → R be any function which is T -periodic (thus
it satisfies f(x + T ) = f(x), ∀x ∈ R). Then f induces a function g ∶ S1 → R on S1,
given by g(t) = f(tT ). Conversely, any function defined on S1 may be viewed as a
periodic function on R, a tool that will prove very useful later on.

Exercise 82. Show that a T -periodic, continuous map f ∶ R → R will induce
a continuous map g ∶ S1 → R. Then show that a T -periodic, differentiable map
f ∶ R→ R will induce a differentiable map g ∶ S1 → R. Hint: Parameterize the circle
correctly.

Exercise 83. Show that you cannot have a continuous surjective contraction
on S1. However, construct a continuous, non-trivial contraction on the circle S1.
(Hint: A continuous map cannot break the circle in its image or it would not be
continuous at the break. But it can fold the circle.)
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2.6.3. The cylinder. Relatively simple to describe product spaces show up
often as the state spaces of dynamical systems. Define the cylinder as C = S1 × I,
where I ⊂ R is some interval. Here I can be closed, open or half-closed, and can
be bounded or all of R. In fact, by the above discussion, any function f ∶ R2 → R2

which is T period in one of its variables, may be viewed as a function on a cylinder
(think of the phase space of the undamped pendulum). Sometimes we call a cylinder
whose linear variable is all of R the infinite cylinder.

2.6.4. The 2-torus. The 2-dimensional torus T2 (or just the torus T when
there is no confusion) T = S1 × S1 is another surface. Like before, any function
f ∶ R2 → R2 which is periodic in each of its variables, may be viewed as a function
on a torus. Conversely, a function on the torus may be studied instead as a doubly
periodic function on R2. We will have occasion to use this fact later. For now,
consider the parameterization of this surface as a subset of R3 by Φ2 ∶ [0,2π] ×
[0,2π] → R3, where

Φ2(θ1, θ2) = ((2 + cos θ1) cos θ2, (2 + cos θ1) sin θ2, sin θ1) .

Figure 16 shows the parameterization, along with the images of the bottom and
left edges of the parameter space.

Exercise 84. Show that the function g(x, y) = (2 cos 2x,4y2 − y4), from the
plane to itself, can be made into a function on the standard infinite cylinder C =
S1 × R. Show also that by limiting the domain appropriately, one can use g to
construct a continuous function on the torus T = S1 × S1.

Figure 16. One parameterization of the 2-torus T2.

One thing to note: Where are the images of the top and right edges? Since both
parameters are 2π-periodic, they are the same, respectively, as the bottom and left
edges. Envision taking the square piece of paper at left, bending it into a cylinder
to identify the left and right edges and then bending the cylinder to identify the
top and bottom circles. That is a torus. And if you were an ant walking on the
torus and you approached the red line and crossed it, how would your shadow path
look back in the parameter square? Understanding this will be very important at
some point soon. Think about it.

We end this chapter with one last example of a particular set that has an
interesting property constructed via a contraction map. For now, we will only
define the set and identify the property. In time, we shall return to this set, as it
is quite ubiquitous in dynamical systems theory.
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2.7. A Cantor Set

Simple dynamics also allows us to define some of the physical properties of the
spaces that a map can “act” on. For example, consider the following subset of the
unit interval [0,1], defined by what is called a finite subdivision rule; A method of
recursively dividing a polygon or other geometric shape into smaller and smaller
pieces.

Define C0 = [0,1]. On C0, remove the open middle third interval (this is the
finite subdivision rule) ( 1

3
, 2

3
) and call the remainder C1. Hence C1 = [0, 1

3
]∪ [ 2

3
,1].

Continue removing the middle third from each remaining closed interval from the
previous Cn to construct Cn+1 (See Figure 17. Then define

C =
∞
⋂
n=0

Cn.

C is called the Ternary Cantor Set.

Figure 17. The first few steps in the construction of the Ternary
Cantor Set

It has the following rather remarkable properties:

● There are no positive-length intervals in C. Indeed, at each step, you are

removing open intervals whose total length is exactly 1
3
( 2

3
)n−1

. Sum these
lengths over the natural numbers (this forms a geometric series) and you

get 1
3
( 1

1− 2
3

) = 1.

● It is easy to see that, although many intervals of points of [0,1] are not
in C, there are many that remain. Any point in [0,1] that is a multiple
of a power of 1

3
(the end points of the intervals at each stage) is in C.

What is more surprising is that there are many others. One way to see
this is to use an alternate description of C as the set of points in the
unit interval whose ternary expansion base 3 (like our decimal expansion
but using only 0’s 1’s, and 2’s) has no 1’s. Note that here, the number
1
3
= (.100000 . . .)3 = (.022222222 . . .)3, so 1

3
∈ C.

Exercise 85. In the normal decimal expansion, show 1.0 = .999999.

Why no 1’s are allowed? Because we take them out. Think about this:
In a ternary expansion of points in [0,1], the middle third (every point
in the open interval ( 1

3
, 2

3
)) will have an expansion (.1∗ ∗ ∗ ∗ ∗...)3 where

not all of the *’s are 0. But these points are not in C. Make sense?
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Exercise 86. Show that the number x = 1
4
∈ C via its ternary expan-

sion (it is not a boundary point of any open subinterval removed at any
intermediate stage Cn.)

● It is also easy to see that there are infinitely many points in C (all of
the multiples of powers of 1

3
that are the boundary points of removed

intervals.) What is more interesting is that the number of points in C is
uncountable (so not like the natural number kind of infinity. This is more
like the number of points in [0,1] kind of infinity.) In fact, there are AS
MANY points left in C as there were in the original [0,1]! (Wrap your
head around that mathematical fact! We will return to this in a minute.)

● One can give C a topology so that it is a space, like [0,1] is a space
(the subspace topology it inherits from [0,1] will do.) Then one can say
that anything homeomorphic to a Cantor Set is a Cantor Set. Hence this
one example will share its properties with all other Cantor sets defined
similarly.

● Continuing on the ternary expansion theme, we see

C = {x ∈ R ∣ x = (0.x1x2x3 . . .)3 = ∑
n∈N

xn ⋅ 3−n, xn = 0 or 2} .

There is a wonderful, real-valued function defined on [0,1] which exposes
some of its properties of C. This function, the Cantor-Lebesgue function,
relies on this series description of Cantor numbers: Define F ∶ [0,1] →
[0,1], by

F (y) = ∑
n∈N

xn2−(n+1), where x = (.x1x2x3 . . .)3 = min
x∈C

x ≥ y.

In essence, all points in [0,1] situated in a positive-length gap between
points in C are mapped to a constant; the constant being a multiple of a
power of 1

2
corresponding uniquely to that gap and the function value of

the Cantor point at the upper end of the gap. The resulting graph of F
is an example of what is called a Devil’s Staircase (see Figure 18). It is
a continuous function whose derivative is almost everywhere 0, which we
will not show here. It is also a surjective function on [0,1] To see this,
let z ∈ [0,1]. Then its binary expansion is z = (0.a1a2a3a4 . . .)2, where
z = ∑

n∈N
an2−n. But then y = ∑

n∈N
(2an)3−n ∈ C and F (y) = z. Conclusion?

There are at least as many points in C as there are in [0,1]. There cannot
be more, so the cardinality of C and [0,1] are the same! Strange, eh?
Cantor sets are quite popular in analysis due to there ability to provide
counterexamples to seemingly intuitive, but untrue beliefs.

● The map f ∶ C → C, f(x) = x
3

is a contraction whose sole fixed point is at
0.

Exercise 87. Show that for f(x) = x
3
, f(C) ⊂ C.

Figure 18. A Devil’s
Staircase: The graph of
a Cantor Function

This last point is special:

Definition 2.85. A set on which
there exists a contraction map which is
a homeomorphism onto its image has
the property of self-similarity.
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The set is also called re-scalable.
This is easy to see for a contraction on
R.

Exercise 88. Find an expression
for a contraction on C whose fixed point
is x = 1.

Exercise 89. Show that the map
f(x) = 1− x

3
is a contraction on C, and

verify that its fixed point is in C.

In fact, all of these contractions are maps that take the interval C0 onto one of
the subintervals of C1 (the last exercise reversing the order of points), indicating
that the subset of C inside each of the subintervals in C1 looks exactly like the
parent set C in C0. In this way, one can build a (linear) map taking C0 onto any
subinterval in any Cn. In this way, the part of C in any subinterval of Cn looks
exactly the same as C. That such a complicated set can be defined by such a simple
single finite subdivision rule is quite remarkable.

Example 2.86. Let f ∶ R → R be defined by the function f(x) = 2
π

arctanx.
Here, f is a homeomorphism onto its image which is (0,1). Viewed as a dynamical
system, it is easy to see from the picture that iterating the map quickly leads to
the conclusion that f is a contraction. What is the Lipschitz constant in this case?
(hint: use the derivative!).

Exercise 90. In fact, every open interval I = (a, b) ∈ R, for a < b, is home-
omorphic to every other open interval in R: Show that the map f ∶ I → R,

f(x) = x− a+b2

(x−a)(b−x) is a homeomorphism. Then show that, for a = −1, and b = 1,

f is a contraction with unique fixed point x = 0.

Hence, R is a self-similar set. What is more interesting, though, are self-similar
sets defined via some finite subdivision rules, like the Cantor set. Repeating the rule
on smaller and smaller regions inside some original set creates the self-similarity.
Then the contraction used to verify self-similarity is simply the map taking one
stage in the recursive construction to a future stage. Iterating the map uncovers
the recursive structure on finer and finer scales, and ultimately all orbits converge
to a single point in the set. Here are a few more examples:

Figure 19. The
first three iterates
of the Koch Curve
construction.

2.7.1. The Koch Curve: Swedish
mathematician Helge von Koch described
a special planar curve in a 1904 paper
”On a continuous curve without tangents,
constructible from elementary geometry”
(original French title: Sur une courbe con-
tinue sans tangente, obtenue par une con-
struction gomtrique lmentaire). The curve,
which is continuous everywhere, but differ-
entiable nowhere, was an oddity at the time
and now we see it as the first fractal descrip-

tion in mathematics. To construct it, let K0 = [0,1] be the unit interval, and again
think of K0 being divided into three equal parts. Then construct K1 by remov-
ing the middle third of K0, and adding in an equilateral triangle minus the base.
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Figure
20. The Koch
Curve K.

Then K1 looks like four connected equal line
segments with a peaked-point in the middle, as
in Figure 19. Then, on each of these four line
segments of K1, remove the middle third and,
again, add in the upper two sides of an equilat-
eral triangle, to create K2. Repeat this proce-
dure for all n ∈ N to create K = lim

n→∞
Kn. The

result is in Figure 20. Can you see the contrac-
tion which makes the curve self similar?

2.7.2. Sierpinski Gasket: and Carpet, and the famous Mandelbrot Set. We
will look at these in turn.





CHAPTER 3

Linear Maps of R2

3.1. Linear, First-order ODE Systems in the Plane

In this section, review all of the linear theory and do a full classification of linear
systems, including a good drawing of the parameter space involving the trace and
determinant of the coefficient matrix A of the system x’ = Ax. All of this is stated
in dynamics terms, with a focus on the qualitative nature of solution behavior,
stability and classification of the equilibrium at the origin. When not isolated,
when 0 is an eigenvalue, one can solve for the equilibria set via the linear space
which contains the eigenvectors of the null eigenvalue. But also, one can solve for
the zeros of the vector field directly. We culminate this part with expressions of the
fundamental matrix, both as a generator of all solutions and as a single solution to
the matrix form of the ODE. With some linear algebra, we discuss the relationship
between the eigenvectors as generators of a coordinate system in the phase plane
vis a vis the standard rectilinear coordinate system which governs the choice of
variables x and y. Rectifying these two yields a new fundamental matrix, which
is what we call the exponential matrix. We establish what this matrix is, how it
functions, how it is constructed and what are its properties. The example already
given will do well here.

3.2. Local Linearization and Equilibria Stability

Here, do the full local-linearization treatment leading up to the Poincare-
Lyapunov Theorem and the Hartman-Grobman Theorem. DO many examples,
and also use the Competing Species bifurcation analysis example from ODE class.

3.3. Linear Planar Maps

Recall for the mo-
ment the linear map of
R defined by f(x) =
λx (this can also be

written x
fz→ λx).

One can classify dy-
namical behavior of
this map by the mag-
nitude of λ, neglecting
the reflection of the
real line given by f(x) = −x. This is because it is the magnitude only that de-
termines the dynamical structure of the linear map: Hence we classify by whether
∣λ∣ < 1, ∣λ∣ = 1, or ∣λ∣ > 1. Respectively, the origin is a sink and asymptotically
stable, all points are either fixed (λ = 1) or at most of order 2 (λ = −1) and all are

65
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stable but not asymptotically stable, or the origin is a source. However, the actual
orbit structure is also affected by the sign of λ. Indeed, when λ < 0, the sequence
becomes an alternating sequence and successive terms of the orbit will flip in sign
(See the Figure). However, dynamically, the orbits will converge or diverge regard-
less of the sign of λ. To see this, create a new dynamical system using the square
of the map f2(x) = λ2x. Then the new factor λ2 > 0 always. The orbits of f2 will
stay on the side of the origin they started on. For f , however, the orbits will flip
back and forth from one side of the origin to the other (see the figure). Hold this
thought as we move on to linear maps of R2.

Now let’s move up to linear maps of the plane and see if we can classify dynami-
cal behavior in a similar fashion, by creating a small set of types. So let f ∶ R2 → R2

be a linear map. Then for v = [ x
y

], we have f(v) = Av, or

[ x
y

] fz→ A [ x
y

] , where A = [ a b
c d

] .

● Here, v is an eigenvector of A, with eigenvalue λ if v satisfies the vec-
tor equation Av = λv, or equivalently (A − λI)v = 0, where I is the
2-dimensional identity matrix.

● Recall the characteristic equation of A: det (A − λI) = 0, which can also
be written

λ2 − (trA)λ + detA = 0.

The solution to this equation (the roots to the polynomial det (A − λI))
are the eigenvalues of A.

A good question to ask is: What information is conveyed by v and λ about the
discrete dynamical system formed by iterating f on R2?

There is an easy classification of matrix types for A, and the classes are deter-
mined by the data of A:

I. Two real distinct eigenvalues λ ≠ µ.
II. One real eigenvalue λ. In this case, there are two possibilities:

● A = λI. Here A is called a homothety or a scaling.

● A is conjugate to [ λ 1
0 λ

]. When λ = 1, this map is often called a shear.

III. Two complex conjugate eigenvalues λ = a + ib = ρeiθ, and µ = a − ib = ρe−iθ,
where ρ2 = a2 + b2, and tan θ = b

a
. Here, the effect of A is by rotation by θ and

a scaling by ρ. When ρ = 1, the effect is a pure rotation (see below).

Note here that in the case of a shear above, the fact that the upper right-hand
entry is non-zero is vital. But the value of 1 is not:

Exercise 91. Show if a 2×2 matrix A is conjugate to [ λ 1
0 λ

], it is conjugate

to [ λ s
0 λ

] for any non-zero s ∈ R.

In actuality, there is a subclassification of these matrices which is of special
interest to dynamicists. First, we identify two factors:
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● Every 2 × 2 matrix A is a scaled version of a determinant-(±1) matrix,
since 1√

∣detA∣
A = C, where ∣detC ∣ = 1. Here, then, we can view a trans-

formation of the plane corresponding to the matrix A as a composition

of such a matrix C with a pure scaling matrix S = [ s 0
0 s

] so that

A = [
√

∣detA∣ 0

0
√

∣detA∣ ]C.

● Every determinant-(−1) matrix C is a composition of a determinant 1

matrix B with the reflection R = [ 1 0
0 −1

], so that B = RC and detB = 1.

It turns out that 2 × 2 matrices of determinant 1 play a special role in dynamical
systems. Hence their types have specific names. A 2 × 2, determinant 1 matrix A
can be either:

I. Hyperbolic: A has two real distinct eigenvalues λ and µ where λ = 1
µ

(nec-

essarily ∣λ∣ > 1 > ∣µ∣). Thus A is diagonalizable over the real numbers and

A ≅ [ λ 0
0 µ

].

II. Parabolic: A has one real eigenvalue λ = 1 but is not diagonalizable (the

1-eigenspace is only 1-dimensional.) In this case, A is conjugate to [ 1 s
0 1

]
for some non-zero s ∈ R.

III. Elliptic: A has two, unit-modulus complex conjugate eigenvalues λ = eiθ, and
µ = e−iθ. Here A is again not diagonalizable (over the real numbers) and A is

only conjugate to [ a b
−b a

], for a, b ∈ R, a2 + b2 = 1.

Some notes here:

● Both the Identity Matrix I2 = [ 1 0
0 1

] and its negative [ −1 0
0 −1

] show

up in this classification. Do you see where?
● Compose a hyperbolic matrix with the reflection R from above and you

still get something that looks hyperbolic, but the two eigenvalues only
satisfy λ = − 1

µ
. But compose a parabolic matrix with R and you get a

hyperbolic one. And when you compose an elliptic matrix with R, you
get another elliptic matrix. But the angle of rotation has changed. Think
about this.

Exercise 92. Show that for a parabolic matric P , the composition PR is
hyperbolic.

Exercise 93. Show that for an elliptic matrix E, the composition ER is elliptic
also. Compute the rotation angle of ER in terms of the rotation angle of E.

Exercise 94. Let A be a hyperbolic 2 × 2 matrix. Show ∣trA∣ > 2.

Exercise 95. Find the elliptic matrix which rotates the plane through an angle
of π

6
radians.

Geometrically, choose a representative from each case above of determinant-1.
Then it will be easier to see the effect on points in the plane. Figure 1 is useful
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here, noting the following: In the left-hand case, A = [ λ 0
0 µ

], for λ > 1 > µ > 0;

in the middle case, A = [ 1 1
0 1

]; and is the right, A = [ a b
−b a

], for eigenvalues

λ = a ± ib, and a2 + b2 = 1.

Figure 1. f(x) = Ax for A hyperbolic, parabolic and elliptic, respectively.

We will presently embark on a detailed study of linear maps of the plane cor-
responding to these basic types. However, let’s begin by returning to a previous
notion to dispel an incorrect but seemingly intuitive belief about linear planar maps.

Definition 3.1. The spectral radius of a matrix A is the quantity ρA, where

ρA = {max
i

∣λ∣ ∣ λ is an eigenvalue of A} .

Here, ρA is related to the matrix norm ∣∣A∣∣ = max
∣∣v∣∣=1

∣∣Av∣∣, but they are not equal

in general (they are equal when the matrix A is symmetric, though.). The fact that
the matrix norm is not equal to the modulus of its largest eigenvector is a clue to
the following:

Proposition 3.2. A linear transformation A of Rn is eventually contracting
if ρA < 1.

Exercise 96. Construct an explicit example of a linear map on R2 which is
eventually contracting but NOT a contraction. (Hint: Pay attention to the types
in the classification of matrices above.)

Exercise 97. Show that no determinant-1 linear map on R2 can be eventually
contracting. (Note: This has enormous implications in the mathematical models
of physics and engineering, as it restricts the stability classification of both fixed
points of maps and the equilibrium and periodic solutions of ODE systems.)

Some things to consider:

● Any positive determinant linear map on R2 can be written as a linear
combination of the three types in the figure (sum of scalar multiples of
the three, that is). And any negative determinant linear map will have
a square which is positive, like in linear maps of R, the dynamics (up to
flipping across some line) will be similar in nature. Hence a detailed study
of these three determinant-1 types and their scaled versions is necessary
to explore the dynamical structure of linear maps of the plane.
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● Diagonalizing a matrix (conjugating it, as best as one can, to one where
the eigenvalues are prominent) is really just a linear coordinate change.
Hence this process can be viewed simply as a change of the metric on R2.
However, the new metric is always uniformly equivalent to the old one
(you should show this!) It turns out that the process of diagonalization
does not change the dynamical structure of the system!

Exercise 98. Show that, for a non-degenerate 2 × 2-matrix A, the metric
dA(x,y) = d(Ax,Ay) is uniformly equivalent to the Euclidean metric d on R2.

Hence, like maps on closed intervals, where we only needed to study maps on
the unit interval, we can always limit our analysis to certain types of linear maps to
capture all of the possible dynamical behavior of the entire family of linear planar
maps. With this in mind, we begin our survey.

Let v ∈ R2 and consider Ov under the linear map f(v) = Av. On iteration,

v z→ Av z→ A (Av) = A2v z→ ⋯z→ Anv z→ ⋯.
Hence, the orbit of v will depend critically on the data associated to A.

3.3.1. Sinks & sources. Suppose that the two eigenvalues of A are real and

distinct, so that λ ≠ µ. Then there exists a matrix B, where A
conj
≅ B = [ λ 0

0 µ
] .

Suppose further that 0 < ∣λ∣ < ∣µ∣ < 1 (A is nondegenerate. We will treat the 0-
eigenvalue case separately). Then, by the previous proposition, the origin is a sink

and all orbits tend to 0. That is, ∀v ∈ R2, Ov Ð→ 0 = [ 0
0

]. A deeper question is,

however, how the orbit evolves as it tends to the origin.

Figure 2. Phase Portrait
for f(v) = Bv, where 0 < λ <

µ < 1.

For this, let’s restrict the case fur-
ther to the case where both eigenvalues
are positive, so 0 < λ < µ < 1. Then,

for v = [ v1

v2
], the nth term in the or-

bit sequence is Bnv = [ λn 0
0 µn

]v =

[ λnv1

µnv2
]. A typical orbit would live

entirely within one quadrant of the
plane, like the black dots in Figure 2.
Changing the sign of λ and/or µ with-
out changing the magnitude would cre-
ate orbits like the red dots in Figure 2.
Can you work out the signs of the two
eigenvalues to create the orbit in the
figure? Some observations:

● Since we have diagonalized the matrix A to get B, the nth term is easy
to calculate as we have uncoupled the coordinates.

● The smaller eigenvalue λ means the first coordinate sequence in the orbit
will have a faster decay toward 0 than that of the second coordinate.
In the plane, this will imply a curved path toward the origin, with the
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orbit line (recall the definition of the orbit line?) bending toward the
µ-eigendirection (why is this the case? Think about which coordinate is
decaying faster.)

● Given the orbit lines in the figure, do you recognize the phase portrait?
From the classification of 2-dimensional first-order, homogeneous linear
systems (with constant coefficents), systems with this phase portrait have
a node at the origin which is asymptotically stable. This is a sink.

● In the figure, the first few elements of Ov are plotted in black.
● How does the phase portrait change if one or both of the eigenvalues of
B are negative? As a hint, the orbit lines do not change at all. But the
orbits, themselves? In red in the figure are the first few elements of Ov

in the case that 0 < −λ < µ < 1. Do you see the effect?

We can actually calculate the equations for the orbit lines: Let x = v1 and y = v2.
Then the orbit lines satisfy the equation

∣y∣ = C ∣x∣α, where α = log ∣µ∣
log ∣λ∣ .

Exercise 99. Derive this last equation for the orbit lines.

Exercise 100. The map above f(v) = Bv, (the original one above, where
0 < λ < µ < 1, that is) is the time-1 map of a first-order, linear homogeneous 2 × 2
system of ODEs. Find such a system and compare the matrix in the ODE system
to B.

Exercise 101. Sketch the phase portrait in the case that ∣λ∣ > ∣µ∣ > 1.

3.3.2. Star nodes. Suppose now that the linear map has a matrix with only

1 eigenvalue but 2 independent eigenvectors. That is, A
conj
≅ B = λ [ 1 0

0 1
] = λI2,

a homothety. Here, it should be clear that for any starting vector v ∈ R2, the nth
orbit element is Bnv = λnv. In the case that 0 < ∣λ∣ < 1, we have Ov Ð→ 0, for
every v ∈ R2. What does the motion look like in this case?

Figure 3. Star node phase portrait
for f(v) = Bv, where 0 < λ < 1.

Since we are simply re-
scaling the initial vector v,
motion will be along the line
through the origin given by v.
And the orbits will decay ex-
ponentially along these orbit
lines. The phase portrait is
that of a star node in this case,
which is a sink, or implosion,
when ∣λ∣ < 1, and a source, or
explosion, when ∣λ∣ > 1. Again,
think about what the orbits
look like when λ < 0. Does
anything change if the eigen-

vectors were v1 = [ 1
0

], and

v2 = [ 0
−1

]?
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3.3.3. Degenerate Nodes. Suppose now that the linear map has a matrix

with only 1 linearly independent eigenvector. In this case, A
conj
≅ B = [ λ λ

0 λ
]

(remember that A is conjugate to a matrix with λ’s on the main diagonal and
ANY non-zero real number in the upper right-hand corner. We choose λ again
here so that the calculations simplify a bit without losing detail.) Then Bn =

[ λn nλn

0 λn
] = λn [ 1 n

0 1
], and

v = [ v1

v2
] Bnz→ λn [ 1 n

0 1
] [ v1

v2
] = λn [ v1 + nv2

v2
] .

Here, the presence of the summand nv2 has a twisting effect on Ov even though
the exponential factor λn−1 still dominates the long-term orbit behavior.

One can see this twisting effect in the orbit lines. Indeed, for ease of argument,
assume λ > 0 and combine the two equations defining points in the plane along
the curve containing x = v1 and y = v2 at n = 0 through n: x = λn (v1 + nv2), and

y = λnv2. Solving the second for n, we get n = lny−lnv2

lnλ
. With substitution into the

first, we have

x = λn (v1 + nv2)

= y

v2
(v1 + ( ln y − ln v2

lnλ
) v2)

= y v1

v2
+ y ln y

lnλ
− y ln v2

lnλ

= y (v1

v2
− ln v2

lnλ
+ ln y

lnλ
) = y (C + ln y

lnλ
) .

Thus, if 0 < λ < 1, then ∀v, Ov Ð→ 0, but the orbit lines twist toward (but do NOT
rotate around) the origin!

Figure 4. Degenerate node phase
portrait for f(v) = Bv, where 0 < λ < 1.

This phase portrait ex-
hibits a degenerate node, pic-
ture in Figure 5. Notice a few
things here: First, these equa-
tions for the invariant lines
cannot express the solutions
for any points whose starting
coordinates include v2 = 0. But
the original equations would al-
low such a solution. Here x =
λnv1 and y = 0, for all n ∈ N.
These straight line solutions
along the λ-eigendirection, are
extraneous, in that they are
hidden by an assumption in the
method of solution (namely di-
viding by v2 in solving for n.)
Be careful not to neglect such solutions. Second, the single dimension eigenspace
in this case is the only subspace comprising “linear motion” (compare the nodes
above.) In solving for the general solution to the corresponding linear 2× 2 system
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of first order ODEs, one would employ a calculation involving a generalized eigen-
vector to construct the solution. And lastly, while it is easy to also understand the
case where λ > 1, what changes in the calculation of the orbit curves for λ < 0?

Exercise 102. Recalculate the equations for the invariant curves of a degen-
erate node in the case that λ < 0.

Figure 5. Spiral sink
phase portrait for f(v) = Bv,

where λ = a + ib, and ∣λ∣ < 1.

3.3.4. Spirals and centers. Sup-
pose that the linear map has two com-
plex conjugate eigenvalues λ = ρeiθ =
a + ib, and µ = ρe−iθ = a − ib. Here in
general, ρ2 = a2 + b2. Then A ≅ B ≅

ρ [
a
ρ

b
ρ

− b
ρ

a
ρ

], where B is a constant ρ

times a pure rotation. This scaling af-
fects the rotational effect of the map.
The orbit lines are

● spirals toward the origin if 0 <
ρ < 1,

● spirals away from the origin if
ρ > 1, and

● Concentric circles if ρ = 1 (the
eigenvalues then are purely
imaginary).

Exercise 103. Write down an ex-
plicit expression for the orbit lines in
this case.

3.3.5. Saddles. Now suppose A is a 2×2 matrix with eigenvalues 0 < ∣µ∣ < 1 <

∣λ∣. Then A
conj
≅ B = [ λ 0

0 µ
] like the other examples in Case I, but the orbit lines

are different. In fact, writing out the nth term in Ov for a choice of v ∈ R2, we see
that there are four types:

(1) O+
v Ð→ [ 0

0
] and O−

v Ð→∞,

(2) O+
v Ð→∞ and O−

v Ð→∞,

(3) O+
v Ð→∞ and O−

v Ð→ [ 0
0

], and

(4) O+
v Ð→ [ 0

0
] and O−

v Ð→ [ 0
0

].

With B as our matrix, the eigenvectors vλ = [ 1
0

] and vµ = [ 0
1

] lie on the

coordinate axes, and for a choice of v ∈ R2, the nth term is again Bnv = [ λnv1

µnv2
] .

Can you envision the orbit lines and motion along them? Do you recognize the
phase portrait? Can you classify the type and stability of the origin?

Again, place a picture here, some representative orbits, and discuss the equa-
tions of the orbit lines.
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Consider now the hyperbolic matrix A = [ 0 1
1 1

]. Here the characteristic

equation is r2 − r − 1 = 0, which is solved by r = 1±
√

5
2

, giving us the eigenvalues

λ = 1 +
√

5

2
> 1, and µ = 1 −

√
5

2
∈ (−1,0).

The eigenspace of λ is the line y = 1+
√

5
2
x = λx, and for an eigenvector, we choose

vλ = [ 1
λ

].

Now let f ∶ R2 → R2, be the linear map f(v) = Av = [ 0 1
1 1

]v. Then, for

v = [ 1
1

], we get

O = {[ 1
1

] , [ 1
2

] , [ 2
3

] , [ 3
5

] , [ 5
8

] , [ 8
13

] , . . .} .

Do you see the patterns? Call vn = [ xn
yn

] = [ xn
xn+1

] and the sequences {xn}n∈N
and {yn}n∈N are Fibonacci with yn = xn+1. Notice that the sequence of ratios

{ yn
xn

}
n∈N

= {xn+1

xn
}
n∈N

has a limit, and limn→∞
yn
xn

= 1+
√

5
2

= λ.

Recall how to find this limit: Use the second-order recursion inherent in the
Fibonacci sequence, namely an+1 = an+an−1, and the ratio to calculate a first-order
recursion. This first-order recursion will correspond to a map, which one can study
dynamically. Indeed, Let rn+1 = xn+1

xn
, Then

rn+1 =
xn+1

xn
= xn + xn−1

xn
= 1 + 1

xn
xn−1

= 1 + 1

rn
.

So rn+1 = f(rn), where f(x) = 1− 1
x

. The only non-negative fixed point of this map

is the sole solution to x = f(x) = 1− 1
x

, or x2−x−1 = 0, which is x = 1+
√

5
2
. Note that

really there are two solutions and the other one is indeed µ. However, since we are
talking about populations, the negative root doesn’t really apply to the problem.

Example 3.3. Recall the Lemmings problem, with its second-order recursion

an+1 = 2an + 2an−1. Here the sequence of ratios of successive terms {an+1

an
}
n∈N

has

the limit 1 +
√

3.

Here are two rhetorical questions:

(1) What is the meaning of these limits?
(2) How does the hyperbolic matrix in the above Fibonacci sequence example

help in determining the limit?

To answer these, let’s start with the sequence

{bn} = {1,1,2,3,5,8,13,21, . . .} .
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As before, we see

vn+1 = [ bn+1

bn+2
] = [ bn+1

bn+1 + bn
] = [ 0 1

1 1
] [ bn

bn+1
] = A [ bn

bn+1
] = Avn,

where A = [ 0 1
1 1

]. This is precisely the matrix that (1) moves the second entry

into the first entry slot, and (2) creates a new entry two by summing the two entries.
Here, we have associated to the second-order recursion bn+2 = bn+1 + bn the

matrix A = [ 0 1
1 1

] and the first-order vector recursion vn+1 = Avn.

Remark 3.4. This is basically a reduction of order technique, much like the
manner with which one would reduce a second-order ODE into a system of 2 first-
order ODES, written as a single vector ODE.

Remark 3.5. Note here that the second-order recursion is NOT a dynamical
system, since one needs not only the previous state to determine the next state, but
the previous two states. However, transformed into a first-order vector recursion,
the new linear system is now a dynamical system.

This is actually used to construct a function which gives the nth term of a
Fibonacci sequence in terms of n (rather than only in terms of the (n− 1)st term):

Proposition 3.6. Given the second order recursion bn+2 = bn+1 + bn with the
initial data b0 = b1 = 1, we have

bn =
λn+1 − µn+1

λ − µ ,

where λ = 1+
√

5
2

and µ = 1−
√

5
2

.

Prove this here.

We showed that λ and µ were the eigenvalues of a matrix A = [ 0 1
1 1

], and

that the linear map on R2 given by A, vn+1 = Avn, is in fact the first-order vector
recursion for the second-order recursion in the proposition under the assignment

vn = [ bn
bn+1

]. This reduction-of-order technique for the study of recursions is quite

similar to (and is the discrete version of) the technique of studying the solutions
of a single, second-order, homogeneous, ODE with constant coefficients by instead
studying the system of two first-order, linear, constant-coefficient, homogeneous
ODEs. In fact, this analogy is much more robust, which we will see in a minute.

First, a couple of notes:

● For very large n,

bn =
λn+1 − µn+1

λ − µ ∼Kλn+1,

since 0 < ∣µ∣ < 1 < ∣λ∣. Thus the
growth rate of terms in the Fibonacci
sequence is not exponential. It does,
however, tend to look more and more
exponential as n gets large. In fact,
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we can say the Fibonacci sequence dis-
plays asymptotic exponential growth,
or that the sequence grows asymptotically exponentially.

● Start with the initial data v0 = [ 1
1

], and plot Ov0 in the plane. What

you will find is that the iterates of O+
v will live on two curves of motion

(there will be flipping here across the y = λx eigenline. See the figure
above.) Why does this happen? And O+

v will tend toward the λ-eigenline
as they grow off of the page (see the figure below). Getting closer to the
λ-eigenline means that the growth rate is getting closer to the growth rate
ON the λ-eigenline. But on this line, growth is purely exponential!. With
growth factor λ > 1.

Exercise 104. If we neglect the application of a rabbit population,
the discrete dynamical system we constructed above is invertible. Calcu-

late the first few pre-images of the vector v = [ 1
1

], and plot them on

the figure below. Then calculate the orbit line equations for the orbit line
on which the sequence lives. Hint: you may need to solve the original
second-order ODE to do this.

● Every other point v0 = [ x0

y0
] is really just another set of initial data for

the second-order recursion (or the first-order vector version). Start taking
iterates and plot and you will see that these orbits will also live on either
one or will flip between two curves of motion and the phase diagram in
the figure will tell you the ultimate fate of the orbits.

Exercise 105. For the Fibonacci vector recursion, find non-zero, explicit start-
ing data for which the limit is NOT infinity (i.e., which lead to a sequence which
does NOT run off of the page as n goes to infinity.)

Exercise 106. Show that for any non-zero, integer-valued initial values v =

[ v1

v2
], Ov Ð→∞ for the Fibonacci vector recursion.

Thus we can say the following:

Proposition 3.7. All populations governed by the second-order Fibonacci re-
cursion experience asymptotic exponential growth limiting to a growth factor of
1+

√
5

2
.

In general, let an+2 = pan + qan+1 (careful of the order of the terms in this
expression). Then we can construct a first-order vector recursion

vn+1 = [ an+1

an+2
] = [ 0 1

p q
] [ an

an+1
] = Avn, for A = [ 0 1

p q
] .

The characteristic equation of A is r2 − qr − p = 0, with solutions r = q±
√
q2+4p

2
.

Proposition 3.8. If [ 0 1
p q

] has two distinct eigenvalues λ ≠ µ, then every

solution to the second-order recursion an+2 = pan + qan+1 is of the form

an = xλn + yµn
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where x = αv1 and y = βw1, v = [ v1

v2
] and w = [ w1

w2
] are respective eigenvectors

of λ and µ, and α and β satisfy the vector equation

[ a0

a1
] = αv + βw.

Remark 3.9. Hence the general second-order recursion and the first-order vec-
tor recursion carry the same information, and the latter provides all of the infor-
mation necessary to completely understand the former. The method of solution is
quickly discernable: Given a second-order recursion, calculate the data from the
matrix A in the corresponding first-order vector recursion, including the eigenvalues
and a pair of respective eigenvectors. Use this matrix data along with the initial
data given with the original recursion to calculate the parameters in the functional
expression for an.

Here is an example going back to our Fibonacci Rabbits Problem. Is essence,
we use Proposition 3.8 to essentially prove Proposition 3.6.

Example 3.10. Go back to the original Fibonacci recursion an+2 = an+1 + an,

with initial data a0 = a1 = 1. The matrix A = [ 0 1
1 1

] has λ = 1+
√

5
2

and µ =
1−

√
5

2
(as before) and using the notation of Proposition 3.1.13, one can calculate

representative eigenvectors as v = [ 1
λ

] and w = [ 1
µ

]. Thus v1 = w1 = 1. To

calculate α and β, we have to solve the vector equation

[ a0

a1
] = αv + βw, or [ 1

1
] = α [ 1

λ
] + β [ 1

µ
] .

This is solved by α = 1−µ
λ−µ and β = λ−1

λ−µ .

Exercise 107. Verify this calculation.

Hence we have x = αv1 = 1−µ
λ−µ and y = βw1 = λ−1

λ−µ , and our formula for the nth

term of the sequence is

an =
(1 − µ)λn + (λ − 1)µn

λ − µ .

This does not look like the form in Proposition 3.6, however. But consider that the
term

(1 − µ) = 2

2
− 1 −

√
5

2
= 1 +

√
5

2
= λ,

and similarly (λ − 1) = −µ, we wind up with

an =
(1 − µ)λn + (λ − 1)µn

λ − µ = λ ⋅ λ
n + (−µ) ⋅ µn
λ − µ = λ

n+1 − µn+1

λ − µ ,

and we recover Proposition 3.6 precisely.

Exercise 108. Perform this calculation for the second-order recursion in the
Lemmings Problem, and use it to calculate the population of lemmings today, given
that the initial population was given in 1980.
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And lastly, at least for this section, we have a way to ensure when a second order
recursion with non-zero initial data exhibits asymptotically exponential growth;
namely, when the phase portrait of the associated first-order vector recursion has
a saddle point at the origin.

Proposition 3.11. Let an+2 = pan + qan+1 be a second-order recursion, where
p, q ∈ N and 0 < p ≤ q. Then all populations with non-zero initial conditions ex-
hibit asymptotically exponential growth with asymptotic growth factor given by the

spectral radius of A = [ 0 1
p q

] .

Proof. By the discussion above, the only thing to ensure is that the two

eigenvalues of A are λ = q+
√
q2+4p

2
> 1 and −1 < µ = q−

√
q2+4p

2
< 0 and λ /∈ Q. It is

obvious that λ > 1 since q ≥ 1. And since detA < 0, µ < 0. So we claim µ ≥ −1.
Since q ≥ p > 0, we have q + 1 > p implies 4q + 4 > 4p which implies q2 + 4q + 4 =
(q + 2)2 > q2 + 4p which implies q + 2 >

√
q2 + 4p which implies −2 < q −

√
q2 + 4p

which implies −1 < µ. �

3.4. The Matrix Exponential

These calculations lead to a very important discussion on the relationship be-
tween the matrices found in first-order, 2-dimensional homogeneous linear systems
(with constant coefficients) of ODEs and the corresponding matrices of the dis-
crete, time-1 maps of those systems. The central questions is: Why is it that for a
ODE system with coefficient matrix A, the sign of the eigenvalues determines the
stability of the equilibrium solution at the origin. But for a linear map of Rn, it is
the size of the absolute values of the eigenvalues that determine the stability of
the fixed point at the origin. The matrix of the time-1, ODE system is NOT the
same matrix as the coefficient matrix of the system. The two matrices are certainly
related, but they are not identical. Furthermore, ANY ODE system has a time-1
map. But only certain types of linear maps correspond to the time-1 maps of ODE
systems. To understand better why, let’s start with an example:

Example 3.12. Calculate the time-1 map of the ODE system

ẋ = [ 2 0
0 −1

]x, x(0) = x0 = [ x0
1

x0
2

] .

This system is uncoupled and straightforward to solve. Using linear system theory,

the eigenvalues of the matrix A = [ 2 0
0 −1

] are λ = 2 and µ = −1, and, since A is

diagonal, we can choose the vectors vλ = [ 1
0

] and vµ = [ 0
1

]. Hence the general

solution is

x(t) = c1 [ 1
0

] e2t + c2 [ 0
1

] e−t,

or x1(t) = c1e2t and x2(t) = c2e−t. For the choice of any initial data, the particular
solution is x1(t) = x0

1e
2t and x2(t) = x0

2e
−t, and the evolution of this continuous

dynamical system is

ϕ(x, t) = x1 [ 1
0

] e2t + x2 [ 0
1

] e−t = [ e2t 0
0 e−t

] [ x1

x2
] = [ e2t 0

0 e−t
]x.
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The time-1 map is then ϕ(x,1) = ϕ1(x) ∶ x(0) z→ x(1), or the linear map

ϕ1 ∶ R2 → R2, ϕ1(x) = Bx,

where B = [ e2 0
0 e−1 ] is the matrix associated to the linear map.

Do you see the relationship be-
tween the ODE matrix A and the time-
1 linear map matrix B? The type and
stability of the equilibrium solution at
the origin of this linear system given
by A is that of a saddle, and unstable.
The time-1 map must also be a saddle,
as the orbit lines of the time-1 map co-
incide precisely to the solution curves
of the ODE system. It is the sign of
the eigenvalues (non-zero entries of A
in this case) that determine the type and stability of the origin of the ODE system.
However, it is the “size” (modulus) of the eigenvalues of B which determine the
type and stability of the fixed point at the origin in the linear map given by B.
Some notes:

● Notice that the exponential map, exp ∶ x ↦ ex takes R to R+ (see the
figure above) and maps all non-negative numbers, R+

0 = {0} ∪ R+, to the
interval [1,∞) and all negative numbers to (0,1). This is no accident,
and exposes a much deeper meaning of the exponential map.

● One might conclude that there could not be a time-1 map of a linear,
constant coefficient, homogeneous ODE system with negative eigenvalues.
And you would be correct in this hyperbolic case. In general?

● One might also conclude that for any 2×2-matrix A, the associated time-1
map B would simply be the exponentials of each of the entries of A. Here,
you must definitely be much more careful, as we shall see.

Exercise 109. Let f ∶ R2 → R2 be the linear map f(x) = Bx, where B =

[ a 0
0 b

] and both a > 0 and b > 0. Determine a linear, 2-dimensional ODE system

that has f as its time-1 map. For a > 0, show that B cannot correspond to a time-1
map of an ODE system if b ≤ 0. Can B correspond to a time-1 map of an ODE
system if both a < 0 and b < 0? Hint: The answer is yes.

For a moment, recall the 1-dimensional linear, homogeneous, constant coeffi-
cient ODE ẋ = ax, for a ∈ R a constant. The evolution is x(t) = x0e

at, the ODE is
solved by an exponential function involving a. For the nth order linear, homoge-
neous, constant coefficient case, one creates an equivalent system ẋ = Ax, a single
vector ODE whose solution also seems exponential in nature (exponentials have
the appeal that the derivative is proportional to the original function). That is,
it is tempting to write the evolution as x(t) = x0eAt, since if it is the case that
d
dt

[x0eAt] = Ax0eAt, then this expression solves the ODE. However, it is not yet
clear what it means to take the exponential of a matrix.

Definition 3.13. For an n × n matrix A, define eA =
∞
∑
n=0

An

n!
.
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This definition obviously comes directly from the standard definition of the
exponential ex via its Maclauren Series. Also, it seems to make sense in that one
can certainly sum matrices, take them to positive integer powers, and divide them
by scalars. The question of whether this converges or not is unclear, though. It
really is a question of whether each entry, written as a series will converge. While
this is basically a calculus question, we will not elaborate here but will state without
proof the following: The definition above is well-defined and the series converges
absolutely for all n × n matrices A.

Proposition 3.14.
d

dt
[x0eAt] = Ax0eAt.

Proof. Really, this is just the definition of a derivative:

d

dt
eAt = lim

h→0

eA(t+h) − eAt
h

== lim
h→0

eAteAh − eAt
h

= eAt lim
h→0

eAh − 1

h

= eAt lim
h→0

1

h
(
∞
∑
n=0

(Ah)n
n!

− I) = eAt lim
h→0

1

h

∞
∑
n=1

(Ah)n
n!

= eAt lim
h→0

∞
∑
n=1

Anhn−1

n!
= eAt lim

h→0
A

∞
∑
n=1

An−1hn−1

n!

= AeAt lim
h→0

( I
1!
+ Ah

2!
+ A

2h2

3!
+ A

3h3

4!
+ . . .) .

At this point, every term in the remaining series has an h in it except for the n = 1
term, which is I. So

d

dt
eAt = eAt lim

h→0
A

∞
∑
n=1

An−1hn−1

n!
= AeAt.

�

Hence the expression eAt behaves a lot like the exponential of a scalar and in
fact does solve the vector ODE ẋ = Ax, with initial condition x(0) = x0. However,
contrary to Example 3.12, it is not in general true that the exponential of a matrix
is simply the matrix of exponentials of the entries.

Example 3.15. Find the evolution for ẋ = [ 4 −2
3 −3

]x.

Here, the characteristic equation is r2−r−6 = 0, with solutions giving eigenvalues of

λ = 3 and µ = −2. Calculating eigenvectors, we choose vλ = [ 2
1

] and vµ = [ 1
3

].

Thus the general solution is

(3.4.1) x(t) = c1 [ 2
1

] e3t + c2 [ 1
3

] e−2t = [ 2e3t e−2t

e3t 3e−2t ] [ c1
c2

] .

Writing this in terms of x0 (in essence, finding the evolution), we get the linear
system

[ x0
1

x0
2

] = [ 2c1 + c2
c1 + 3c2

] = [ 2 1
1 3

] [ c1
c2

] .
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Solving for c1 and c2 in terms of the initial conditions involves inverting the matrix,

and [ 2 1
1 3

]
−1

= 1
5
[ 3 −1
−1 2

]. Hence the evolution is

x(t) = [ 2e3t e−2t

e3t 3e−2t ] [ c1
c2

]

= [ 2e3t e−2t

e3t 3e−2t ] [
3
5

− 1
5

− 1
5

2
5

] [ x0
1

x0
2

]

= [
6
5
e3t − 1

5
e−2t − 2

5
e3t + 2

5
e−2t

3
5
e3t − 3

5
e−2t − 1

5
e3t + 6

5
e−2t ] [ x0

1

x0
2

] .

Hence we can also say now that

eAt = [
6
5
e3t − 1

5
e−2t − 2

5
e3t + 2

5
e−2t

3
5
e3t − 3

5
e−2t − 1

5
e3t + 6

5
e−2t ] , for A = [ 4 −2

3 −3
]

and that the time-1 map of this ODE is the linear map given by

eA = [
6
5
e3 − 1

5
e−2 − 2

5
e3 + 2

5
e−2

3
5
e3 − 3

5
e−2 − 1

5
e3 + 6

5
e−2 ] .

So how does one square these calculations into a general understanding of eA? Via
the properties of of a matrix exponential and a bit of standard linear algebra:

Proposition 3.16. Let An×n be diagonalizeable. Then A = SBS−1, where

● Bn×n is diagonal, and
● the columns of Sn×n form an eigenbasis of A.

Proposition 3.17. If An×n is diagonalizeable, then eA = SeBS−1, where both
B and eB are diagonal.

Proof. Note that since

eA =
∞
∑
n=1

An

n!
and (SAS−1)n = SAnS−1,

we have

SeBS−1 = S (
∞
∑
n=1

Bn

n!
)S−1 =

∞
∑
n=1

SBnS−1

n!
=

∞
∑
n=1

(SBS−1)n

n!
=

∞
∑
n=1

An

n!
= eA.

�

Example 3.18. Back to the previous system, with ẋ = Ax, and A = [ 4 −2
3 −3

].

The general solution, written in Equation 3.4.1 was

x(t) = [ 2e3t e−2t

e3t 3e−2t ] [ c1
c2

]

= [ 2e3t e−2t

e3t 3e−2t ] [
3
5

− 1
5

− 1
5

2
5

] [ x0
1

x0
2

]

= [
6
5
e3t − 1

5
e−2t − 2

5
e3t + 2

5
e−2t

3
5
e3t − 3

5
e−2t − 1

5
e3t + 6

5
e−2t ] [ x0

1

x0
2

] = eAtx0.
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But the middle equal sign in the last grouping can easily be written

x(t) = [ 2e3t e−2t

e3t 3e−2t ] [
3
5

− 1
5

− 1
5

2
5

] [ x0
1

x0
2

]

= [ 2 1
1 3

] [ e3t 0
0 e−2t ] [

3
5

− 1
5

− 1
5

2
5

] [ x0
1

x0
2

] = SeBtS−1x0,

where S is the matrix whose columns form an eigenbasis of A, and eBt is the
exponential of the diagonal matrix B. Hence, as in the proposition, eAt = SeBtS−1.

Exercise 110. Show that the time-1 map of the ODE system ẋ = [ λ 1
0 λ

]x

is given by the linear map f(x) = B1x, where B1 = [ eλ eλ

0 eλ
], but the time-t map

in general is NOT given by the linear map Bt = [ eλt eλt

0 eλt
].

Exercise 111. Find the time-1 map of the IVP ẋ = [ 0 α
−α 0

]x, and use it to

construct a form for the exponential of a matrix with purely imaginary eigenvalues.

3.4.1. Application: Competing Species. A common biological model for
understanding the possible interaction between 2 species in a closed environment
that interact only in their competition for food. Not that one tends to eat the
other. More like two herbivores both competing for limited food supplies. If two
species did not interact at all, their respective population equations would fit the
Logistic Model and be uncoupled:

ẋ = x(α1 − β1x)
ẏ = y(α2 − β2y)

where α1, α2, β1, β2 > 0 are positive constants. We can model a simple interaction
between these two species by adding in a cross-term, negative in sign (why?) and
scaled by yet another parameter. We get:

ẋ = x(α1 − β1x − γ1y)
ẏ = y(α2 − β2y − γ2x)

where now all α1, α2, β1, β2, γ1, γ2 > 0 are again positive constants. What are the
effects of these added terms? How may steady-state solutions (long-term behaviors
where the populations of the species do not change over time)? Let’s look at these
models for a few parameter assignments to see. Do not worry so much about just
how modelers came up with this idea of simply adding a term. Let’s focus on the
solutions for now.

Here are two sets of parameter assignments from Section 9.4:

(1) Let α1 = β1 = γ1 = 1, α2 = .75, β2 = 1 and γ2 = .5. The system is then

ẋ = x(1 − x − y)
ẏ = y(.75 − y − .5x).
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(2) Let α1 = β1 = γ1 = 1, α2 = .5, β2 = .25 and γ2 = .75. The system is now

ẋ = x(1 − x − y)
ẏ = y(.5 − .25y − .75x).

Look at the slope fields for these two systems on the next two pages and try to
identify the differences between these two.

Some questions:

Question 1. Where are the critical points in these systems?
(1) Here, we solve the system

0 = x(1 − x − y)
0 = y(.75 − y − .5x).

Of course the origin a = (0,0) is one solution. But so are b = (0, .75),
c = (1,0), and d = (.5, .5) (Verify that you know how to find these!).

(2) In this case, the system is

0 = x(1 − x − y)
0 = y(.5 − .25y − .75x).

Again, we have e = (0,0). The others are f = (0,2), g = (1,0), and
h = (.5, .5). See these?

Question 2. What are the type and stability of each of these equilibria?
● First note that, for any values of the parameters, the functions F (x, y) =
x(α1 − β1x − γ1y) and G(x, y) = y(α2 − β2y − γ2x) are simply poly-
nomials in x and y, and hence by the proposition we did in class, as
long as the determinant of the matrix

A = [
∂F
∂x

(x0, y0) ∂F
∂y

(x0, y0)
∂G
∂x

(x0, y0) ∂G
∂y

(x0, y0)
] = [ α1 − 2β1x0 − γ1y0 −γ1x0

−γ2y0 α2 − 2β2y0 − γ2x0
] ,

where (x0, y0) is a fixed point, is not 0, the system is almost linear
at (x0, y0).

(1) In our first case, we have

A = [ 1 − 2x0 − y0 −x0

−.5y0 .75 − 2y0 − .5x0
] ,

and at the four critical points, we have

Aa = [ 1 0
0 .75

] , Ab = [ .25 0
−.375 −.75

]

Ac = [ −1 −1
0 .25

] , Ad = [ −.5 −.5
−.25 0

] .

None of these have determinant 0, so the system is almost linear at
all of these equilibria. The eigenvalues tell us that the corresponding
linear systems have a source at a, saddles at both b and c, and a sink
at d. (Verify this!) By The Stability Theorem we did in class, the
nonlinear equilibria will also have these types and their corresponding
stability. The ONLY one of these that is stable is the asymptotically
stable sink at a.



3.4. THE MATRIX EXPONENTIAL 83

(2) Contrast these fixed poitns with those at e, f , g and h. We play the
same game, and we get the matrix

A = [ 1 − 2x0 − y0 −x0

−.75y0 .5 − .5y0 − .75x0
] .

Thus we have the four linear systems given by

Ae = [ 1 0
0 .5

] , Af = [ −1 0
−1.5 −.5 ]

Ag = [ −1 −1
0 −.25

] , Ad = [ −.5 −.5
−.325 −.125

] .

Again, calculate the eigenvalues, and you should find that the linear
systems again have an unstable node (a source) at the origin (e),
sinks at f and g, and a saddle at h. All of these are such that the
original nolinear equilibria share these characteristics.

Given all of this data, let’s place the equilibria and think about how the sta-
bility of each would affect the nearby solutions. At the saddles, we would have
to find the approximate directions of linear motion. The non-linear saddles will
not have linear motion, but they will have something similar; a curve with very
specific properties, namely that along one curve, all solution are asymptotic to the
equilibrium in forward time. And there will be another curve where all solutions
will be asymptotic to the equilibrium in backward time. All other nearby solutions
eventually veer away from the equilibrium. The curves of forward and backward
asymptotic solutions wind up being tangent at the equilibrium to the directions of
linear travel form the linear saddle at that equilibrium. This give an idea of how the
non-linear saddle is oriented. We have the two hand drawings below. Your home-
work now is to go onto JODE, or a similar graphing device, and actually compute
slope fields and some numerical solutions to verify that this is more or less correct.

Figure 6. Competing Species phase portraits for δ = 0 and δ = 1.

Last question: Suppose we built a system that had sliders for each of the
parameters so that we could watch how the phase portrait changed as we alter the
parameters continuously. Notice in the two examples above that in both we had
α1 = β1 = β2 = γ1 = 1. But in the first example, we had α2 = 3

4
, β2 = 1 and γ2 = 1

2
,

and in the second, α2 = 1
2
, β2 = 1

4
and γ2 = 3

4
. Imagine if we smoothly slid the
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values of these parameters from their initial values to their final values, from one
diagram to the second. One way to do this is with a single slider: δ, going from
0 to 1. We can use a linear parameterization from any vector a ∈ R3 to any other
vector b ∈ R3 to “slide” these parameter values, via x = a + δ(b − a). Then when
δ = 0, x = a and when δ = 1, x = b. Here, we do this with the three parameters
above simultaneously:

α2 =
3

4
+ δ (1

2
− 3

4
) = 3

4
− 1

4
δ = 3 − δ

4

β2 = 1 + δ (1

4
− 1) = 1 − 3

4
δ = 4 − 3δ

4

γ2 =
1

2
+ δ(3

4
− 1

2
) = 1

2
+ 1

4
δ = 2 + δ

4
.

Given this, we can continuously change the phase portrait and look for places
where the number, type and/or stability of any of the equilibria change. Given the
profound differences between the two phase portraits, we will find something for
some intermediate value of rδ.

The Fixed Points, First in this analysis, understand that since we are chang-
ing the values of the parameters continuously, the fixed points (equilibria) will either
stay where they are or move continuously also. So we can track them. We will do
this by rewriting the vector field functions F (x, y) and G(x, y) in terms of δ instead
of the parameters: Here, equilibria are the solutions to the equations

F (x, y) = 0 = x(1 − x − y)
G(x, y) = y(α2 − β2y − γ2x)

become

F (x, y) = 0 = x(1 − x − y)

G(x, y) = y (3 − δ
4

− 4 − 3δ

4
y − 2 + δ

4
x) .

By inspection, we find:

(1) Whenever y = 0, G(x, y) = 0. Hence any equilibria along the x-axis will
not depend on δ for position at all. Hence the equilibria at (0,0) and
(1,0) do not move for δ ∈ [0,1].

(2) For the non-trivial equilibrium along the y-axis, where x = 0 but y /= 0,
F (x, y) = 0 but G(x, y) = 0 only when α2 −β2y = 0, so y = α2

β2
. IN terms of

δ, there will be a critical point for the system when x = 0, and

y =
3−δ
4

4−3δ
4

= 3 − δ
4 − 3δ

.

(3) Lastly, there seems to persist a critical point in the open first quadrant
x, y > 0. This equilibrium will satisfy both

1 − x − y = 0
α2 − β2y − γ2x = 0

} ⇒ { x + y = 1
γ2x + β2y = α2

.

Combining these via y = 1 − x, we get

γ2x + β2(1 − x) = α2, or x = α2 − β2

γ2 − β2
.
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In terms of δ, we get

x =
3−δ
4
− 4−3δ

4
2+δ
4
− 4−3δ

4

=
−1+2δ

4
−2+4δ

4

= 1

2
.

Thus y = 1 − x = 1
2

and we see that the equilibrium strictly in the first

quadrant does not move for δ ∈ [0,1] and is at ( 1
2
, 1

2
) .

Thus the four critical points for this model, in terms of δ are

(0,0), (1,0), (0,
3 − δ
4 − 3δ

) , and (1

2
,
1

2
) .

Type and Stability. Now the analysis moves toward a classification of these
equilibria for the various values of δ ∈ [0,1]. Recall that at any critical point
x0 = (x0, y0) of an almost linear system, we can form the matrix A of an associated
linear system, where

A = [ Fx∣x0 Fy ∣x0

Gx∣x0 Gy ∣x0

] = [ 1 − 2x0 − y0 −x0

−γ2y0 α2 − 2β2y0 − γ2x0
] .

Here, then

A(0,0)(δ) = [ 1 0
0 α2

] = [ 1 0

0 3−δ
4

] .

Thus, in this case, r1 = 1 > 0 and r2 = r2(δ) = 3−δ
4

> 0, ∀δ ∈ [0,1]. By the Hartman-
Grobman Theorem, the equilibrium at the origin is a source for all δ ∈ [0,1].

At the static fixed point at (1,0), we have

A(1,0)(δ) = [ −1 −1
0 α2 − γ2

] = [ −1 −1

0 1−2δ
4

] .

Eigenvalues of A(1,0)(δ) are immediately available to us since the matrix is upper
triangular, so the eigenvalues are the entries on the main diagonal:

r1 = 1, and r2 =
1 − 2δ

4
.

One can readily show that, via the eigenvector equation, an eigenvector for r1 = −1

is v1 = [ 1
0

]. Along the “other” direction, we have an eigenvalue/eigenvector pair

r2 =
1 − 2δ

4
, v2 = [ 1

2δ−5
4

] .

The interesting effect is at δ = 1
2
, where the non-horizontal eigendirection is seen

to slow to a stop, creating a curve of equilibria emanating from (1,0). As δ passes
through 1

2
, the eigenvalue r2 goes from positive to negative, and the saddle bifur-

cates to a sink, passing through the value where the node is not isolated. This is a
planar bifurcation where an unstable node can become stable.

Now, for the critical point (0, 3−δ
4−3δ

), we get

A(0, 3−δ
4−3δ

)(δ) = [ 1 − y0 0
γ2y0 α2 − β2y0

] = [ 1 − 3−δ
4−3δ

0

−( 2+δ
4

) ( 3−δ
4−3δ

) 3−δ
4
− 2 ( 4−3δ

4
) ( 3−δ

4−3δ
) ]

= [
1−2δ
4−3δ

0
( 2+δ

4−3δ
) ( δ−3

4
) δ−3

4

] .
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Here, the eigenvalues are r1 = 1−2δ
4−3δ

, and r2 = δ−3
4

. For the eigenvector v2 = [v1, v2]T
corresponding to r2, we have the eigenvector system

(1 − 2δ

4 − 3δ
) v1 = (δ − 3

4
) v1

(2 + δ
4

)(δ − 3

4
) v1 + (δ − 3

4
) v2 = (δ − 3

4
) v2.

This system is solve by v1 = 0 and v2 is anything non-trivial, so that the vector v2

is along the y-axis ∀δ ∈ [0,1].
For r1, eigenvector system is

1 − 2δ

4 − 3δ
v1 =

1 − 2δ

4 − 3δ
v1

(2 + δ
4

)(δ − 3

4
) v1 + (δ − 3

4
) v2 = (1 − 2δ

4 − 3δ
) v2.

While this is a fairly messy calculation, we can boil it down to

v1 =
3δ2 − 21δ + 16

(2 + δ)(δ − 3) v2.

Upon inspection, one can readily see that both components will be non-zero for
every δ ∈ [0,1], except for at one value: δ ∼ .87. At this point, one can show,
r1 = r2, and there is only one eigendirection.

Exercise 112. Establish what is happening for this value of δ at the non-trivial
critical point along the vertical axis.

Lastly, for this case, notice again, that one of the eigenvalues r1 = 0, when
δ = 1

2
. This is precisely another instance of a bifurcation from a saddle to a sink,

where one of the eigendirections slows down its repellent motion, stops and then
reverses direction. Interesting....

And lastly, Let’s analyze the stability, type and structure of the phase space at
the point ( 1

2
, 1

2
). We have

A( 1
2 ,

1
2
)(δ) = [ 1 − 2x0 − y0 −x0

−γ2y0 α2 − 2β2y0 − γ2x0
]

= [ − 1
2

− 1
2

− 2+δ
8

3−δ
4
− 4−3δ

4
− 2+δ

8

] = [ − 1
2

− 1
2

− 2+δ
8

−4+3δ
8

] ,

with eigenvalues

r = −
(−8 + 3δ) ±

√
(−8 + 3δ)2 − (32 − 64δ)

16
= (8 − 3δ) ±

√
9δ2 + 16δ + 32

16
.

One can easily see by inspection here that both of the eigenvalues here are real,
with one of them remaining negative for all δ ∈ [0,1]. The other one, however, is
negative on δ ∈ [0, 1

2
), and positive on δ ∈ [ 1

2
,1), and 0, when δ = 1

2
. This, again,

denotes a bifurcation value for δ, with the equilibrium going from a sink to a saddle.
IN fact, at δ = 1

2
, we have that strange situation where the three non-trivial

critical points all have 0 as an eigenvalue of their linearization. This suggests a
curve of critical points in the phase plane. We can actually of directly to the
original differential equation to find these:
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Let δ = 1
2
. Then the critical points are all at

F (x, y) = x(1 − x − y) = 0

G(x, y) = y (
3 − 1

2

4
− (

4 − 3
2

4
) y − (

2 + 1
2

4
)x) = 0

= y (5

8
− 5

8
y − 5

8
x) = 0

= 5

8
y(1 − x − y) = 0.

At δ = 1
2
, there will be a line of critical points, ranging within the first quadrant

along the line y = 1 − x, from the equilibrium at (1,0), through the equilibrium at
( 1

2
, 1

2
) to the the fixed point at (1,0). Can you envision this?

Figure 7. Can you draw the phase portrait for δ = 1
2
?

Exercise 113. Figure ?? shows the equilibria of the non-linear ODE Compet-
ing Species model for δ = 1

2
. The equilibria are at the origin and on the line y = 1−x.

Draw in the rest of the phase portrait as accurately as possible by linearizing the
four persistent equilibria and extrapolating what happens off of the line.





CHAPTER 4

Recurrence

So far, we have explored many systems and contexts where dynamical systems
have exhibited simple behavior, or fairly simple behavior. We will now begin to
explore more complicated behavior. However, to start, we will stay with maps of
the type we have already introduced. But we will change the place on which they
are acting. This, in and of itself, changes the nature of the orbits. It turns out
that when the space is Euclidean, orbits can converge to something or wander away
toward the edge of the space. However when a space is compact, roughly that its
edges are not infinitely far away, if the edges in fact exist at all, then an orbit that
does not converge to any particular thing must go somewhere within the space.
How to describe where it goes will take us to behavior which is more complicated
than what we have already seen. To begin, consider the definition:

Definition 4.1. For f ∶ X → X a continuous map on the metric space X, a
point x ∈X is called (positively) recurrent with respect to f if there exist a sequence
of natural numbers nk Ð→∞ where fnk(x) Ð→ x.

In the simple dynamical systems we studied so far, the only recurrent points
were fixed and periodic points (this makes sense, right?). However, in the right
context, non-periodic points can also be recurrent. This chapter begins a study
of relatively simple maps that exhibit this more complicated behavior. And this
behavior is captured in this notion of recurrence.

4.1. Rotations of the circle

Again, think of S1 either as the set of unit modulus numbers of the complex
plane

S1 = {z ∈ C ∣ z = e2πiθ, θ ∈ R} ,
or as the quotient space of the real line modulo the integers, S1 = R/Z. Recall,
for x, y ∈ R, denote x, y their respective points in S1 under the exponential map
ρ ∶ R→ S1, ρ(θ) = e2πiθ.

● Here x = y iff x − y ∈ Z, or x ≡ y (mod 1).
● x, y are the equivalence classes of points in R under the equivalence rela-

tions imposed on R by the map ρ.

In this last interpretation, one can imagine S1 to be the unit interval [0,1] in R
where one agrees to identify the endpoints (hence the notation sometimes used
when we say 0 = 1).

One can define a metric on S1 by simply inheriting the one it has as it sits in
C (or if you will, R2). This is essentially the Euclidean metric and measures the
straight line distance in the plane between two points. Really, this is the length of
the chord, or secant line, joining the points. See Figure 1.

89
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Figure
1. Equivalent
metrics on S1.

But also, we can define a distance between
points by the arc length between them. In some
ways, this is preferable, since in the abstract,
S1 doesn’t really sit anywhere. There is no in-
terior and exterior of S1, unless you call the ac-
tual points in the curved line making the circle
the interior points. The problem with using arc
length to determine the distance between points
is that there are two distinct paths going from
one point to another. There must be a deter-
mination as to which one to choose. Choosing
the minimal path is a nice choice, but how does
one do this mathematically. The answer lies within the view that S1 really is the
real line R infinitely coiled up like a slinky by the exponential map ρ above, and
length in R is easy to describe, and passes through this map, at least locally:

Figure 2. The equivalence classes in R of x = 1
3

and y = 3
4

in S1.

Define

(4.1.1) d (x, y) = min{∣x − y∣ ∣ x, y ∈ R, x ∈ x, y ∈ y} .

Figure 2 shows the equivalence classes of the points x = 1
3

and y = 3
4
. Choosing

arbitrary representatives x and y and calculating their distance in R will lead to
many different results. However, the minimum distance between representatives of
these two classes is well-defined and in this case, d (x, y) = 5

12
. Notice that really,

the closest two distinct distances between two equivalence classes in R correspond
precisely to the arc lengths in S1 along the two distinct paths joining x and y.

Lemma 4.2. These two metrics are equivalent.

Proof. We leave the proof as an exercise. �

Exercise 114. Show that the inherited Euclidean metric on S1 ⊂ R2 is equiv-
alent to the arc length metric in Equation 4.1.1.

Denote by Rα the translation of the points in S1 by the real number α. We
could say Rα denotes the rigid rotation of S1 by the angle α, but, as we will
see, the parameterization of S1 becomes vitally important here. We have currently
parameterized S1 as the unit interval in R, with 0 = 1. So even though α technically
can be any real number, rotating by α and rotating by α+n, where n ∈ Z amounts
to the same thing. (Note that this would definitely not be the case for a continuous
dynamical system given by ẋ = α, x ∈ S1. Can you see why?) Here Rα(x) =
x+α (mod 1) = x + α. In complex notation, we view rotations as linear maps, with
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multiplication by the factor zα = e2πiα, so that Rα(z) = zαz. In each case, then
Rα ∶ S1 → S1, with either

Rnα(x) = Rnα(x) = x + nα (mod 1) = x + nα,
or Rnα(z) = znαz.

Q. What can we say about the dynamics of a circle rotation?
Q. What if α ∈ Q?
Q. What if α /∈ Q?

The quick answers are that, when α is rational, all orbits are periodic, and all
of the same period. When α is not rational, then there are no periodic orbits at
all. The trick really is to understand well what Rnα looks like for each n, and what
it means for a point to be periodic in the circle.

Exercise 115. Let Rα ∶ S1 → S1, be the rotation rα(x) = x + α = x + α. Show
that every orbit is periodic when α ∈ Q, and no orbit is periodic when α /∈ Q.

The latter exercise creates a deeper concern: Without fixed or periodic points
in S1 for what I will call an irrational rotation, the question is, where do the orbits
go? They cannot converge to a point in the circle, since in many cases (and really
in general), if they converged to a point in S1, then that point would have to be a
fixed point (if orbits converge, they must converge to another orbit). The answer
is that they go everywhere. And that tells one a lot about the dynamics.

Remark 4.3. The above notion of an irrational rotation was based on the
parameterization of S1 given by the interval [0,1). There, the rotation Rα was
irrational as a rotation when α isn’t rational as a number. However, the parame-
terization is critical here, and the rationality IS of the rotation really with respect
to the integer 1, the maximum value of the parameter. To see this, suppose instead
we parameterized S1 via the interval [0,2π), another rather common parameteri-
zation given by the map ρ ∶ R → S1, where ρ(x) = eix. Here, a rotation half way
around the circle is given by Rπ, where α = π is irrational (as a number!) Thus
the rotation Rπ is not irrational at all, as every point is 2-periodic. However, the
rotation by 1, R1 would have NO periodic orbits.

Exercise 116. Show there are no periodic orbits for the rotation R1 on S1

parameterized via the map ρ ∶ R→ S1, where ρ(x) = eix.

The correct conclusion to draw here is that the rationality of the rotation Rα
depends on the parameterization. We offer a definition to be clear.

Definition 4.4. A rotation Rα ∶ S1 → S1, where S1 is parameterized by the
interval [0, T ) for T > 0, is called irrational if α

T
/∈ Q. Otherwise, the rotation is

called rational.

Proposition 4.5. For Rα an irrational rotation of S1, all orbits are dense in
S1.

(idea of proof). Really, the idea is the following:

● Show the forward orbit of any x is not periodic (you will do this in the
exercises).

● Show that ∀ε > 0, ∃N ∈ N, such that d (RNα (x) , x) < ε.
● Show that this is true for all x.



92 4. RECURRENCE
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Note: All rotations are invertible, right? Really, they are all homeomorphisms.
So define R−1

α (x) = R−α(x). To show density, we have to show that the orbit of
x will visit any size open neighborhood of x. Here is a nice technique for showing
this:

4.1.1. Continued Fraction Representation. The continued fraction repre-
sentation (CFR) of a real number is a representation of real numbers as a sequence
of integers in a way which essentially determines the rationality of the number.
This is very much like the standard decimal representations of real numbers, in
that it also (our usual base-10 version is a good example) provides a ready way
to represent all real numbers. However, the sequence of integers which represent
a real number in a base-10 decimal expansion represent some rational numbers as
finite-length sequences (think 11

8
= 1.375), and others as infinite length sequences

(think 4
9
= 0.44444⋯). The CFR instead is a base-free representation in which all

and only rational number representations are the finite length sequences. Plus, the
CFR is another nice way to approximate a real number by either truncating its
sequence or simply not calculating the entire sequence.

Indeed, in the CFR, Any real number in (0,1) can be written as 1
s
, where

s ∈ (1,∞). More generally, then, any real number r can be written as an integer
and a real number in (0,1); as

r = n + 1

s
, where n ∈ Z, and s ∈ (1,∞).

If s ∈ N, then this expression is considered the CFR of r (it is sometimes written
then r = [m; s]; For example, 5

2
= [2 ∶ 2].

Now suppose s /∈ N. Then since s ∈ (1,∞), s =m + 1
t
, for m ∈ N, and t ∈ (1,∞).

Thus,

r = n + 1
1

m+ 1
t

, where n ∈ Z, m ∈ N, and t ∈ (1,∞).

Again, if t ∈ N, then we stop and r = [n;m, t] is the CFR of r. If it is not, we again
let t = p + 1

u
, for p ∈ N and u ∈ (1,∞) so

r = n + 1
1

m+ 1

p+ 1
u

, where n ∈ Z, m, p ∈ N, and u ∈ (1,∞).

Again, if u ∈ N, we stop and the CFR of r is [n ∶m,p, u]. If not, then we continue
indefinitely. The CFR is a finite sequence iff r ∈ Q.

Exercise 117. Compute the CFR of − 33
13

.

Exercise 118. Calculate the fraction whose CFR is [0 ∶ 3,5,7].

Example 4.6. So let Rα be a rotation of S1 for α = 1
3+ 1

5+ 1
c

, where c > 1, and

c /∈ Q. Then it turns out that α /∈ Q.

To see this, let’s start the construc-
tion which would establish the middle
bullet point in the above proof idea. To
start, it should be obvious that 1

4
< α <
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1
3

(why?). In the figure, we can graph

Rα(0), R2
α(0), R3

α(0), and R4
α(0). One

of the latter two winds up being the
early, closest approach to 0 of the orbit
O+

0 . But which is smaller, δ = 1−3α, or
β = 4α − 1?
Visually, the closest approach to 0 is
R3
α(0) = 3α, but without the benefit

of knowing what the choice of c is in
general, it is not clear a priori whether
δ = 1 − 3α is actually smaller than
β = 4α − 1. Even without knowing c, we can still perform the comparison via
the CFR:

δ = 1 − 3α = 1 − 3

3 + 1
5+ 1

c

=
3 + 1

5+ 1
c

− 3

3 + 1
5+ 1

c

=
1

5+ 1
c

3 + 1
5+ 1

c

= 1

16 + 3
c

.

Exercise 119. Calculate β = 4α − 1 in the same way as above, and show that
it is larger than δ for any choice of c > 1.

Hence, the third iterate is the first closest return of O+
0 to 0.

Q. Will the orbit ever get closer to 0?
Q. If it will, then which iterate?

These questions will help us to show the orbit will eventually get arbitrarily close
to 0.

We could simply hunt for the next return. Or we can be clever and calculate it.
Here is the idea: it took three steps to get within δ of the initial point 0. (We could
say it took three steps to get δ-close to 0). If we now create an open δ-neighborhood
of 0, Nδ(0), when will the first iterate occur when we will enter this neighborhood
and thus get closer than δ to 0?

One way to ensure this is to look
at the first step after our previous close
approach. This is the fourth element
of O0 and is R4

α(0) = 4α. Here 4α =
α + 3α = α + (1 − δ), so that 4α − 1 =
β = α− δ. One conclusion to draw from
this is that R3α takes α to 4α which is
α − δ (see figure). So R3α(α) = α − δ,
R2

3α(α) = α − 2δ, and Rn3α(α) = α − nδ.
So for which n would we satisfy

0 < α − nδ < δ ?

Note that for some choice of n, the iterate will have to lie on the positive side of
0 in Nδ(0) (why?). Of course, this simplifies to nδ < α < (n + 1)δ, which is solved
by simply taking the integer part of the fraction α

δ
. Denote the greatest integer

function by ⌊⋅⌋, so that, for example, ⌊π⌋ = 3. Then, the iterate n we are looking for



94 4. RECURRENCE

is

n = ⌊α
δ
⌋ =

⎢⎢⎢⎢⎢⎢⎢⎣

1
3+ 1

5+ 1
c

1
16+ 3

c

⎥⎥⎥⎥⎥⎥⎥⎦

= ⌊5 + 1

c
⌋ = 5.

Hence we can say that R5
3α(α) = R15

α (α) = R16
α (0) is within δ of 0 (See figure at

right below). We could then use the actual distance between 0 and R16
α (0) as our

new δ, and look for iterates of R16
α to find our next closest approach. Continuing

this way, we create a subsequence of O0 which consists of exponentially increasing
powers of the original Rα and this subsequence converges to 0. This is the basic
approach to proving the second bullet point in the above proof idea.

On the real line, we see that our rotations by α is simply a translation by α.
Approaching and getting closer to 0, means that our orbit will at some point come
close to an integer value (ANY integer will do, as they all represent 0 in the circle!).
See the figure here.

There is really a better way to understand this notion of visiting neighborhoods
of points in S1 under irrational rotations. This other way is by understanding the
frequency with which an orbit visits a small open set under a rotation. This is called
the dynamical frequency, and is a measure of how often an orbit visits a small open
interval in S1 relative to how much time it is outside of the interval.

Fix ∆ ⊂ S1 an arc. Then for x ∈ S1 and n ∈ N, define

F∆(x,n) = #{k ∈ Z∣0 ≤ k < n,Rkα(x) ∈ ∆} .
Here, the number sign # denotes the cardinality of the set. For example, in the
above figure with our choice of α, and ∆ = Nδ(0), we have

F∆(0,18) = FNδ(0)(0,18) = #{0,16} = 2.

Note that for ∆ small, then for any x ∈ S1, F∆ will be small. And for ∆ large,
F∆ will be bigger, but always less than n. So we can say that 0 ≤ F∆(x,n) ≤ n, for
every x and ∆. And for any choice of x and ∆, as n grows, F∆ is monotonically
increasing.

However, it is also true that for α /∈ Q, lim
n→∞

F∆(x,n) = ∞. (Can you show this?)

Hence instead of studying the frequency with which the orbit of a point visits an
arc, we study the relative frequency of visits as n gets large, or the quantity

F∆(x,n)
n

.

Suppose on the orbit segment of a point x under the irrational rotation by α given

by {Riα(x)}
m

i=0
, we found that given the arc ∆, that Rk1

α (x),Rk2
α (x),Rk3

α (x) ⊂ ∆

and these were the only three. Then we know that the frequency F∆(x,m) = 3, and
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the relative frequency F∆(x,m)
m

= 3
m

. In our example from above in the figures, the

relative frequency of hits on the interval Nδ(0) on the orbit segment {Riα(x)}
18

i=0
is

FNδ(0)(0,18)
18

= 2
18

= 1
9
. The goal is to study the relative frequency of a rotation on

any arc of any length and be able to say something meaningful about how often,
on average, the entire orbit visits the arc.

Some notes:

● Define `(∆) = length of ∆ (under some metric).
● The relative frequency really does not depend on whether ∆ is open, closed

or neither (why not?). Is this true also for rational rotations?
● The convention is to take representatives for arcs to be of the “half-closed”

form [⋅, ⋅). Then it is easy to see whether unions of arcs are connected or
not.

● We study the overall relative frequency of entire orbits: This translates
to a study of

lim
n→∞

F∆(x,n)
n

.

However, It is yet not entirely clear that this limit actually exists. We
first address this point.

Definition 4.7. Given a sequence s = {an}n∈N, the extended number ` ∈ R∗ =
R ∪ {−∞,∞} is a limit point of s if there exists a subsequence {ank}k∈N of s where

lim
k→∞

ank = `.

It is a classical result in analysis that every bounded sequence in Rn has limit
points (this is the celebrated Bolzano-Weierstrauss Theorem.) Using this extended
notion of R, we can say that every sequence in R has limit points in R∗. Categorizing
the limit points of a sequence provides important information about the extent of
a sequence. One way to categorize them is to find their bounds:

Definition 4.8. For {an}n∈N, the limit inferior is

lim inf
n→∞

an = limn→∞an = lim
n→∞

( inf
m≥n

xm) ,

where inf
m≥n

am is the infimum of the sequence {am}∞m=n.

Really, it is the largest number smaller or equal to all of the remaining elements
of the sequence. It is the largest number smaller than all but a finite number of the
elements of the sequence. One can define the limit superior similarly as the smallest
of the numbers larger than all but a finite number of elements of the sequence. We
use the notation lim sup

n→∞
or limn→∞ for the limit superior.

It should be intuitively obvious that

(1) the limits inferior and superior always exist in R∗.
(2) For any sequence s, lim inf s ≤ lim sup s.
(3) For any sequence s, lim inf s = lim sup s iff lim s exists.

In essence, if lim inf s = a and lim sup s = b, then the interval [a, b] will contain all
possible limit points of s (although in general not every point in [a, b] may be a
limit point of the sequence s.)

Consider the function f ∶ N → R defined by f(n) = (1 + 1
n
) sinn. A priori,

we do not know whether limn→∞ f(n) exists or not (Really, though, think of the
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continuous version of this function in calculus. There isn’t a horizontal asymptote
for f). So we first define the limit inferior (respectively superior) for f . This type
of limit either always exists or is −∞ (resp. ∞). It is the largest (resp. smallest)
number where no more than a finite number of terms in the sequence are smaller
(resp. larger) than it on the entire sequence. maybe separate this out into an
actual definition? Think of the envelope of a sequence being defined to allow some
terms to be outside the envelope, but only a finite number of them. In the case of
f(n) = sinn, the lim infn→∞ f(n) = −1. This makes sense, since if we try to “cut” the
function at anything above −1, that small interval of values (think [−1,−1+ ε)) will
be visited an infinite number of times eventually by f . Also, lim supn→∞ f(n) = 1.
It should be obvious that while these quantities may not be easy to calculate, not
only should they exist (for the minute, think of an infinite limit as existing in the
sense that the sequence is going somewhere), but it must be the case that for any
sequence {xn}n∈N,

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

And should they be equal, then limn→∞ xn in fact exists and is equal to the two
limit bounds.

In our case, let A be a disjoint union of arcs. Then define

fx(A) = lim sup
n→∞

FA(x,n)
n

, f
x
(A) = lim inf

n→∞

FA(x,n)
n

.

It turns out that these two quantities not only exist. They also are equal:

Proposition 4.9. For any arc ∆ ⊂ S1, and every x ∈ S1, and any irrational
rotation Rα, α /∈ Q on S1, we have

f(∆) ∶= lim
n→∞

F∆(x,n)
n

= `(∆).

idea. The proof relies on finding bounds for the quantities fx(∆) and f
x
(∆),

and showing that it is always the case that fx(∆) ≤ `(∆) and f
x
(∆) ≥ `(∆). This

can only be the case if the limits superior and inferior are in fact equal, and equal
to `(∆). �

Complete this proof.
Notes: Let Rα ∶ S1 → S1 be an irrational rotation. Then for x ∈ S1,

● the orbit Ox, as a sequence {Rnα(x)}n∈N, is called a uniform distribution
or an equidistribution on S1.

● the orbit Ox in a sense “fills” every arc in S1.

Hence, we say that any orbit of an irrational rotation of S1 is uniformly dis-
tributed on S1. This is our notion of a set being dense in another set, and for these
orbits, one can actually “see” the notion of recurrence. To further understand this
new type of dynamical behavior, we do an application. But first, let’s continue
with a little more nomenclature.

Definition 4.10. A set Y ⊂X is invariant under a map f ∶X →X, if

f ∣
Y
∶ Y → Y.

Definition 4.11. A continuous map f ∶X →X is called topologically transitive
if ∃x ∈ X such that Ox is dense in X. A non-invertible map is called topologically
transitive if ∃x ∈X such that O+

x is dense in X.
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Definition 4.12. A continuous map f ∶ X → X is minimal if ∀x ∈ X, Ox is
dense in X (the forward orbit is dense for a noninvertible map).

Definition 4.13. A closed, invariant set is minimal is there does not exist a
proper, closed invariant subset.

More notes:

● Like in the case of open and closed domains in vector calculus, a set is
closed if it contains all of its limit points. And for any set X, the closure
of X, denoted X is defined to be the closed set obtained by adding to X
all of its limit points (think of adding the sphere which is the boundary
of an open ball in R3). In the case of a minimal map f ∶ X → X, for any

x ∈X, we have Ox =X.
● Same is true for a topologically transitive map f , if one takes any point

on the dense orbit.
● Irrational rotations of the circle are minimal!.

4.1.2. Application: Periodic Function Reconstruction via Sampling.
Consider the two functions in the picture.

● Each is periodic and of the same period as the other.
● Each can be viewed as a real-valued smooth function on S1. And each

takes values in the interval I = [−1,1].
● Question: Are the values of these two functions equally distributed equally

(or even evenly) on I?
● Question: If we knew the period and range of some unknown function,

and needed to sample the function (create a sequence of function values)
to see which of the above two function was the one we are seeking, how
can we design our sampling to ensure we can differentiate between these
two?

Dynamics attempts to answer this question. Let {xn} be a sequence (think of this
sequence as a sampling of the function), and a < b two real numbers. Define

Fa,b(n) = #{k ∈ Z∣1 ≤ k ≤ n, a < xk ≤ b}

as the number of times the sequence up to element n visits the interval (a, b) ⊂ R.
Really, this is the same definition of F as before on the arc ∆ ⊂ S1. The only
change in this case is that we are defining F in this context as an interval in R.
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Then define the relative frequency in the same way as before. In the figure, the
relative frequency of {xn} on the interval (a, b] shown is

Fa,b(n)
n

∣
n=6

= 2

6
= 1

3
.

We say that {xn} has an asymptotic distribution if ∀a, b, where −∞ ≤ a < b ≤ ∞,
the quantity

lim
n→∞

Fa,b(n)
n

exists. In a sense, we are defining the percentage of the time that a sequence visits
a particular interval.

In the case where the sequence has an asymptotic distribution, the function

Φ{xn}(t) = lim
n→∞

F−∞,t(n)
n

is called the distribution function of the sequence {xn}. Here Φ is monotonic, and
measures how often the values of a sequence visit regions of the real line as one
varies the height of an interval (−∞, t].

Definition 4.14. A real-valued function ϕ on a closed, bounded interval is
called piecewise monotonic if the domain can be partitioned into finite many subin-
tervals on which ϕ is monotonic. A real-valued function on R is piecewise monotonic
if it is piecewise monotonic on every closed, bounded subinterval of R.

Remark 4.15. Monotonic means strictly monotonic here. Really, this means
that there are no flat (purely horizontal on an open interval) regions of the graph
of ϕ. Think of functions like f(x) = sinx, and polynomials of degree larger than 1,
which are piecewise monotonic, and functions like

g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(x + 2)2 −4 ≤ x < −2
0 −2 ≤ x ≤ 0
x2 0 < x ≤ 2

,

which is not piecewise monotonic (See the graph of g(x) below).

When ϕ is piecewise monotonic, the pre-image of any interval I is a finite union
of intervals in the domain (see the figure).

Definition 4.16. The ϕ-length of an interval I is

`ϕ(I) ∶= ` (ϕ−1(I)) .

● This is the total length of all pieces of the domain that map onto I. In
the figure, `ϕ(I) = `(A) + `(B).

● For piecewise monotonic functions ϕ, the ϕ-length is a continuous function
of the end points of I (vary one end point of I continuously, and the ϕ-
length of I also varies continuously. This doesn’t work with flat regions
since the ϕ-length ellϕ would then jump as one hits the value of the flat
region.
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Indeed, let’s look at the g(x) in the
figure more closely. Here, one can cal-
culate the ϕ-length. Indeed, choose the
interval I = [−4, t]. Here, t is the func-
tion value, and there is only a single
interval mapped onto i for any value of
t.

For t < 0, this interval is given in
the figure as the interval of the domain
g−1 (I) = [−4, r], where g(r) = t. Solv-
ing the equation g(r) = t for r yields

−(r + 2)2 = t ⇐⇒ r = −
√
−t − 2

where we chose the negative branch of the square root function in the middle step
to account for the domain restrictions. Here, the g-length of I,

`g(I) = ` (g−1 ([−4, t]))
= −2 −

√
−t − (−4) = 2 −

√
−t.

Now for t > 0, the same calcula-
tion yields `g(I) = 4+

√
t for I = [−4, t].

Putting these two pieces of the g-length
function together yields the graph of

`g(I) = { 2 −
√
−t −4 ≤ t < 0

4 +
√
t 0 < t ≤ 4

which has a jump discontinuity at t = 0.
In fact, the only way to change g(x)
to make the g-length function continu-
ous is to remove the middle piece of the
g(x) function and translate one or the
other pieces right or left to again make g(x) continuous. But that would have the
effect of moving the two pieces of the graph of `g(I) together. The jump disconti-
nuity becomes a hole in the graph, easily filled. But in this case, the changed g(x)
has been made piecewise monotone!

One can show that for a piecewise monotonic function ϕ, a distribution function
for ϕ is

Ψ ∶ R→ R, Ψϕ(t) = `ϕ ((−∞, t)) .
We can use this for:

Theorem 4.17. Let ϕ be a T -periodic function of R such that ϕT = ϕ∣[0,T ] is

piecewise monotone. If α ∉ Q and t0 ∈ R, then the sequence xn = ϕ(t0 + nαT ) has
an asymptotic distribution with distribution function

Φ{xn}(t) =
1

T
Ψϕ(t) =

` (ϕ−1 ((−∞, t)))
T

.

We won’t prove this or study it in any more detail. But there is an interesting
conclusion to draw from this. In the theorem, the sequence of samples of the T -
periodic function ϕ has the same distribution function as the actual function ϕ,
(defined over the period, that is) precisely when the sampling is taken at a rate
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which is an irrational multiple of the period T . In this way, the sequence, over the
long term, will fill out the values of ϕ over the period in a dense way. In a way,
one can recover the function ϕ from a sequence of regular samples of it only if the
sampling is done in a way which ultimately allows for all regions of the period to
be visited evenly. This is a very interesting result.

Here, do the example f(x) = 2 + cos(2n).

Exercise 120. Calculate the distribution function for the sequence cosn.

4.2. Linear Flows on the Torus

Here is another type of dynamical system where circle rotations and their im-
plications play a vital role. This one involves generalizing circle maps via a corre-
sponding circle flow into more than one dimension.

To start, recall what a flow is: Let ẋ = f(x), x(0) = x0 ∈ Rn be an IVP, where
the vector field f(x) is C1. This IVP defines a flow on Rn. For I ⊂ R an interval
containing 0, define a continuous map ϕ ∶ I ×Rn → Rn that satisfies the following:

● ∀T ∈ I, ϕt = ϕ (t, ⋅) ∶ Rn → Rn is a homeomorphism (for a given choice of
t, this is is simply the time-t map of the IVP).

● ∀s, t ∈ I, where s + t ∈ I, one has

ϕs ○ ϕt(x) = ϕs+t(x).

Now suppose that S1 = {e2πix ∈ C}, and dx
dt

= α, x(0) = x0 is an IVP defined

on S1 Be very careful here. Better to define S1 in a different way to avoid the
constants. This is solved by x(t) = αt + x0, which can also be written in flow form
ϕtα(x) = αt + x. Notice in this last expression, we have included the subscript α to
denote the dependence of the flow on the value of the parameter α. here the time-1
map is just

ϕ1
α(x) = α + x = Rα(x), x ∈ S1.

The time-1 map is just a rotation map of the circle by α. Keep in mind, however,
that the IVP will share the same time-1 map as the new IVP given by dx

dt
= α + n,

x(0) = x0 for n any positive integer. However, the flows will all be very different!
(do you see this?) Linear flows on S1 are not very interesting (are you starting to
get used to this term in mathematics yet?). They differ only by speed (and possibly
direction), and ultimately, all look like continuous rotations of the circle, whether
α is rational or not. However, we can generalize this flow to a situation which does
produce somewhat interesting dynamics.

Consider now a flow given by the pair of uncoupled circle ODEs:

dx1

dt
= ω1,

dx2

dt
= ω2.

Figure 3. A pair of
translation flows on R.

This system, which can be written
as the uncoupled vector ODE ẋ = ω,

or [ ẋ1

ẋ2
] = [ ω1

ω2
], can be viewed

as defining a flow on the two-torus
T = S1 × S1, and has the solution x =

[ x1 + ω1t
x2 + ω2t

].
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In flow notation, we can write ei-
ther

T tω(x1, x2) = (x1 + ω1t, x2 + ω2t) , or ϕtω(x) = x +ωt.

Figure
4. A trans-
lational flow
in the plane.

Graphically, solutions are simply translations
along R (Figure 3) or as straight line motion in R2

(Figure 4). Note that in this last interpretation, the
slope of the solution line is γ = ω2

ω1
.

However, each of these uncoupled ODEs also
can be considered as a flow on S1, and hence the
system can be considered a flow on S1 × S1 = T.
Suppose, for example, that 1 < ω1 < 2, while 0 <
ω2 < 1. The flow from time t = 0 to time t = 1 would
take the origin on one circle to the point 1 − ω1,
and the flow line would start at x1 = 0 and travel
once around the circle before stopping to ω1. The
flow on the other circle would take x2 = 0 partway
around the circle to ω2. Viewed via the two periodic
coordinates of T, we have the flow line in Figure 5

Figure 5. The flow line
of the origin in T.

Another way to see this is to go
back to the plane and consider the
equivalence relation given by the expo-
nential map on each coordinate. The
set of equivalence classes are given by
the unit square in the plane, under the
idea that the left side of the square (the
side on the x1 = 0 line) and the right
side (the x1 = 1 side) are considered
the same points (this is the 0 = 1 idea
of the circle identification). Similarly,
the top and bottom of the square are
to be identified. Then the flow line at
the origin under the ODE system is a

straight line of slope γ emanating from the origin and meeting the right edge of
the unit square at the point (1, γ). But by the identification, we can restart the
graph of the line at the same height on the left side of the square (at the point
(0, γ). Continuing to do this, we will eventually reach the top of the square. But
by the identification again, we will drop to the bottom point and continue the line
as before. See Figure 6 In essence, we are graphing the flow line as it would appear
on the unit square. When we pull this square out of the plane and bend it to create
our torus T, the flow line will come with it. Suppose γ /∈ Q. What can we say about
the positive flow line?

Proposition 4.18. if γ = ω2

ω1
is irrational, then the flow is minimal. If γ ∈ Q,

then every orbit is closed.

Proof. Choose a point x = (x1, x2) and let Sx be a Poincare section (a first-
return map for the flow.) Then, along Sx, the Poincare map is precisely Rγ (see
the left side of Figure 7). Since γ /∈ Q, Ox ∩ Sx is dense in Sx.
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Figure 6. Wrapping the flow onto T, the unit square with oppo-
site sides identified.

So let y be some arbitrary point in T2. We claim that arbitrarily close to y is
a point in Ox. Indeed, choose ε > 0 and construct an open ε-neighborhood of y in
T2, Nε(y). Then ∃z ∈ Sx and a t > 0, such that y = ωt + z But then ∃u ∈ Ox ∩ Sx,
where d(u,z) < ε. And then v = ωt + u ∈ Nε(y) and v ∈ Ox. See the right side of
Figure 7

Remark 4.19. For a Poincare first return map, if every orbit intersects the
Poincare section, we call the section a global section. Otherwise, it is a local section.

Figure 7. The orbit of x is dense in T2.

Now let γ = ω2

ω1
∈ Q. Then Rγ is a rational rotation on Sx. Then ∃ t0 > 0

such that x = ωt0 + x mod 1. Thus ωt0 = 0 mod 1 and Ox is closed. But then
for any other point y ∈ T2, we have y − x = z mod 1. Thus x = y − z mod 1 and
y − z = ωt0 + y − z so that y = ωt0 + y mod 1. Hence Oy is closed. �

Exercise 121. Draw enough of the flow lines passing through the origin to
indicate general behavior for the following values of γ:

(a) γ = 1, (b) γ = 2, (c) γ = 1

2
, (d) γ = 1 +

√
5

2
, (e) γ = 1 −

√
5

2
.

Exercise 122. Show that a linear map on the real line f(x) = kx corresponds
to a continuous map on S1 iff k is an integer. Graph the circle map on the unit
interval (with the endpoints identified) that corresponds to f(x) = 3x. Identify all
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fixed points. Can you find a period-3 orbit? Hint: Remember that two points in
the real line correspond to the same point on the circle is their distance apart is an
integer. This is the parameterization that we will always refer to by default.

Exercise 123. Let h ∶ R2 → R2 be a linear map so that h(x) = Ax, where

A = [ a b
c d

] and a, b, c, d ∈ Z. Do the following:

(a) Show h induces a map on the standard two torus T = S1 × S1. Hint: Two
vectors in the plane are in the same equivalence class on the torus (correspond
to the same point on T if they differ by a vector with integer entries.)

(b) Describe, as best as you can, the dynamics of the linear maps on T correspond-
ing to

i. A = [ 0 1
−1 0

] , ii. A = [ 1 1
0 1

] , iii. A = [ 2 1
1 1

] .

4.2.1. Application: Lissajous Figures. We can look at toral flows in an-
other way: Via an embedding of a torus into R4 with simultaneous rotations in the
two orthogonal coordinate planes. To see this, think of S1 ∈ R2 as a circle of radius
r centered at the origin. Then we can represent T as the set

T = { (x1, x2, x3, x4) ∈ R4∣x2
1 + x2

2 = r2
1, x

2
3 + x2

4 = r2
2} .

Now recall a continuous rotation in R2 is given by the linear ODE system ẋ = Bαx,

where B is the matrix [ 0 α
−α 0

] whose eigenvalues ±αi are purely imaginary. Do

this for each pair of coordinates (each of two copies of R2) to get the partially
uncoupled system of ODEs on R4,

ẋ = Ax,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 α1 0 0
−α1 0 0 0

0 0 0 α2

0 0 −α2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

We will eventually see that this is the model for the spherical pendulum.For now,
Figure 8 shows two planes, which under uncoupled rotations would leave concentric
circles invariant. Joining these two planes only at the origin comprises R4 (hard to
visualize, no?) The 2-torus T2 is a subspace of R2 invariant under this flow.

Figure 8. The x1x2 and x3x4-planes as subspaces of R4,
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Some notes:

● The two circles x2
1 +x2

2 = r2
1 and x2

3 +x2
4 = r2

2 are invariant under this flow.
● We can define angular coordinates on T via the equations

x1 = r1 cos 2πϕ1 x2 = r1 sin 2πϕ1

x3 = r2 cos 2πϕ2 x4 = r2 sin 2πϕ2.

Then, restricted to these angular coordinates and with ωi = αi
2π

, i = 1,2,
we recover

ϕ̇1 = −ω1, ϕ̇2 = −ω2.

Motion is independent along each circle, and the solutions are ϕi(t) =
ωi(t − t0).

● If α2

α1
= ω2

ω1
/∈ Q, then the flow is minimal.

Exercise 124. Do the change of coordinates explicitly to show that these two
interpretations of linear toral flows are the same.

Now, for a choice of ω and r1 = r2 = 1, project a solution onto either the
(x1, x3) or the (x2, x4)-planes. The resulting figure is a plot of a parameterized
curve whose two coordinate functions are cosine (resp. sine) functions of periods
which are rationally dependent iff ω is rational. In this case, the figure is closed, and
is called a Lissajous figure. See the figure below for the case of two sine functions
(projection onto the (x2, x4)-plane, in this case), where ω1 = 2 and ω2 = 3.

Q. What would the figure look like if ω1 and ω2 were not rational multiples
of each other?

Exercise 125. Draw the Lissajous figure corresponding to the x2x4-planar
projection of the toral flow when ω1 = 2 and ω2 = 5. For these same values, draw
the orbit also on the torus using the unit square in R2 representation (with sides
identified appropriately), and as well on the “surface of a doughnut” representation
in R3.

A nice physical interpretation of this curve is as the trajectory of a pair of
uncoupled harmonic oscillators, given by

ẍ1 = −ω1x1

ẍ2 = −ω2x2.

Toral flows also show up as a means to study a completely different class of
dynamical system; a billiard. We will eventually focus on some more general fea-
tures of this class of dynamical systems. For now, we will introduce a particularly
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interesting example, where a linear flow on a torus allows us to answer a rather
deep question.

4.2.2. Application: A polygonal Billiard. Consider the unit interval I =
[0,1] with two point masses x1 and x2, with respective masses m1 and m2 respec-
tively, free to move along I but confined to stay on I. Without outside influence,
these point masses will move at a constant, initial velocity. Eventually, they will
collide with each other and with the walls (see left side of Figure 9). Assume also
that theses collisions are elastic, with no energy absorption or loss due to friction.
Here, elastic means that, upon a wall collision, a point mass’ velocity will only
switch sign. And upon a point mass collision, the two point masses will exchange
velocities. For now, assume that m1 =m2 = 1.

Figure 9. The state space (right) of two point masses in the unit
interval (left).

The state space in R2 is

T = { (x1, x2) ∈ R2∣0 ≤ x1 ≤ x2 ≤ 1} .

Here, T is the region in the unit square above the diagonal line which is the graph
of the identity map on I (right side of Figure 9). The edges of the region T are
included; since the point masses have no size, they can occupy the same position
at the point of contact. An interesting question to ask yourself is: How does the
state space change if the point masses had size to them?

Now, given an initial set of data, with initial positions and velocities v1 and v2,
respectively, what is the evolution of the system? The answer lies in the study of
these types of dynamical systems called billiards. Evolution will look like movement
in T . A point in T comprises the simultaneous positions of the two particles, and
movement in T will consist of a curve parameterized by time t. The idea is that
this curve will be a line since the two velocities are constants. The slope of this line
(in Figure 9, line a is the trajectory before any collisions have happened), will be
v2

v1
. (why?) Once a collisions happens, though, this changes. There are two types

of collisions: Assuming that v2

v1
is the ratio of the velocities of the two point masses

before a collision, we have
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● When a point mass hits a wall, it “bounces off”, traveling back into I with
equal velocity and of opposite sign. Thus the new velocity is −v2

v1
(This is

the slope of line b in Figure 9 above).
● When the two point masses collide, they exchange their velocities (really,

think of billiard balls here). Thus the new velocity is v1

v2
. Caution: This

reciprocal velocity is NOT the slope of a perpendicular line, which would
be the negative reciprocal.

Envision these collisions in the diagram and the resulting trajectory curves before
and after each type of collision, as in the figure. What you see are perfect rebounds
off of each of the three walls, where the angle of reflection equals the angle of
incidence. An ideal billiard table, although one with no pockets. Which leads to
the obvious question: What happens if a trajectory heads straight into a corner?
For now, we will accept the stipulation that

● When the two point masses collide with a wall simultaneously, either at
separate ends of I or at the same end, both velocities switch sign. While
this will not change the slope of the trajectory, it will change the direction
of travel along that piece of trajectory line.

Some questions to ask:

Q. Can there exist closed trajectories?
Q. Can there exist a dense orbit?
Q. The orbits of points in T will very much intersect each other and many

trajectories will intersect themselves also. The phase space will get quite
messy. Is there a way to better “see” the orbits of points more clearly?

The answer to the last question is yes, although this table is fairly special.
Here, one can “unfold” the table:

● Think of the walls of T as mirrors. When a trajectory hits a wall, it
rebounds off in a different direction. However, its reflection in the mirror
simply continues its straight line motion. Think of a reflected region T
across this wall. The trajectory looks to simply pass through the wall and
continue on, as in Figure 10 below.

● Envision each collision that follows also via its reflection. Motion continues
in a straight line fashion through each mirrored wall. By continuing this
procedure, the motion will look linear for all forward time, no?

● This idea works because this particular triangle, under reflections, will
eventually cover the plane in a way that only its edges overlap and all
points in R2 are covered by at least one triangle. This is called a (regular)
tessellation of the plane by T , and works only because T has some very
special properties. See below.

● The unfolded trajectory is called a linear flow on the billiard table R2.

Figure
10. Starting to
unfold the triangu-
lar billiard table.

So what does a billiard flow in R2 look
like? Obviously, it is just straight line mo-
tion at a slope v2

v1
forever since there are

no collisions. The better question to ask is:
What does this tell us about the original
flow on the triangle T?

By continually unfolding (reflecting)
the table T , on starts to notice that there
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are only 8 different configurations: the four
orientations of T given by rotations by mul-
tiples of π

2
radians, and the reflection of

each. If you collect up a representative
of each of these configurations into a con-
nected region, you wind up with enough in-
formation to characterize the entire flow in
R2: Each time your R2 linear flow re-enters
a region of a particular configuration of T , you can simply note the trajectory in
your representative of that region. This region of representative configurations is
called a fundamental domain for the flow. One such fundamental domain of this
flow is the square of side length 2 in Figure 11. Noting the configurations, as the
trajectory leaves the square, it enters a configuration exactly like that at the other
side of the square. One can see the trajectory then re-enter the square from the
other side. Similarly, when one leaves the square at the top, it enters a configura-
tion represented at the bottom of the square. Thus one can continue the trajectory
as if it had re-entered the square at the bottom.

Figure 11. A fundemental
domain in the fully unfolded
table.

Note: There was a famous
arcade video game called Aster-
oids, an Atari, Inc., game released
in 1979, where a space ship was
planted in the middle of a square
screen. It could turn but not
move. Various boulders (asteroids)
would float in and out of the screen.
Should an asteroid hit the ship, the
game is over. The ship can fire
a weapon at an asteroid, and if
hit, would break into two smaller
ones, which would go off in differ-
ent directions. The asteroids (or
pieces of asteroids) always traveled
in a straight line. And as an as-
teroid left the screen, it would al-
ways reappear on the opposite side
and travel in the same direction.
Really, the asteroids were only ex-

hibiting a linear toral flow. Who would have though that in playing this game, one
was actually playing in a universe which was not the plane at all but rather the
torus T? See Figure 12.

Figure
12. Space
in the As-
teroids
game was
just a two
torus.

Hence linear flows on R2 again look like toral
flows on this fundamental domain, which comprises
the space of configurations of T as one uses T to
tile R2. So what do linear toral flows say about the
trajectories on T?

Proposition 4.20. If the ratio of initial veloc-
ities v2

v1
∈ Q, then the orbit is closed (on T and thus

also on T ). If v2

v1
/∈ Q, then the orbit is dense in T .
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Note: Now, it is easier to see what a collision
in a corner will look like. Like I said, this table T
is quite special in many ways. These ways do not
generalize well. However, with T we can say much
more:

Proposition 4.21. For any starting set of data
(point mass positions and velocities), the trajectory
will assume at most 8 different velocity ratios.

Count them: There are two possible ratio magni-
tudes, each with two signs. That makes 4. But
travel along the lines of each of these slopes can be
in each of the two directions due to the reflected
configurations in the fundamental domain.

How can one generalize these results to other tables:

● Unequal masses.
– An elastic collision between unequal masses will not result in what

would look like a reflection off of the diagonal wall in T . One could
certainly accurately chart the collision as a change in direction off of
the wall. However, when unfolding the table, the resulting flow in
R2 will not be linear (each reflected trajectory through the diagonal
wall will be a change in direction in the planar flow. You will see a
piecewise linear flow in R2 and hence also on the fundamental domain
T. While this is workable, it is not such as easy leap to a conclusion.

– One can also actually change the table. Use momenta to define the
collision between the point masses, and alter the diagonal wall to be
a perfect reflective wall. The resulting will not be linear. The new
table will not tile the plane anymore, but in many cases the unfolded
table will cover the plane with many holes (the reflecting curve will
be concave, so will fit into the original T . The unfolded flow will
look liner until it hits a hole, where it will reflect through he hole
perpendicularly through its center axis and appear on the other side
to continue at the same slope. I haven’t worked out the details here
(and a hat tip to Jonathan Ling who started to work on this idea),
but there should be results here that are similar to the original table
T , as long as one is careful with the analysis.This needs to be worked
out in detail.

● Other tessellations of R2. It is easy to see that some shapes tessel-
late the plane while others do not. For regular polygons, only triangles,
squares or hexagons tessellate the plane. Rectangles, and a few other non-
regular triangles also work fine. Work out some good examples here. But
examples are fairly rare. And in each case, one would need to find a fun-
damental domain and then interpret the resulting flow on that domain in
terms of the original flow as well as that on the place. All good stuff, and
are the initial ways one may study polygonal billiards. However, later, we
will generalize our analysis of billiards in a completely different direction.

4.2.3. Application: The Kepler Problem. Scholarpedia[Celestial Mechan-
ics] One more application of linear toral flows: The Kepler Problem: Consider two
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point masses moving in an inverse square gravitational field. Assume that they do
not interact or influence each other. Then their equations of motion are second
order homogeneous (and separable). Total energy is conserved (this is actually the
solution function when using the method one is taught in ODEs to solve separable
equations) as is total angular momentum. Hence flow is planar, and confined to an
ellipse (hence each point mass has periodic flow of some period independent of the
other). For two particles, the flow would be confined to a torus again (two separate
periodic flows, although in this case, the flow would look a bit more like that of
the flow in R4 above. The flow would be linear in a space where momenta is used
instead of velocity. Then, one can easily say whether the two point mass system
will ever reach its starting positions simultaneously again based on whether the
ratio of the momenta is rational or not. Pretty easy result for such a complicated
system. Two other thoughts:

Q. Can you now see the similarity between the Kepler Problem and the HW
assignment I gave you concerning the rotation of the earth and the lunar
rotation?

Q. What would the Kepler Problem look like for three point masses in the
same field? Where would the resulting flow reside? Can we make a
concluding statement about the flow in such an easy way as for only two
point masses?

We will return to the last questions in short order. But first, let’s move from
continuous dynamical systems on a torus to discrete dynamical systems. Some
surprising relationships occur between flows on a torus and the corresponding time-t
maps.

4.3. Toral translations

Like Euclidean space Rn, one can generalize the construction of the 2-torus
T = S1 × S1 by considering a system of equations involving more than two angular
coordinates; The n-dimensional torus, or the n-torus, denoted Tn is simply the
n-fold product of n circles

Tn =

n times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
S1 ×⋯ × S1 .

Then

Tn = Rn/Zn = R/Z ×⋯ ×R/Z.
Recall the Kepler Problem. With n point masses, the resulting flow may be seen
as linear motion on Tn.

Another way to view the n-torus is via an identification within Rn. Remember
the unit square with it opposite sides identified plays a good model for the 2-torus,
T = T2. The generalization works well here for all the natural numbers. Take the
unit cube in R3. Picture here? Identify each of the opposite pairs of sides, squares
in this case (think of a die, and identify two sides if their numbers add up to 7).
The resulting model is precisely the T3. This works well if one wants to watch a
linear flow on T3. Simply allow the flow to progress in the unit cube, and whenever
one hits a wall, simply vanish and reappear on the opposite wall, entering back
into the cube. See Figure 13. Note that here the origin is at the lower left corner,
intersections with O(0,0,0) with the top and bottom are in red, while intersections
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at the back and front walls are in blue. This represents a periodic orbit. Can you
see this?

Figure
13. A pe-
riodic orbit
of the trans-
lation in
T3.

Note this also works well for n = 1: Take the
unit interval and identify its two sides (the numbers
x = 0 and x = 1). This is what I mean by the phrase
0 = 1 on S1, where the circle is the 1-torus.

Now, the vector exponential map (θ1, . . . , θn)
expz→

(e2πiθ1 , . . . , e2πiθn) maps Rn onto Tn. We
can define a (vector) rotation on Tn by the
vector α = (α1, . . . , αn), where Rα (x) =
(x1 + α1, . . . , xn + αn) = x + α. Normally, this is
called a translation (by α) on the torus. In Fig-
ure 13, α = (1,2,3), and only the orbit of the origin
is shown. Note that it should be obvious that if all
of the αi’s are rational, then the resulting map on
Tn will have closed orbits. Questions to ask are:
Are theses the only maps of this type that are lin-
ear? If one or more αi’s are not rational, can there
still be periodic orbits? And if there cannot, are the
non-periodic orbits dense in the torus?

Consider the linear flow in Tn whose time-1 map
is Rα. This would be the flow whose ith-coordinate

solution i xi(t) = xi + αit. Again, with ALL of the αi’s rational, the flow would
have all closed orbits. Now allow one of the coordinate rotation numbers to be
irrational. We saw how it was the ratio of the two flow rates that determined
whether the flow had closed orbits on T2. Does this hold in higher dimensions? Do
the properties of the time-1 map still reflect accurately the properties of the flow?
Does the irrationality of some or all of the coordinate rotations imply minimality
of the map? of the flow? Really, all of these questions will rely on a good notion
of measuring the relative ratios of the individual pairs of map rotations and flow
rates. And how do we define these ratios in higher dimensions? By a notion of the
rational independence of sets of numbers:

Definition 4.22. A set of n real numbers {αi}ni=1 is said to be rationally
independent if, given k1, . . . , kn ∈ Z, the only solution to

k1α1 + . . . + knαn = 0

is for k1 = ⋯ = kn = 0.

Another way to say this is the following: For all nontrivial integer vectors
k = (k1, . . . , kn) ∈ Zn − {0},

n

∑
n=1

kiαi = k ⋅α /= 0.

We have the following:

Proposition 4.23. A toral translation on Tn, given by Rα is minimal iff the
numbers α1, . . ., αn, 1 are rationally independent.

Proposition 4.24. The flow on Tn whose time-1 map is the translation Rα
is minimal iff the numbers α1, . . . , αn are rationally independent.
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Do you see the difference? One way to view this is to restrict to the case of
a 2-torus. Here, the second proposition says that the flow will be minimal if, in
essence, k1α1 + k2α2 = 0 is only satisfied when k1 = k2 = 0. Really, if there were
another solution, then it would be the case that α2

α1
= k1

k2
∈ Q.

On the other hand, the first proposition indi-
cates that both α1 and α2 need to be rationally inde-
pendent and also both rationally independent from
1! That means that not only do the two α’s need
to be rationally independent from each other, but
neither α1 nor α2 can be rational (then it would be
a rational multiple of 1). Hence a flow can be mini-
mal on a torus, while the time-1 map isn’t. Why is
this so? Let’s study the situation via an example.

Example 4.25. On the two torus, let α1 = 1
4

and α2 = π
16

. The flow will be minimal here since
α2

α1
= π

4
/∈ Q (α1 and α2 are rationally independent).

However, the time-1 map of this flow is Rα⃗, and
since

k1 ⋅
1

4
+ k2 ⋅

π

16
+ k3 ⋅ 1 = 0 is solved by [ k1 k2 k3 ] = [ 4 0 −1 ] ,

the translation will not be minimal (the orbits are not dense in the torus). The fact
that α1 is already rational is the problem. The figure will tell the story. Essentially,
the orbit coordinates of the translation in the x1 direction will only take the values
0, 1

4
, 1

2
, 3

4
, while the x2-coordinates will “fill out” the vertical direction. The result is

that the orbit of the translation will only be dense on the vertical lines corresponding
to the x1-coordinates of the orbit. This sits in contrast to the flow, in which every
orbit will “fill” the torus.

Exercise 126. Given the flow in Example 4.25, show that on the global
Poincare section corresponding to the set S 1

2
= {( 1

2
, y) ∈ T2 ∣ y ∈ S1}, the first return

map is minimal.

Place some exercises here.

4.4. Invertible S1-maps.

Let’s return to maps on the circle, and try to gain more general information
than by using simply rigid rotations. Again, think of S1 as the identification space
S1 = R/Z, given by the level sets of the map

π ∶ R→ S1, π(x) = [x] .
One easy way to think about [x] is to simply take any real number and disregard
the integer part. Thus [2.13] = .13, and [e] = e − 2. We note here that π is an
example of a projection of R onto S1:

Definition 4.26. A map f ∶ X → Y is called a projection if ∀x ∈ X, f(x) =
f2(x). That is, if f equals its square (composition with itself.)

Note that a map or an operation that doesn’t change the effect on inputs
upon repeated application after the initial application is called idempotence. Think
absolute value, for another example.
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Proposition 4.27. For any continuous map f ∶ S1 → S1, there exist an asso-
ciated map F ∶ R→ R, called a lift of f to R, where

f ○ π = π ○ F, equivalently f ([x]) = [F (x)] .

Some Notes:

● One way to see this is via the commutative diagram

R FÐÐÐÐ→ R

π
×××Ö

×××Ö
π

S1 fÐÐÐÐ→ S1

.

● The lift F is unique up to an additive constant (sort of like how the anti-
derivative of a function is unique only up to an additive constant, right?)

● The quantity

deg(f) = F (x + 1) − F (x)
is well-defined for all x ∈ R and is called the degree of f .

● If f is a homeomorphism, then ∣deg(f)∣ = 1.
● The structure of F is quite special. It looks like the sum of a periodic

function with the line y = (deg(f))x. This is due to the structure of the
projection π.

So just how much information about f can we learn by the study of the lifts of
f? Certainly, maps on R are fairly easy to study (this is what the calculus is really
all about, right? Although, in mathematics calculus is just what we call analysis.)
And maps with the structure of the lifts F may be easier still. If we can use these
lifts to say fairly general things about how an f may behave, this would be quite
important. For example, this quantity deg(f) is defined solely by a choice of lift f .
We will see just what information deg(f) conveys. For a moment, let’s first take a
look at why some of the assertions we just made are true.

● Lifts always exist. Simply construct one using the definition. This will be
an exercise.

● F is unique up to a constant.

Proof. Suppose F is another lift. Then

[F (x)] = f ([x]) = [F (x)] , ∀x ∈ R.

This is just another way of saying that π○F = f○π = π○F , ∀x ∈ R. But then
F −F ia always an integer! (why?) But F −F is the difference between two
continuous functions, and hence is continuous. But a continuous function
on R that take values in the integers is necessarily constant. �

● deg(f) is well defined.

Proof. Here deg(f) = F (x+1)−F (x) is a continuous function on R
that takes values in the integers (it must, due to the projection π and the
commutativity of the diagram defining F ). Thus it also is a constant for
all x ∈ R. �

● If f is a homeomorphism, then ∣deg(f)∣ = 1.
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Proof. Suppose that ∣deg(f)∣ > 1. Then ∣F (x + 1) − F (x)∣ > 1. And
since F (x + 1) −F (x) is continuous, by the Intermediate Value Theorem,
∃y ∈ (x,x + 1) where ∣F (y) − F (x)∣ = 1. But then f ([y]) = f ([x]) for
some y /= x. Thus f cannot be one-to-one and hence cannot be a homeo-
morphism.

Now suppose that ∣deg(f)∣ = 0. Then F (x+ 1) = F (x), ∀x, and hence
F is not one-to-one on the interval (x,x + 1). But then neither is f , and
again, f cannot be a homeomorphism. �

● F (x) − xdeg(f) is periodic.

Proof. It is certainly continuous (why?) To see that it is periodic
(of period-1), simply evaluate this function at x + 1:

F (x + 1) − (x + 1)deg(f) = (F (x) + deg(f)) − (x + 1)deg(f)
= F (x) − xdeg(f).

�

Example 4.28. Let f(x) = x. Picture? This is the “identity” map on S1, since
all points are taken to themselves. A suitable lift for f is the map F (x) = x on R.
To see this, make sure the definition works. Question: Are there any other lifts for
f? What about the map F (x) = x + a for a a constant? Are there any restrictions
on the constant a? The answer is yes. For a to be an acceptable constant, we would
need the definition of a lift of be satisfied. Thus

[F (x)] = [x + a] = f ([x]) = [x].

So the condition that a must satisfy is [x + a] = [x] on S1. Hence, a ∈ Z.

Exercise 127. For a real number a /∈ Z, can F (x) = x + a serve as a lift of a
circle map? What sort of circle map?

Exercise 128. Find a suitable lift F ∶ R→ R for the rotation map Rα ∶ S1 → S1

where α = 2π and verify that is works. Graph both F and Rα. Keep in mind that
we are using S1 = R/Z as our model of the circle.

Example 4.29. Let f(x) = xn. Thinking of x as the complex number x = e2πiθ,
for θ ∈ R, then

f(x) = f (e2πiθ) = (e2πiθ)n = e2πi(nθ).

Hence a suitable lift is obviously F (x) = nx (I say obviously, since the variable in
the exponent is the lifted variable!) Question: This is a degree n map. For which
values of n does the map f have an inverse” And what does the map f actually do
for different values of n?

Example 4.30. Let f be a general degree-r map. Then F (1) − F (0) = r =
deg(f). Suppose that F (0) = 0. Then F (1) = r and if, for example, r > 1, it is now
easy to see that there will certainly be a y ∈ (0,1), where F (y) = 1. This was a fact
that we used in the proof above to show that f cannot be a homeomorphism Draw
a picture. In this case, where r > 1, at every point in y ∈ (0,1) where F (y) ∈ Z, we
will have π ○F (y) = [F (y)] = 0 on S1. This won’t happen when r = 1. When r = 0,
the map F will be periodic, which is definitely not one-to-one. Question: What
happens when r < 0? Draw some representative examples to see.
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Definition 4.31. Suppose that f ∶ S1 → S1 is invertible. Then

(1) if deg(f) = 1, f is orientation preserving.
(2) if deg(f) = −1, f is orientation reversing.

Recall from your study of vector calculus that orientation is a choice of direc-
tion in the parameterization of a space (really, it exists outside of any choice of
coordinates on a space, but once you put coordinates on a space, you have essen-
tially chosen an orientation for that space. This is true at least for those spaces
that actually are orientable, that is (Moebius Band?) On R, it is the choice of
direction for the symbol “>”. On a surface, it is a choice of side. In R3, one can use
the Right Hand Rule. Etcetera. On S1, orientation preserving really means that
after one applies the map, points to the right of a designated point remain on that
side. Orientation reversing will flip a very small neighborhood of a point.

Circle maps may or may not have periodic points. And given an arbitrary
homeomorphism, without regard to any other specific properties of the map, one
would expect that we can construct maps with lots of periodic points of any period.
However, it turns out that circle homeomorphisms are quite restricted. because they
must be one-to-one and onto, only certain things can happen. To explain, we will
need another property of circle homeomorphisms to help us.

Proposition 4.32. Let f ∶ S1 → S1 be an orientation preserving homeomor-
phism, with F ∶ R→ R a lift. Then the quantity

ρ(F ) ∶= lim
∣n∣→∞

Fn(x) − x
n

(1) exists ∀x ∈ R,
(2) is independent of the choice of x and is defined up to an additive integer,

and
(3) is rational iff f has a periodic point.

Given these qualities, the additional quantity ρ(f) = [ρ(F )] is well-defined and
is called the rotation number of f .

Some notes:

● This quantity and this proposition were proposed and proved by Henri
Poincare back in the 1880’s.

● ρ(f) is also sometimes called the map winding number, although it is
different from the winding number used in algebraic topology or complex
analysis. Be careful here.

● ρ (Rα) = [α].

Exercise 129. Use this definition to calculate ρ(Rα) for the circle
rotation Rα, α ∈ (0,1).

● ρ represents in a way the average rotation of points in a circle homeomor-
phism.

It turns out that the rotation number is a very telling property of a circle home-
omorphism. And like interval maps, there circle homeomorphisms can only do
certain things:

Proposition 4.33. If ρ(f) = 0, then f has a fixed point.
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Another way of saying that if there is no average rotation of the circle map,
then somewhere a point doesn’t move under f . This is like the Intermediate value
Theorem on a closed, bounded interval of R where a map is positive at one end
point and negative at the other.

Proof. We prove the contrapositive. Assume a circle homeomorphism f ∶
S1 → S1 has no fixed points. Then, given a lift F ∶ R → R, where F (0) ∈ [0,1), if
F (x)−x ∈ Z for any x ∈ R, then f must have a fixed point (do you see this?) Hence
∀x ∈ R, F (x) − x /∈ Z. But as a function on R, the function F (x) − x is continuous,
and hence by the Intermediate Function Theorem,

0 < F (x) − x < 1, ∀x ∈ R,
and on the interval [0,1], F (x) − x must achieve its maximum and minimum by
the Extreme Value Theorem. SO there must exist a constant m, where

0 <m ≤ F (x) − x ≤ 1 −m < 1.

But by above, F (x)−x is periodic, and hence this last inequality holds on all of R.
Choosing x = 0, we get that m ≤ F (0) ≤ 1 −m implies nm ≤ Fn(0) ≤ n(1 −m) by
additivity, so that

m ≤ F
n(0)
n

≤ 1 −m.
Since this hold for all n ∈ N, it holds in the limit. But this limit is the rotation
number ρ(f) and is independent of the choice of initial point. Hence rho(f) /= 0. �

One can generalize quite readily to q-periodic points by looking at the fixed
points of fq, so that we get the following:

Proposition 4.34. If f is an orientation-preserving homeomorphism of S1 then
ρ(f) is rational if and only if f has a periodic point.

Exercise 130. Prove this.

But it gets even more restrictive. If f has a q-periodic point, then for a lift F ,
we have F q(x) = x + p for some p ∈ Z. For example, let f = R 6

7
. Then a suitable

lift for f would necessarily satisfy F 7(x) = x + 6, ∀x∈ R. Notice that there would
be mo room for any other periodic points in this case. But this is true in general.

Proposition 4.35. Let f ∶ S1 → S1 be an orientation preserving homeomor-
phism. Then all periodic points must have the same period.

This last point is quite restrictive. Essentially, if an orientation preserving
homeomorphism has a fixed point, it cannot have periodic points of any other
period, say. Note that this is not true of a orientation reversing map. For example,
the map which flips the unit circle in R2 across the y-axis, will fix the two points
(0,1) and (0,−1), while every other point is of order two. Perhaps the best way to
look at this is the following. For a circle homeomorphism (orientation-preserving),
the lift is an increasing map. And increasing interval maps can have many fixed
points, but no n-periodic points for n > 1. And any point that is not fixed is forward
asymptotic to a fixed point and backward asymptotic to another one. Here, it
is quite typical that degree-1 circle homeomorphisms, when they have n-periodic
points, have two distinct n-orbits, with one attractive and one repulsive (backwards
attractive). We will be more precise about this later. But one of these periodic
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orbits becomes the ω-limit set for everything outside of the repulsive n-orbit, and
the α-limit set of anything not on the stable periodic orbit is the unstable one.

Example 4.36. Let f ∶ §1 → S1 be the orientation-preserving homeomorphism
given by the expression f(x) = x + 1

2
+ 1

4π
sin(4πx). It is not easy to verify that f

is indeed a homeomorphism analytically. But from the plot of f in Figure ?? on
the left, one can verify its properties readily. Notice that f has no fixed points, but
does have two easily to verify period-2 orbits (one can “see” them in the argument
to sine), namely at {0, 1

2
} and at { 1

4
, 3

4
}. And the stability of these period-2 orbits?

Take a look at the graph of f2 = f ○ f in Figure ?? on the right. The period-2
orbits appear as fixed point here, and their stability is readily readable here from
the derivative information. Just cobweb a bit to verify.

Figure 14. The circle homeomorphism f and its square f2 = f ○ f .

Exercise 131. Show that any lift of the rotation R 6
7

must satisfy F 7(x) = x+6,

∀x∈ R, and explicitly construct two such lifts.

Exercise 132. Find the rotation number for the following invertible circle
map:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2+1
3

0 ≤ x < 1
3

6x − 44
27

1
3
≤ x < 10

27

2x − 4
27

10
27

≤ x < 1
2

8
5
(x − 1

2
) + 23

27
1
2
≤ x < 21

27

1
6
(x − 21

27
) + 35

27
21
27

≤ x < 1

Perhaps we should find a way to end this nicely. This is enough for circle
homeomorphisms for now. And ends our work in Chapter 4. There is a great
section on frequency locking on page 141. Look it over at your leisure. We won’t
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work through it in the course, but it is very interesting. Dynamically, it represents
a situation where a linear flow on the torus (with its uncoupled ODEs) becomes
the limiting system to a system of coupled ODEs, representing a nonlinear flow.
Question: For this to be the case, must the resulting linear flow on the torus be a
rational flow?





CHAPTER 5

Conservative Systems

In Chapter 4, we first looked at what was considered “recurrent” behavior at
a point in a dynamical system, which roughly means that the orbit of a point
passes arbitrarily close to the point. This worked well in the classification of circle
rotations, since either the orbit of a point was closed (the orbit was periodic; the
rotation was rational) or the orbit was dense (for an irrational rotation). In either
case, every point was recurrent. The same was true for the linear toral flows and
their time-t maps.

Contrast this with the dynamical systems that we studied in Chapters 2 and
3. Here, with examples like contracting maps and interval maps with sinks and
sources, the only recurrent points were the fixed and periodic points, and there
were very few of those in each system. More generally, maps can exhibit much
more complicated behavior. To understand this behavior, we will have to broaden
our idea of how to study such systems. This chapter begins this study.

To start, let’s change our perspective. Given a dynamical system, let’s not
worry about how an individual orbit behaves so much as how whole families of
nearby orbits evolve. This would be more like following all of the orbits that start
in a small open subset of the state space over the evolution of the map. For a
contraction, this would be easy and not very insightful. (Why is that again?) But
for a general map, this idea can be quite interesting.

Somewhere here, place Poincare-Bendixson as a means to discuss recurrence in
the plane verses on a cylinder or torus.

5.1. Incompressibility

The notion of incompressibility in a dynamical system means that positive
volume domains in the state space do not change their volume as the orbits of
their points evolve. This notion is also called phase volume preservation. Suppose
we have a dynamical system where this property holds; as one evolves via a flow,
or iterates via a map, the volume of a small domain does not change. Then the
volume is said to be preserved by the flow (respectively, map), or the volume is
invariant under the flow (respectively, map). Obvious examples include linear flows
in Rn, rotation maps on S1 (remember that volume in a space like R or S1 is just
length, and in dimension 2 is just area), and linear toral flows. Examples which do
not preserve volume include contraction maps, and flows (defined by ODEs) that
include sinks and sources (saddles and centers, maybe, though).

In fact, if the map is an isometry, or the flow has all of its time-t map given
by isometries, then the volume will be preserved. This should be obvious, as if all
of the distances between the points of a small domain are preserved, the volume
cannot change. The converse is not true however. Lots of maps and flows preserve
volume but are not isometries.

119
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Example 5.1. The linear twist map on the cylinder

T ∶ S1 × [0,1] Ð→ S1 × [0,1], T (x, y) = (x + y, y)
is an area-preserving map which is not an isometry. See the figure below.

Exercise 133. Show that (1) T is not an isometry, but (2) T preserves area
on the cylinder.

Exercise 134. Show that the linear flow on the 2-torus is an isometry (Hint:
Build the proper metric on the torus).

Now, let’s consider a linear map on
Rn:

f ∶ Rn → Rn, f (x) = Ax,

where A is a n×n matrix. Choose an or-
thonormal basis for Rn. Then the stan-
dard cube C whose sides are the basis
vectors (this is the “unit cube” relative
to the basis) will be mapped by f to
a parallelepiped. What would be the
volume of this image? Well, here

(5.1.1) vol (f(C)) = ∣detA∣.
This is standard Linear Algebra, where according to f , each standard basis vector
ei is mapped to the ith column of A. Hence the image of the unit cube is the
parallelepiped with edges the columns of A. Hence the determinant of A (in absolute
value) is the volume of the image of the unit cube under f . Hence volume is
preserved by f if ∣detA)∣ = 1. What would be the conclusion one can draw from
this? Read f as the linear model for the infinitesimal version of any smooth map
on Rn. Then we have:

Proposition 5.2. let U ∈ Rn be an open domain. A differentiable map f ∶ U →
Rn preserves volume iff ∣det(Dfx)∣ = 1, ∀x ∈ U .

The Jacobian matrix of a function f ∶ U ⊂ Rm → Rn is the n ×m matrix of

partial derivatives of f , sometimes denoted ∂(f1,...,fn)
∂(x1,...,xm) , or simply Df . The Jacobian

is a matrix of functions whose ijth element is ∂fi
∂xj

. Evaluated at a point x ∈ U ,

Df(x) = Dfx is a matrix of real numbers called the derivative of f at x. When
n =m, the derivative matrix is square, and its determinant becomes an important
property. In the square matrix case, it is common to refer to the determinant of
this derivative matrix the Jacobian of f , Jac(f).

Definition 5.3. A map f ∶ U → Rn, where U ⊂ Rn is a domain, preserves
orientation if ∀x ∈ U , Jac(f) > 0.

“Nice” ODEs (where solutions exist and are unique everywhere, for example),
are always orientation preserving. Recall the relationship between the time-1 map
of any linear ODE system on R2 and its corresponding flow. The time-1 map is a
linear transformation on the plane, and its matrix always has eigenvalues which were
related to those of the original flow by the exponential map. Under the exponential
map, the time-1 map will always have a positive Jacobian (why?).
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More generally, let ẋ = f(x) be an ODE on Rn so that f is a C1-vector field
on Rn. Let ϕ ∶ Ω × I → Rn be its corresponding flow, where 0 ∈ I ⊂ R is open and
Ω ⊂ Rn is a domain (recall we often write ϕ(x, t) = ϕt(x) to accentuate the one-
parameter group of transformations of phase space as well as the exponent notation
of function iteration compatible with the additive group.) Here, for a fixed t ∈ Im
ϕt ∶ Ω → Rn is a diffeomorphism (a homeomorphism where both the map and its
inverse are differentiable) onto its image, and ϕ0(x) = ϕ(x,0) = x.

Denote by Jac(ϕt) the Jacobian matrix of the flow map ϕt. Here Jac(ϕt)
is just the derivative of the time-t map of the flow and Jac(ϕ0) = In. This way,
det (Jac(ϕt)) measures the relative volume of bounded domains at time t in Ω

relative to their original volumes at t = 0. Then d
dt
∣
t=0

det (Jac(ϕt)) measures the
instantaneous rate of change of volume along the flow. Recall that this is precisely
one of the geometric interpretations of the divergence of a vector field:

div(f) = d

dt
∣
t=0

det (Jac(ϕt)) ,

when ϕt is the flow corresponding to the vector field f .
Indeed, we know the following:

(1) Flows solve their corresponding ODE systems:

d

dt
ϕt = f(ϕt), and

d

dt
∣
t=0

ϕt = f(x).

(2) d
dt
∣
t=0
Jac(ϕt) = Jac ( d

dt
∣
t=0
ϕt), since time and all phase space coordinates

are independent.

Thus we have
d

dt
∣
t=0

Jac(ϕt) = Jac( d
dt

∣
t=0

ϕt) = Jac(f).

We now have a beautiful result from (multi-) linear algebra (actually matrix
calculus), whose proof we leave as an exercise, as it is purely constructive.

Proposition 5.4. Let A(t) be a C1 family of n × n-matrices (whose entries
are C1-functions of t) defined on some I ⊂ R containing 0, where A(0) = In. Then

d

dt
∣
t=0

detA(t) = trace( d
dt

∣
t=0

A(t)) .

Exercise 135. Prove this, noting the special form for the derivative of a de-
terminant of a matric of functions:

d

dt
detA(t) = ∑

i

Row′
i (A(t)) ,

where Row′
i (A(t)) is the matrix A(t) with the ith row’s entries replaced with their

corresponding derivatives.

Then since Jac(ϕt) is such a 1-parameter family of n × n-matrices, we have

d

dt
∣
t=0

det (Jac(ϕt)) = trace( d
dt

∣
t=0

Jac(ϕt)) = trace (Jac(f)) = div(f).

This leads immediately to the following conclusion:
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Proposition 5.5. If the divergence of the vector field f vanishes (that is, if
div(f) = 0), then f preserves volume.

Theorem 5.6. let X be a finite volume domain in Rn or Tn, and f ∶ X → X
be an invertible, volume preserving C1-map. Then ∀x ∈X and ∀ε > 0, ∃n ∈ N such
that

fn (Bε(x)) ∩Bε(x) /= ∅.
Proof. This can be easily seen as follows: Suppose ∃x ∈ X, and ∃ε > 0 such

that ∀n ∈ N
fn (Bε(x)) ∩Bε(x) = ∅.

Since f is volume preserving, we must have at the nth iterate:

∞ > vol(X) >
n

∑
i=1

vol (f i (Bε(x))) = n ⋅ vol (Bε(x)) .

But for all choice of ε > 0,

lim
n→∞

n ⋅ vol (Bε(x)) = (vol (Bε(x))) lim
n→∞

n = ∞

since vol (Bε(x)) > 0. This contradiction establishes the proof. �

This gives us an immediate consequence:

Corollary 5.7. For f ∶ X → X as above, ∀x ∈ X, there exists a sequence
{yk} Ð→ x and a sequence {ik} Ð→∞ where {f ik(yk)} Ð→ x.

See the figure to get an
idea of what is going on.
Given any small neighborhood
of Bε(x) ⊂ X, There will be
a iterate (here, the ik-th iter-
ate) of f in the forward orbit
of Bε(x) which will intersect
Bε(x). Choose any point yk in
the intersection. Now choose
a new ε > 0 where ε < d(x, yk),
and repeat the procedure. Play

this game for a decreasing sequence of ε’s going to 0. At each stage, you produce a
yk close to x that has a forward iterate that is even closer. In the limit, you show
that arbitrarily close to x is a recurrent point. As the choice of x does not matter,
you have that recurrent points are almost everywhere.

Exercise 136. Produce this sequence.

Recall Definition 4.1 on a point being recurrent. We can extend that notion
now to

Definition 5.8. For f ∶ X → X a continuous map of a metric space, a point
x ∈X is called

● positively recurrent with respect to f if ∃ a sequence {nk} Ð→∞ such that
{fnk(x)} Ð→ x,

● if f is invertible, negatively recurrent if ∃ a sequence {nk} Ð→ −∞ such
that {fnk(x)} Ð→ x,

● recurrent if it is both positively and negatively recurrent.
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Definition 5.9. For f ∶X →X a continuous map of a metric space, the set

ω(x) = ⋂
n∈N

{f i(x)∣ i ≥ n}

is the set of all accumulation points of the orbit of x. It is called the ω-limit set of
x ∈X with respect to f . For f an invertible map on X, the set

α(x) = ⋂
n∈N

{f−i(x)∣ i ≤ n}

is called the α-limit set of x with respect to f .

Note: x ∈ X is positively recurrent if x ∈ ω(x) (if x is in its own ω-limit set). In
fact, we can use this as a definition of the set of all recurrent points:

Definition 5.10. For f ∶ X → X a continuous map of a metric space, call
Rf(X) the set of all recurrent points of f on X, where

Rf(X) = {x ∈X ∣ x ∈ ω(x)} .

Definition 5.11. For f ∶ X → X a continuous map of a metric space, a point
x ∈ X is called wandering if there exists ε > 0 and ∃N ∈ N such that ∀n > N ,
fn (Bε(x)) ∩Bε(x) = ∅. Points that are not wandering are called non-wandering.

Exercise 137. Develop a precise definition for a non-wandering point.

One can collect up all of the wandering and non-wandering points of a map
f ∶ X → X, respectively, as Wf(X) and NWf(X), and note immediately that
Rf(X) ⊂ NWf(X) (recurrent points are non-wandering.) However, these sets are
not the same: Non-wandering is a property of a point that is based on what happens
to orbits near x. But non-recurrence is a property only of the point x. Indeed, there
exist non-wandering points which are not recurrent:

Example 5.12. Let ẍ = x2 − x be a second-order, autonomous ODE (Is the
vector field conservative)? Or, if you prefer, the system ẋ = y, ẏ = x2 − x.

Exercise 138. For this system, (1) Calculate the time-1 map as a transfor-
mation of the plane, and (2) solve the system by constructing an equivalent exact
ODE.

Here, as in the Figure ??, the shaded region consists of the non-wandering
points. But this set is a closed region, and NW also contains the separatrix forming
the orbit line containing O(−1,0). The points on this orbit line are all homoclinic
to the unstable equilibrium at (1,0). They are not recurrent. But they are also
non-wandering since any neighborhood of an initial point on this orbit line will
contain pieces of periodic orbits.

Exercise 139. Let T ∶ [0,1] → [0,1], T (x) = 1 − 2∣x − 1∣ (T is an example of
what we call a tent map. See Equation 6.5.1.) Show that any point x which is
a dyadic rational (a rational with a denominator which is a power of 2) is non-
recurrent and non-wandering.

Exercise 140. Show, by construction, the rotation map Rα ∶ S1 → S1 has the
property that RRα(S1) = NWRα(S1) = S1, ∀α ∈ R.
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Exercise 141. Show the same by construction for a translation on T2.

Theorem 5.13. Let X be a closed finite-volume domain in Rn or Tn and
f ∶ X → X an invertible volume preserving map. Then the set of recurrent points
for f is dense in X.

Note; This does not mean that all points are recurrent, not that there may be tons
of points whose ω-limit sets do not include the original point. It does mean that
every point either is recurrent, or has a recurrent point arbitrarily close to it. We
won’t prove this here. The proof is in the book on page 160. Instead, let’s skip
ahead to Section 6.2.

This is the notion of Poincare Recurrence, see W[Poincare Rec]. Give a treat-
ment here.

5.1.1. Lagrange. One way to understand Newtonian (read: Classical) me-
chanics is via a formulation developed by Joseph Louis Lagrange in the late 1700’s.
This approach is essentially a variational approach that says, roughly, that the
path of a particle though a force field can be described not only via the equations
of motion in the standard cartesian coordinates by forces determining the various
constraints of the motion, but also via a set of independent generalized coordinates
that completely characterize the motion of the particle; the choices of these gen-
eralized variables eliminate the need for the constraints. This approach usually
reduces the number of coordinates needed to completely describe the motion (by
parameterizing a subspace of Euclidean space on which motion is constrained) and
in some cases greatly simplifies the process of solving the equations of motion. And
this formulation works for conservative and nonconservative systems.

Indeed, if the motion in Rn is constrained to a subspace in a way that can be
described via a set of transformational equations

x = x(q1, . . . , qm, t),

then we can use this parameterization as a way to rewrite the system in terms of
the generalized coordinates qi, i = 1, . . . ,m. Here the m ∈ N is called the number of
degrees of freedom of the system.

Example 5.14. For the Pendulum in R2, we have x = [ x
y

]. Motion is con-

strained to the circle of radius ` about the origin. A choice of generalized coordinate
is the angular coordinate θ along this circle, where θ ∈ S1. We place the origin on

the circle at the bottom pt [ 0
−` ] for physical reasons (why?) Then

x(θ(t)) = [ ` sin θ
−` cos θ

] and ẋ(θ, θ̇) = [ `θ̇ cos θ

`θ̇ sin θ
] .

With this choice of coordinate, the pendulum has only one degree of freedom.

For a system of n-particles with constraints, we can list the transformational
equations xi = xi(q1, . . . , qm, t), i = 1, . . . , n. Then the total kinetic energy of the
system is

T = ∑
i

1

2
mixi ⋅ xi,
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and if the force field is conservative, then the total potential energy is the position
function V = V (xi) = V (qi).

The Lagrangian (Function) L is defined as the difference between the kinetic
and potential energies: L = T − V . This function contains the core dynamical
information of the system. We will bypass much of the detail of the origin and
derivation of this function here, and state that the equations of motion can be
calculated from L via the Euler-Lagrange equations (sometimes called the Lagrange
Equations of the Second Kind

d

dt
( ∂L
∂q̇j

) = ∂L

∂qj
, j = 1, . . . ,m.

This is in general a system of n second-order ODEs, one for each generalized coor-
dinate.

Example 5.15. For the Pendulum, we have

T (x) = 1

2
mxi ⋅ xi =

1

2
m (`2θ̇2 cos2 θ + `2θ̇2 sin2 θ) = 1

2
m`2θ̇2 = 1

2
m (`θ̇)2

,

and
V (x) =mg(` + y) =mg(` − ` cos θ),

written this way to place the lowest potential energy at the low point on the circle
and at 0. Then with

L = T − V = 1

2
m (`θ̇)2 −mg(` − ` cos θ),

we can derive the equations of motion as

d

dt
(∂L
∂θ̇

) =m`2θ̈ = −mg` sin θ = ∂L
∂θ
,

or m`2θ̈ +mg` sin θ = 0.

The advantages of using the Lagrangian formulation to study Newtonian physics
are many:

● The equations of motion can all be derived from a single function through
simple calculus,

● The Lagrangian is simply a difference of energies, which as scalar fields
are more easy to calculate than forces (vector fields),

● works well in all coordinate systems.

However, there are some shortcomings: Usually, the Lagrangian does not have a
physical interpretation as some measurable quantity. And it can be quite difficult
or impossible to actually solve the resulting n second-order differential equation
system.

There is another formulation of classical mechanical systems that has been
shown to be much more robust in generalizing to other areas of physics; the Hamil-
tonian formulation. Here, instead of using generalized coordinates and their ve-
locities, one replaces the velocities with the corresponding coordinates’ conjugate
momenta. This was developed by William Rowan Hamilton in the 1830s. To start,
for each choice of generalized coordinate qi in the Lagrangian formulation, define a
corresponding conjugate momentum pi via

pi =
∂L

∂qi
.
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Then, in the new coordinate system (q1, . . . , qn, p1, . . . , pn), define the function
H(q,p, t) = ∑i q̇ipi − L(q, q̇, t), the Legendre Transform of the Lagrangian. The
function H is called the Hamiltonian of the system. As such, we can calculate its
infinitessimal change via the differential

dH = ∑
i

(q̇i dpi + pi dq̇i −
∂L

∂qi
dqi −

∂L

∂q̇i
dq̇i) −

∂L

∂t
dt(5.1.2)

= ∑
i

(∂H
∂qi

dqi +
∂H

∂pi
dpi) +

∂H

∂t
dt.(5.1.3)

But with the definition of conjugate momenta and the Euler-Lagrange equations,
******************************************
Dynamically speaking, we can also play the game the other way: Let n ∈ N and

endow R2n with the coordinates (q1, . . . , qn, p1, . . . , pn). Then ANY C1-function
H ∶ R2n → R can play the role of a total energy function (read: Hamiltonian) of

some Newtonian system. The vector field can be given by XH = [
∂H
∂pi

−∂H
∂qi

] so that

the equations of motion are

q̇i =
∂H

∂pi
and ṗi = −

∂H

∂qi
.

Notice that this vector field is automatically conservative, since

devXH = ∑
i

∂

∂qi
(∂H
∂pi

) + ∂

∂pi
(−∂H

∂qi
) = 0.

Exercise 142. Solve the planar system given by the function H(x, y) = 3x2 +
2xy + y2 and classify the equilibrium at the origin.

But this takes us directly back to exact ODEs:

● If we start with H(x, y) = 3x2 + 2xy + y2 and consider both x and y as
dependent on time, then

∂H

∂t
= 0 = (6x + 2y)dx

dt
+ (2x + 2y)dy

dt
.

This is just an exact ODE M dx + N dy = 0, with M = (6x + 2y) and
N = (2x + 2y) and My = Nx = 2.

● The connection is due to the fact that the integral curves are forced to
“live” on the level sets of the function. Hence the value of the function
is constant along the solution curves of the vector field generated by the
ODE. This is no accident, and persists in higher dimensions with some
subtleties.

For now, we leave you with a beautiful restatement of the classification theorem
for the isolated equilibria of vector fields generated by functions:

Theorem 5.16.

Remark 5.17. We can generalize this Hamiltonian construction to many even-
dimensional non-Euclidean spaces, as long as they satisfy certain conditions. We
will not go into this in this text, but the spaces where this can be done are called
symplectic, or more generally Poisson spaces. This leads to a mathematical version
of Hamiltonian dynamics called symplectic geometry, a synthesis of differential
geometry, differential topology and sometimes smooth dynamics.
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5.2. Newtonian Systems of Classical Mechanics

Your previous work in ODEs suggested a general premise about systems of
differential equations. If they are defined “nicely”, then the present state of a me-
chanical system determines its future evolution through other states uniquely. One
can place this in the language of dynamical systems to say that if a mathematical
construction accurately models a mechanical system, than the construction deter-
mines a dynamical system on the space of all possible states of the system. The
trick in many cases is to well understand what constitutes a state of a mechanical
system. To start, given a mechanical system, the configuration space of the system
is the set of all possible positions (value combinations of all of its variables) of the
system. The state space, rather, is the set of all possible states the system can be
in. This is usually much broader a description.

For example, consider the pendulum, a mass is attached to the free end of a
massless rigid rod, while the other end of the rod is fixed. The set of all possible
configurations of the pendulum is simply a copy of S1. However, for each configu-
ration, the pendulum is in a different state depending on what the mass’ velocity
is when it resides in a configuration. One can think of all possible states as the
space S1 ×R. This reflects the data necessary to completely determine the future
evolution of the pendulum by a knowledge of its position and velocity at a single
moment, and the evolution equation which is a second-order, possibly non-linear
and non-autonomous, ODE in the general form

ẍ = f(t, x, ẋ).

In the case of a pendulum, time is not explicit on the right hand side, and the
equation is autonomous. Under the standard practice of converting this ODE into
a system of two first order ODEs, we can interpret the evolution as giving a vector
field on the state space S1×R, with coordinates x and ẋ. This vector field determines
a flow, which solves the ODE and determines the future evolution of the system
based on knowledge of the state of the system at a particular moment in time.

Many systems behave in a way that their future states are completely deter-
mined by their present position and velocity, along with a notion of how they are
changing. In classical (Newtonian) mechanics, Newton’s Second Law of motion
states roughly that the force acting on an object is proportional to how the velocity
of the object is changing. The is the famous equation f =ma, where f is the total
force acting on the object and a is its acceleration. As the velocity depends on
the current position of an object, a good notion of how an object moves through a
space under the influence of a force is completely determined by how its position
and velocity are changing, at least when the force is static:

f(x) =ma =mẍ =md2x

dt2
.

This is a special case of the general second order ODE mentioned above.

Example 5.18. An object under the influence of only gravity satisfies Newton’s
Second Law and the differential equation is ẍ = −g, where g is the gravitational
constant. This is solved by integrating the “pure time” ODE twice

x(t) = −g t
2

2
+ v0t + s0,
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where v0 and s0 are the initial velocity and initial position, respectively (the two
constants of the integrations).

Example 5.19. Harmonic Oscillator. Recall Hooke’s Law: the amount an
object is deformed is linearly related to the force causing the deformation. This
translates to ẍ = −kx, which is autonomous. Solutions are given by

x(t) = a sin
√
kt + b cos

√
kt,

where a and b are related to the initial starting position and velocity of the mass.

As stated above, note that any ODE of the form ẍ = f(t, x, ẋ) can be converted
to a system of two first order (generally coupled) ODEs of the form

ẋ = v

v̇ = f(t, x, v)

which defines a vector field (a static vector field if t does not appear explicitly in the
equations) on the (x, v)-state space. In this autonomous case, we get for Newton’s
Equation, ẋ = v and v̇ = 1

m
f(x, ẋ). Often, the model neglects the dependency of the

vector field on the velocity component, as is in the case where friction is ignored.
In this case, Newton’s equation(s) reduce to ẋ = v and v̇ = 1

m
f(x). This is the case

in the two examples above. We will treat this case presently.
Note: For the system defined by n coordinates and their velocities, we get the

2n-system of first order equations defined as

ẋ = v

v̇ = f (t,x,v)

The state space consists of the 2n-dimensional vectors [ x
v

]. Restricting to the

case where time is not explicit in the ODEs and velocity-dependent effects are

ignored, the vector field of this 2n-system attaches the vector V = [ v
1
m

f (x) ] to

each point [ x
v

]. The divergence of this vector field is

∇ ⋅ V =
n

∑
i=1

∂

∂xi
(vi) +

n

∑
i=1

∂

∂vi
( 1

m
fi (x)) = 0.

Hence the flow preserves volume.
place around here all of the stuff regarding classical mechanics, with both La-

grange and Hamiltonian formulations and their symmetries.

Remark 5.20. This fact is true for general autonomous Newtonian systems
where the force is solely a function of position. One facilitating idea in Newtonian
physics is to, in essence, factor out the mass. Define a new variable (a coordinate)
q ∶= mx, and then switch from the velocity coordinate to p ∶= mv as the (linear)
momentum. Then q̇ =mẋ =mv, and f =ma = f =mv̇ = ṗ, and the system becomes
q̇ = p and ṗ = f ( 1

m
q) = g(q). Not only does this make the system easier to work with,

it exposes some hidden symmetries within the equations of conservative systems.
This forms the basic framework for what are called Hamiltonian dynamics.
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Now assume that the force f(x) is a gradient field (this means that the force
is the gradient of a function of position alone, or f = −∇V for some V (x). Then

f(x) =ma =mv̇ = −∇V.

Here, the function V is called the potential energy (energy of position), and the
energy of motion, the kinetic energy is

K = 1

2
m ∣∣v∣∣2 = 1

2
m(v ⋅ v).

The total energy H =K + V satisfies

d

dt
(H) = dK

dt
+ dV
dt

=mv̇ ⋅ v +∑
i=1

n
∂V

∂xi
⋅ ∂xi
∂t

=mv̇ ⋅ v +∇V ⋅ v = (∇V +mv̇, v) = 0.

The conclusion is the total energy H is conserved as one evolves in a system like
this. As H is a function defined on the state space given by the vectors x and mv,
the solutions to the system of ODEs are confined to the level sets of this function.
A system like this is called conservative, and is characterized by the idea that the
force field is a gradient field. You have seen this before in a different guise:

5.2.1. Exact Differential Equations. Consider the nonlinear system of 2
first-order, linear, autonomous differential equations in 2 variables

(5.2.1)
ẋ = 4 − 2y
ẏ = 12 − 3x2.

This system can also be written by the single differential equation

(5.2.2) (12 − 3x2)dx − (4 − 2y)dy = 0.

Note that this equation is exact, and separable, and upon integration, one obtains

4y − y2 = 12x − x3 +C.

this defines our solutions implicitly. In fact, we can use this directly.
Define a function ϕ(x, y) = 4y − y2 − 12x + x3.
Then ϕ is conserved by the flow, and the flow
must live along the constant level sets of ϕ (the
sets that satisfy ϕ(x, y) = C.) These sets are
given by the figure.

Now recall in Section 2.4 that an ODE
M dx +N dy = 0 is exact if My = Nx (this no-
tation again refers to the first partial deriva-
tives of the functions with respect to the sub-
scripts). The reason is vector-calculus in na-
ture: The solution is a function ϕ(x, y) = C

satisfying ∂ϕ
∂x

= M and ∂ϕ
∂y

= N . The condition

for exactness is simply the statement that for
any C2 function ϕ(x, y), the mixed partials are equal:

My =
∂M

∂y
= ∂

∂y

∂ϕ

∂x
= ∂2ϕ

∂y∂x
= ∂2ϕ

∂x∂y
= ∂

∂x

∂ϕ

∂y
= ∂N
∂x

= Nx.
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But we can now go even further: The vector field F(x, y) = (4 − 2y,12 − 3x2) of
the system in Equation 5.2.1 corresponds to the exact ODE given by Equation 5.2.2
when M = 12 − 3x2 and N = −(4 − 2y), or F(x, y) = (−N,M). With this,

div(F) = ∂

∂x
(−N) + ∂

∂y
(M) = −Nx +My = 0.

The vector field F is conservative, and the flow will preserve volume (area) in the
plane. This is a general fact for vector fields of exact ODEs and leads directly to:

Proposition 5.21. The flow of an exact ODE in R2 preserves volume in phase
space.

Corollary 5.22. Equilibria of exact ODEs in R2 can only be saddles or cen-
ters.

The repercussions of these facts are quite important: For instance, p = (−2,2) is
an equilibrium solution of Equation 5.2.1. What is its type and stability (forgetting
the figure for a moment, that is) of p? We can linearize this Almost Linear System
(See Section 2.4) at p:

[ ẋ
ẏ

] =
⎡⎢⎢⎢⎣

∂(−N)
∂x

(−2,2) ∂(−N)
∂y

(−2,2)
∂M
∂x

(−2,2) ∂M
∂y

(−2,2)
⎤⎥⎥⎥⎦
[ x
y

] = [ 0 −2
12 0

] [ x
y

] .

The eigenvalues r = ±
√

24 ar epurely imaginary. Hence the linearlized equilibrium
at the origin is a center. But centers are NOT structurally stable, in that a small
perturbation in a center may result in a sink or a source, as well as a center (the
eigenvalues may take on small real parts, either negative or positive). Hence we
cannot by itself declare that p is in fact a center via the linearized system.

Somewhere around here place, talk mathematically about a classification theo-
rem for equilibria of nonlinear, almost linear systems, both without and with phase
volume preservation.

However, with the additional knowledge that F is conservative, then sinks and
sources are not possible, and in fact, the point p, an equilibrium of the nonlinear
system, MUST be a center. Such is an import of phase volume preservation.

Exercise 143. Complete the phase diagram for this ODE by noting directions
of motion along the level curves. Also, note the values of the level sets corresponding
to the two equilibria solutions. Finally, show analytically that the equilibrium at
(2,2) is unstable, while the equilibrium at (−2,2) is stable.

5.2.2. Newton’s First Law. An object not under the influence of an external
force will move linearly and with constant (maybe zero) velocity. How does this
notion of linear (constant velocity) motion appear

● in Euclidean space?
● on Tn?
● On S2?
● On an arbitrary metric space? Here we must get a better understanding

of just what a straight line is in a possibly curved space. We can use the
metric to define a straight line as the path that is the shortest distance
between two points. This path is called a geodesic.
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On a smooth surface S ⊂
R3, the Euclidean metric on R3

induces a metric on S. Choose
a point x ∈ S. The surface has
a well-defined tangent plane to
S at x. With this tangent
plane, we can choose a normal
n to the surface at x, as well
as a desired direction v in the
tangent plane. Now, for a par-
ticle moving freely along the surface S in the direction of v at x, the ONLY force
acting on the particle is the force keeping it on S. Thus, the acceleration vector of
the particle is in the direction of n. With no component of the force in the direction
of motion, the speed ∣∣v∣∣ is constant along this intersection line.

Question 5.23. What do the geodesics look like on S2?

5.2.3. The Planar Pendulum. One can model the planar
pendulum by the autonomous second order differential equation

(5.2.3) 2πmLẍ +mg sin(2πx) = 0.

Some notes:

● This is the undamped pendulum as stated. If one were
to consider damping, one can model this by adding a
term involving ẋ. A common one is cLẋ.

● This equation can be rewritten as

2πL

g
ẍ + sin(2πx) = 0.

● To simplify even further, one can scale time by τ = t
T

,

where T =
√

g
2πL

. Then we get

ẍ + sin(2πx) = 0.

So the model becomes

ẋ = v(5.2.4)

v̇ = − sin 2πx,(5.2.5)

which is Newtonian with f(x) = − sin 2πx. Here the kinetic energy is K = 1
2
v2, and

V is the potential energy, where

f(x) = −∇V, and V = ∫ sin 2πxdx = − 1

2π
cos 2πx.

The total energy is H = K + V = 1
2
v2 − 1

2π
cos 2πx and is conserved. Hence motion

is along the level sets of H.
Some dynamical notes:

● For low energy values H ∈ (− 1

2π
,

1

2π
), motion is periodic and all orbits

are closed.
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Figure 1. The phase plane of the planar pendulum.

● For high energy values H > 1

2π
, motion looks unbounded. But is it really?

What is the pendulum actually doing for these energy values? Recall the
idea from before that the actual phase space is a cylinder (the horizontal
coordinate – the position of the pendulum – is angular and hence periodic).
Hence motion is still periodic and orbits are still closed.

● What happens for the energy value H = 1

2π
? What is the lowest energy

value? What are the energy values of the equilibria solutions?

Exercise 144. On the phase plane above in Figure 1, complete the diagram
by orienting the solutions curves (choose carefully your directions and justify by
showing it is compatible with your choice of coordinates. Then create a Poincare
section along the vertical axis of the phase diagram as an open interval runs from
the top separatrix to the bottom separatrix. Compare the first-return map to any
time-t map within the region bounded by the two separatrices.

Figure
2. Phase
cylin-
der
of
the
pla-
nar
pen-
du-
lum.

Back to Poincare Recurrence. This system is conserva-
tive and hence exhibits phase volume preservation (incom-
pressibility). What can we say about the recurrent points?
Theorem 5.13 required a finite volume domain to establish
the density of recurrent points. On the phase cylinder, we
can create a finite volume domain simply by bounding the
total energy H <M , for some M > − 1

2π
, so

XM = {(x, v) ∈ S1 ×R ∣H(x, v) <M} .

Now by Theorem 5.13, almost all points on XM are recur-
rent. Can you find points that are not recurrent in the phase
space? Can you classify them? Look for points x, where
x /∈ ω(x). That the phase plane for the pendulum is actu-
ally a cylinder is an extremely important concept, if not for
this reason alone.

The preceding two examples, that of the exact ODE
and the Planar Pendulum, illustrate some very important
phenomena. One important facet is that they are examples
of non-linear, autonomous, first-order ODEs in the plane.
And although the exact ODE system can be solved (the
pendulum cannot), both can be effectively studied via an
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analysis of a few particular orbits. We take a moment here
to expound on this.

Let’s linearize the pendulum around the equilibrium at
(x, v) = (0,0). Here, in Equation 5.2.4, f(x, v) = v and
g(x, v) = − sin 2πx, so the linearized system is

[ ẋ
ẏ

] =
⎡⎢⎢⎢⎣

∂f
∂x

(0,0) ∂f
∂y

(0,0)
∂g
∂x

(0,0) ∂g
∂y

(0,0)
⎤⎥⎥⎥⎦
[ x
y

] = [ 0 1
−2π 0

] .

Note that this linear system is simply that of a harmonic oscillator ẍ−kx = 0, with
k = −2π.

One can see immediately the following:

● The eigenvalues of the matrix [ 0 1
−2π 0

] are λ = ±
√

2πi. Hence the

linear system has a center at the origin. But according to the the Poincare-
Lypaunov theorem, we cannot automatically use this to classify the origin
of the non-linear system. This is true even though we do know that, in this
case, at least, solutions of the undamped pendulum are in fact periodic.

● The total energy of this “classical” system is H = 1
2
v2 + πx2 and is con-

served. Hence motion is along the level sets of H in the plane, which are
concentric ellipses.

● If one solves the linear system, all of the periods of motion along the
ellipses are the same. The question is, are the periods the same for the
undamped pensulum?

Remark 5.24. As a mental exercise, draw an open interval Poincare section
along the vertical axis of Figure 1, from the horizontal axis to the separatrix above
it. Noting that near the origin, the system will look like the linear system solutions
but that near the separatrix, all solutions will spend a lot of time moving slowly
past the unstable equilirbria, one can reason that the periods are not the same
along the concentric closed orbits. But what can you say happens as you approach
the separatrix?

Exercise 145. Solve the associated linear systems at both equilibria explicitly
and compare directly the linear system solutions to the nonlinear phase portraits.
.

Now linearize around the other equilibrium solution at ( 1
2
,0). We get the linear

system

[ ẋ
ẏ

] = [ 0 1
2π 0

] .

Here, the eigenvalues are λ = ±
√

2π, real and distinct, and the POincare-Lyapunov
Theorem classifies this equilibrium as a saddle, both for the linearized system as well
as the original non-linear system. Questions: What do the level sets of total energy
look like for the linear system here? Which level set corresponds to the solutions
that limit to the equilibrium? Notice that in the phase cylinder (Figure 2), these
are the homoclinic points of the pendulum. Can you describe just what a solution
here looks like in terms of the actual mechanical device pendulum? In detail, what
does a homoclinic solution look like physically? See Figure 3:

In any conservative system, the total energy H is called a first integral of
the equations of motion. Sometimes also a constant of the motion. Motion is
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Figure 3. The separatrix orbit of the pendulum. It never stops
advancing to the vertical position and never reaches it either.

confined to “live” on the level sets of H. If we go back to our exact ODE in
Equation 5.2.2, and consider the solution function as a kind of total energy of the
system, ϕ(x, y) = H(x, y) = 4y − y2 − 12x + x3. Then, as x and y vary with respect
to t, so does H, and

∂H

∂t
= ∂H
∂x

∂x

∂t
+ ∂H
∂y

∂y

∂t
= (−12 + 3x2)(4 − 2y) + (4 − 2y)(12 − 3x2) = 0.

So H is constant with respect to t along the flow.
So what happens in higher dimensions? For an ODE system with phase space

Rn (or some subset), a first integral, or constant of the motion is a function H ∶
Rn → R. A regular level set of H (recall the notion of regular here means that the
n-vector DHx is not the 0-vector, is an (n − 1)-dimensional subset of Rn, called
a hypersurface, given by the set of solutions to the equation H(x) = c ∈ R. Note
that the hypersurface is regular as long as c is not a critical value of H, by the
Implicit Function Theorem. The hypersurface is also called the inverse image of c
in Rn, and denoted H−1(c) ⊂ Rn even though with n > 1 there is no possibility of
the function H actually having an inverse.

Now, if one can find two such non-constant functions G ∶ Rn → R and H ∶
Rn → R, and these two functions are “sufficiently different” from each other, then
one can view solutions to the ODE system as living on the level sets of each of G
and H, simultaneously. This means that solutions will live on the intersections of
the two (n − 1)-dimensional hypersurfaces. When the level sets not are tangent to
each other, then motion is restricted to live on a smaller dimensional surface. This
constrains the solutions further and is an effective tool for solving systems of ODEs
in more than two variables. First, we need a good notion of what “sufficiently
different” means here:

Definition 5.25. For n ≥m > 1, a collection of C1-functions H1,H2, . . . ,Hm ∶
Rn → R are said to be functionally independent on some domain U ⊂ Rn if ∇H1,
∇H2, . . ., ∇Hm are linearly independent as vectors at each x ∈ U .

Note that, equivalently, one can create the function H ∶ Rn → Rm, H(x) =
(H1,H2, . . . ,Hm). Then the Jacobian of H is just the derivative of H, denoted
DH(x). This is the (m × n)-matrix whose ith row is the derivative of Hi, or the
transpose of the gradient of Hi. The functions are functionally independent iff the
Jacobian has full rank on U .
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For example, Suppose G ∶ R3 → R and H ∶ R3 → R are two functionally inde-
pendent first integrals of a system of first order autonomous ODEs in R3. Then
the solution passing through x0 ∈ R3 must live on the intersection of the two level
sets, or x(t) ⊂ G−1(c) ∩H−1(d) for all t where the solution is defined, and where
G(x0) = c and H(x0) = d. Figure 4 offers some examples of what this situation
may look like.

Figure 4. A solution in 3-space constrained by two first integrals.

5.3. Billiards

Nice treatment in www.personal.psu.edu/axk29/pub/Russian-bill.pdf.
We return to billiard maps now and present a more general situation. The

2-particle billiards is really a part of an entire field of study called convex billiards.
To start, let D be a bounded, closed domain in the plane, where B is the boundary
of D, so B = ∂D. Orbits of motion are line segments in D with endpoints in B,
and adjacent line segments meet in B. When B, as a curve in the plane, is C1,
the angle which a line segment makes with the tangent to B at the end point is
the same as the angle the adjacent line segment makes. This is what is meant
by “angle of incidence equals angle of reflection”. Should B also contain corners
(points where B is not C1), declare that an orbit entering the corner end there (this
is sometimes referred to as “pocket” billiards. Motion is always considered with
constant velocity on line segments, and collisions with B are specular (elastic).

Some dynamical criteria:

● Every orbit is completely determined by its starting point and direction.
● Recall for polygonal billiards, a billiard flow is continuous flow per unit

time. It is certainly not a differentiable flow, as it fails at the collisions
with B (Note: One can certainly define a smooth flow whose trajectory has
corners. All that is necessary is for the flow to slow up and momentarily
stop at the corner, to allow it to change direction smoothly. This is quite
common for parameterized curves. Here, though, the flow does not slow
up.)

● In the billiard flow on the triangle, we cured the non differentiable flow
points by “unfolding” the table. Here, instead, we will analyze this situa-
tion by creating a completely different state space which collects only the
relevant information from the actual billiard.

First, ignore the time between collisions of line segments with B, and consider
orbits as simply a sequence of points on B, along with their angle of incidence. For
each collision of an orbit with B, the point and the angle completely determine
the next point and angle of collision. In the “space” of points of B and possible
angles of collision, we get an assignment of the next point of collision and angle
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for each previous one. It turns out that this assignment is quite well defined. Call
this assignment Φ, where (x1, θ1) ↦ (x2, θ2) ↦ ⋯ ↦ (xn, θn) ↦ ⋯. For now, let B
be C1. Collect up all of the points of B, and you get a copy of S1. Collect up
all possible angles of incidence and you get the interval [0, π] (really one gets the
open interval, but one can limit to the orbits that simply run along the length of B.
This is not such an important factor here. The state space is all of the points in B
along with all of the incidence angles is a copy of C = S1 × [0, π], the cylinder. The
assignment takes (x1, θ1) ↦ (x2, θ2) ↦ ⋯ ↦ (xn, θn). See the figure. The resulting
cylinder, along with the evolution map Φ is called the billiard map.

Example 5.26. Let

D = {(x, y) ∈ R2 ∣ x2 + y2 ≤ 1}

be the unit disk in the plane. Here B = ∂D = S1 is the unit circle, parameterized by
the standard angular coordinate θ from polar coordinates in the plane (note that
this parameter takes values in [0,2π) and is quite different from the parameteriza-
tion we have been using for S1 given by the exponential map x↦ e2πix). The state
space is then C = S1 × I, where I = [0, π]. What are the dynamics? Go back to the
light-ray in a circular mirrored room exercise from before. You will find that the
initial angle of incidence never changes, and the evolution map is constant on the
second coordinate.

Exercise 146. Show for S1 the unit circle, that Φ(s, θ) = (s + 2θ, θ) .

Exercise 147. Show that this is not quite true for a billiard table whose radius
in not 1.

Now do you recognize the evolution map on the state space in this dynamical
system? This is basically the twist map on the cylinder, a map that you already
showed was area preserving. And you already know the dynamics of this map. To
continue our study, we can say more about the orbit structure within each invariant
cross-section (constant θ section) of the cylinder: To each θ = θ0 is associated a
caustic:

● In optics, a caustic is the envelope of light rays reflected or refracted by
a curved surface or object, or the projection of that envelope of rays on
another surface.

● Or the caustic is a curve or surface to which each of the light rays is tan-
gent, defining a boundary of an envelope of rays as a curve of concentrated
light.

● In differential geometry and geometric optics (mathematics, in general),
a caustic is the envelope of rays (directed line segments) either reflected
or refracted by a manifold.

Exercise 148. For the circle billiard, let θ /∈ Q. Then the caustic is the edge of
the region basically filled with light. What shape is this caustic, and can you write
the equation for this caustic as a function of the angle θ0.

Experiment 1. Shine a light from a small hole horizontally into a circular
mirrored room. Try to pass the light beam directly through the center of the room
(force θ0 = π

2
. What happens as you “focus” the light? How does the light fill the

room as you approach π
2

, and when you reach π
2

?
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Example 5.27. Let

D = {(x, y) ∈ R2 ∣ x
2

a2
+ y

2

b2
≤ 1}

be an ellipse, where the diameter is 2a and the width is 2b.

Recall that a definition of an ellipse is the
set of points in the plane whose combined dis-
tance from two reference points is a constant.
The two reference points are the two foci of the
ellipse, and in our case, the combined distance
constant is the diameter 2a. Written as above,
the ellipse is centered at the origin in the plane,
and the diameter and the width are along the
horizontal and vertical axes, respectively. Upon

inspection, one can see that it will not be the case, as with the circle, that there is
a period-2 orbit passing through each point. There are four such points, though,
and all four of these lie on one of the axes. Why is this true? We will see.

This billiard table has notable differences from the circular one, beyond the
relative lack of period-2 orbits. To understand these difference better, we introduce
a technique of study common in billiards: Generating Functions.

Parameterize the boundary by arc-length s and let p and p′ be 2 points on
B = ∂D. Now define a real-valued function on B ×B by

H ((s, s′) = −d (p, p′) ,
where d is the standard Euclidean metric in the plane. This function H is called
the generating Function for the billiard:
Some notes:

● This function helps to identify points on the same orbit.
● Critical points of H determine period-2 orbits (think about what this

means for the ellipse.)
● rarely can we find a good working expression for H in terms of s and s′.

But we can discuss its properties and use them effectively.

Example 5.28. Let a = b = 1, and we are back at the circular billiard. Here

H(s, s′) = −2 sin
1

2
(s − s′).

Exercise 149. Derive this function using the geometry of the unit circle.

Exercise 150. For a > b, we do not have a good expression for H. However, we
can surmise that the diameter boundary points are at a minimum for H (remember
the minus sign), and the width boundary points are a saddle point for H. Why is
this? Can you see it?

5.3.1. Dynamics of elliptic billiards. As in circular billiards, one way to
discuss the orbit structure for an elliptic billiard is to try to describe any possible
caustics (curves tangent to orbits, which help to define edges of envelopes of orbit
regions. We have two results here:

Proposition 5.29. Every smaller confocal (having the same foci) ellipse is a
caustic.
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The proof here is constructive and can be found in the book. This family of
ellipses works as a caustic for any orbit segment that does not pass between or meet
the foci. Convince yourself that if an orbit segment does not meet or pass between
the foci, then the entire orbit will not intersect the closed line segment connecting
the foci. And once an orbit segment crosses that line, it will continue to cross that
line both forward and backward for each line segment in the orbit. And if an orbit
segment passes through a focus, where will it go next? Where will it go over the
long term?

Proposition 5.30. There exists a caustic for every ray between the foci. The
caustic of the orbit corresponding to this ray is both pieces of a hyperbola confocal
to the ellipse.

Note: Ellipses and hyperbolas are both conic sections, and related via their eccen-
tricity, a nonnegative number that parameterizes conic sections via a ratio of their
data. Indeed, along the major axis (the diameter) of a conic section, one can mea-
sure the distance from the curve to the origin (let’s keep all conic section centered
at eh origin for now). Call this the radius a. One can also measure the distance
from the center to one of the foci. call this c. Then eccentricity e is the ration of
these two numbers:

● For e = c

a
= 0 (implying that c = 0), the section is a circle.

● For 0 < e = c

a
< 1, the section is an ellipse.

● For e = c

a
= 1 , the section is a parabola.

● For e = c

a
> 1, the section is a hyperbola.

For the circle case, the equation is elliptical, with a = b, and we have
x2

a2
+ y

2

a2
= 1,

or x2 + y2 = a2. For the hyperbolic case, we have
x2

a2
− y

2

b2
= 1.

And as a couple of final dynamic notes;

● An orbit that passes through one focus must pass through the other .
What are the implications of this for the resulting orbit?

● There are tons of periodic orbits in elliptic billiards, of all periods. Can
you draw some? Period-4 should be easy to see, as is period-2. How about
period-3?

Exercise 151. Construct a period-4 orbit for an elliptic billiard and show
analytically that it exists.

Exercise 152. Describe the long term behavior of ANY orbit that has a orbit
segment that pass through one of the foci.

Going back to the generating functions, we can say more about orbits in general.
Here are some properties. Recall for any convex billiard table, H(s, s′) = −d(p, p′),
where d is the standard Euclidean metric in R2.

Lemma 5.31.
∂

∂s′
H(s, s′) = − cos θ′, and

∂

∂s
H(s, s′) = cos θ.

Proof. This really is simply calculus. For the first result, fix and parame-
terize a small arc in the ellipse centered at s′, c(t), where c(t0) = p′. Choose a
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parameterization such that the tangent vector is unit length. Then, noting that
d(p, p′) = ∣∣p − p′∣∣, we have

∂

∂s′
H(s, s′) = d

dt

RRRRRRRRRRRt=t0
− d (p, c(t)) = −1

2d(p, c(t)) (2 (c′(t) ⋅ (p − c(t)))) ∣
t=t0

= − ∣∣c′(t0)∣∣ ∣∣p − c(t0)∣∣ cos θ′

∣∣p − c(t0)∣∣
= − cos θ′

by the cosine formula for the dot product of two vectors and since ∣∣c′(t0)∣∣ = 1 by

the parameterization. Hence
∂H

∂s′
= − cos θ′. The other result is similar. �

Now apply this idea to any three points s−1, s0, and s1 on the ellipse. can these
three points lie successively on an orbit? The answer is , yes, if

∂

∂s′
H(s, s′) + ∂

∂s
H(s, s′) = 0.

That is, if s0 is a critical point of the assignment

sz→H(s−1, s) +H(s, s1).

This is a variational approach to the construction of orbits, and techniques like this
form the content of our course 110.427 Introduction to the Calculus of Variations.

Experiment 2. Consider a convex billiard with one pocket (corner) p. Find
all possible bank shots to sink a ball at p.

Refer back to the definition of convex (and strictly convex) back in the section
n Contractions.

Recall the notion of a strictly convex domain, where B = ∂D has non-zero
curvature (where B is C2 and where the second derivative is non-zero). Visually,
this means that there are no straight-line segments on B, and certainly no inflection
points (changes in concavity). It also means that we can effectively take the angle
of incidence to be from the open interval (0, π) instead of the closed interval. Thus
the state space is the open cone.

Here are some quick results: First, switch from the angular coordinate θ to the
rectilinear coordinate r = − cos θ, so that for θ ∈ (0, π), we have r ∈ (−1,1).

Proposition 5.32. For a convex billiard, the billiard map

Φ(s, r) = (S(s, r),R(s, r)) ∶ C → C

is area and orientation preserving.

Proof. The proof is constructive and based on simply calculus. �

Proposition 5.33. If B = ∂D is Ck (which means that the Euclidean coordi-
nates are Ck functions of the length parameter), then both S and R are Ck−1.

Proof. This is the Implicit Function Theorem. �

Proposition 5.34. For D strictly convex, the billiard map has at least two
period-2 orbits; at the diameter and at the width.
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One can describe the width in the following way. Take two distinct vertical par-
allel lines tangent to the billiard table (necessarily on “opposite sides” of the table).
As one rotates the table, the distance between these lines will change. When one
reaches the diameter of the table (the largest possible Euclidean distance between
2 points on the boundary), the two points will lie along the line perpendicular to
the vertical lines. This perpendicular line segment represents one of the period-2
orbits. The other comes comes at the point when the two vertical lines reach a local
minimum distance (which is the minimum distance for a strictly convex table). At
this point again, the line segment joining the two tangencies will be perpendicular
to the vertical lines and represent another period-2 orbit. This is the width of the
table.

One final note, finding these period-2 orbits using this method involves finding
where the vertical lines reach a minimum and maximum distance from each other.
But this is what the generating function H is also doing, and why the generating
function is particular good at finding period-2 orbits. It is actually good at finding
period-n orbits also, but this goes a bit beyond this course.

5.3.2. Application: Pitcher Problems. In the movie “Die Hard with a
Vengeance”, John McClain (Bruce WIllis) and Zeus (Samuel L. Jackson) are con-
fronted with a puzzle in their ordeal to stop a terrorist’s plot run by Peter Krieg
(Jeremy Irons). The puzzle is one of the Pitcher Problems: Given two pitchers of a
certain size, in integer gallons, how can one measure out some intermediate integer
gallon amount through various fillings, emptying and transferring of fluid form one
pitcher to another. In the movie, near a fountain stands two empty jugs, one a
5 gallon jug and the other a 3 gallon jug. There is also a bomb here, which can
be disabled by weighing out exactly 4 gallons of fluid. The heroes figure out the
process as a 6 stage one: Fill the 5 gallon jug; use it to fill the three gallon jug;
empty the three gallon jug; put the remaining 2 gallons into the 3 gallon jug; fill
the 5 gallon jug; and use it to refill the 3 gallon jug; What remains in the 5 gallon
jug is 4 gallons. How they came up with this procedure? Watch the movie. Is there
a systematic way to find the shortest procedure for doing this? Yes, and billiards
is one way to work it out.

Figure
5. A 5 × 3-
Parallelogram
Billiard Table.

Construct a parallelogram billiard table
with an acute angle of π

6
radians, whose side

lengths are, in this case, 5 and 3 units long, as
in Figure 5. The integer points in this parallelo-
gram form a lattice. Define the corner collisions
in the following way:

● if a point meets an obtuse corner com-
ing in along an edge, then the collision
looks like a collision with the other
wall, with reflection angle π

6
.

● any other corner collision ends the or-
bit (this is all that we will need.)

Now create an orbit that begins at the lat-
tice point (0,0) and runs along one of the edges. You have two choices. What is
it’s fate? Well, one result is that the orbit will always end at the obtuse corner
opposite the first one encountered in the orbit. But even more interestingly, the



5.3. BILLIARDS 141

orbit will meet every lattice point along the boundary, except for the opposite acute
corner. In fact, for a table like this with side lengths p ≤ q, this is true iff p and q are
relatively prime (have no factors in common except for 1. Why is this important?

Follow the orbit. Every horizontal segment corresponds to either filling or
emptying one of the jugs and every vertical segment (defined along the other edge)
corresponds to either filling or emptying the other jug. The diagonal segments
(diagonal with respect to the sides) corresponds to transferring fluid from one jug
to the other. So each lattice point (a, b) corresponds to the current state of the
fluid in each jug and at leat one of entries in each edge collision is either 0 or full.
The result is that each lattice point in an orbit corresponds to a “next move”. If
and when the desired entry k appears as a part of an orbit, you can count how
many moves it takes to create that desired amount of fluid. There are only two
possible starting moves, so there is a shortest path (possibly two of them?) There
is a beautiful number theory result concerning just how long these shortest orbits
can be to reach any desired intermediate measure.

Figure 6. The two orbits from (0,0) to the first instance of a
boundary lattice point with a 4.

In general, for any two pitchers of size p < q ∈ N units, the number of fillings,
emptyings and transfers needs to measure out any r < p ∈ N is at most q + 1.
Finding it, however, by simply exploring possibilities, may take a while. With a
parallelogram billiard, just take a shot!

Exercise 153. Find a way to measure out 1 gallon of fluid with only two jugs
of sizes 8 and 11 gallons. What is the shortest number of fillings, emptyings and
transfers to do so.

Exercise 154. Given two jugs of sizes 6 gallons and 9 gallons, determine
precisely which intermediate measurements are NOT possible.

Exercise 155. Find a way to cook a perfectly timed 11 minute boiled egg,
using only a 5 minute egg-timer and a 9 minute egg-timer.





CHAPTER 6

Complicated Orbit Structure

6.1. Counting Periodic Orbits

It seems like we spend a lot of time in our study of dynamical systems on the
classification and counting of periodic orbits of a map f ∶ X → X. To understand
why, consider

● n-periodic points are the fixed points of the map fn.
● Periodic points, like fixed points, have stability features.
● There are existence theorems for periodic points.
● many times, we can “solve” for them, without actually solving the dy-

namical systems.

Recall Definition 2.22 for the set of n-periodic points of a map f ∶ X → X:
Pern(f) ∶= {x ∈X ∣ fn(x) = x}. Here, we are interested in the cardinality of this
set.

Definition 6.1. For f ∶X →X a map, let

Pn(f) ∶= #{x ∈X ∣ fn(x) = x}
be the number of all n-periodic points of f . And let

P (f) ∶= ⋃
n∈N

Pn(f).

Note that Pn(f) also includes all m-periodic point when m∣n. In particular,
the 1-periodic points are the fixed points and these are counted in Pn(f) for all
n ∈ N.

As a sequence, {Pn(f)}n∈N can say a lot about f .
Consider the map E2 ∶ S1 → S1, E2(z) = z2, where z = e2πix ∈ C is a complex

number restricted to the unit modulus complex numbers. Another way to see this
map is E2(s) = (2s mod 1), for s ∈ S1, depending on your model for S1.

Proposition 6.2. Pn(E2) = 2n − 1, and all periodic points are dense in S1

(i.e., P (E2) = S1).

Proof. Using the model E2(z) = z2, we find that z is an n-periodic point if

(⋯((z2)2)⋯)
2

= z or z2n = z or z2n−1 = 1.

Thus every periodic point is an order-(2n − 1) root of unity (and vice versa). And
there are exactly 2n − 1 of these, uniformly spaced around the circle. In fact, to

any rational p
q
∈ Q, the point e

2πi( pq ) is a qth root of unity. If q = 2n − 1, for n ∈ N,

then e
2πi( pq ) is an order-n fixed point. Now as n goes to ∞, the spacing between

order-(2n − 1) roots of unity goes to 0. Hence any point x ∈ S1 can be written as
the limit of a sequence of these points. Hence will be in the closure of P (E2). �

143
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Figure 1. Order-n fixed points of E2 spaced evenly in S1

Example 6.3. z is 2-periodic if z22−1 = z3 = 1. These are the points z = e2πi( k3 ),
for k = 1,2. To see how this works,

E2(e2πi( 1
3
)) = (e2πi( 1

3
))

2
= e2πi( 1

3
)∗2 = e2πi( 2

3
), while

E2(e2πi( 2
3
)) = (e2πi( 2

3
))

2
= e2πi( 2

3
)∗2 = e2πi( 4

3
) = e2πi( 1

3
).

We can calculate the growth rate of Pn(E2) in the obvious way: Define the
truncated natural logarithm

ln+ x = { lnx x ≥ 1
0 otherwise

.

Then define p(f) = lim
n→∞

ln+ Pn(f)
n

as the relative logarithmic growth of the number

of n-periodic points of f with respect to n.
For our case, then, where E2(z) = z2,

p(E2) = lim
n→∞

ln+ (2n − 1)
n

= lim
n→∞

ln+ 2n(1 − 2−n)
n

= lim
n→∞

ln+ 2n + ln+(1 − 2−n)
n

= ln 2.

This is the exponential growth rate of the periodic points of the map E2. Note
that the growth factor is 2 at each stage, hence the exponential growth rate is the
exponent of e which corresponds to the growth factor. Here 2 = eln 2.

Proposition 6.4. For f ∶ S1 → S1, f(z) = zm, where m ∈ Z and ∣m∣ > 1,

Pn(f) = ∣mn − 1∣,
the set of all periodic points is dense in S1, and p(f) = ln ∣m∣.

Exercise 156. Show this for m = −3.

Here is an interesting fact: Let f(z) = z2. The image of any small arc in S1 is
twice as long as the original arc. However, there are actually 2 disjoint pre-images
of each small arc, and each is exactly half the size. Combined, the sum of the
lengths of these two pre-images exactly matches the length of the image. Thus this
expanding map on S1 actually preserves length! Some notes about this:
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● This is actually true for all of the expanding maps Em ∶ S1 → S1, Em(z) =
zm, where m ∈ Z, and ∣m∣ > 1.

● This is a somewhat broadening of the idea of area preservation for a map.
When the map is onto but not 1-1 (in this case, the map is 2-1), the
relationship between pre-image and image is more intricate, and care is
needed to understand the relationship well.

6.1.1. The quadratic family. For λ ∈ R, let fλ ∶ R → R, where fλ(x) =
λx(1 − x) is also called the logistic map on R. For λ ∈ [0,4], we can restrict to
I = [0,1], and fλ ∶ I → I is the interval map family we partially studied already.
In fact, we can summarize our results so far: For λ ∈ [0,3], the dynamics are quite
simple. There are only fixed points, and no nontrivial periodic points, and all other
points are asymptotic to them. The fixed points are at x = 0 and x = 1 − 1

λ
.

Some new facts:

(1) for λ ∈ [3,4], a LOT happens! (we will get to this later in the course.)
(2) for λ > 4, I is not invariant.
(3) since fλ is quadratic, fnλ is at most of degree 2n. Thus the set of n-periodic

points must be solutions to the equation fnλ (x) = x. Bringing x to the
other side of the equation, the set Pn(fλ) must consists of the roots of an
(at most) 2n-degree polynomial. Hence

Pn(fλ) ≤ 2n, for all λ ∈ R.
(4) For λ > 4, many points escape the interval I. However, as we will see,

many points have orbits which do not. We can still talk about the map
on the set of all of these points....

Let λ > 4, and consider the first iterate of fλ. Notice (see the figure), that the
intervals I1 and I2 are both mapped onto [0,1] and that each contains exactly one
fixed point. Under the second iterate of the map, f2

λ, only points in the 4 intervals
Ji, i = 1,2,3,4 remain in [0,1]. Here there are 4 fixed points (again one in each
interval). But notice that only two of them are new, y1 and y2. These two new
ones are period-2 points that are not fixed points. See in the cobwebbed figure the
period-2 orbit on the right of the figure.

Figure 2. The map fλ, f2
λ, and the period-2 orbit

Continue iterating in this fashion, and one can see that there will be

● 2n intervals of points that remain in I after n-iterates.
● The next iterate of fλ maps each of these 2n intervals onto [0,1], creating

a single fixed point in each interval (of fnλ ).
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● You can see then (and one can prove this by induction) that Pn(fλ) = 2n,
when λ > 4.

Exercise 157. Show that for fλ where λ > 4, if O+
x /∈ I, then Ox Ð→ −∞. Also

show that once an iterate of x under fλ leaves I, it never returns.

So what about the points whose orbits stay in I? We can construct this as
follows: For x ∈ I, call Onx the nth partial (positive) orbit of x, where

Onx = {y ∈ I ∣ y = f i(x), i = 0, . . . , n − 1} .
Then define

Cn = {x ∈ I ∣ Onx ∈ I} .
Then C0 = I, C1 = I1∪I2, C2 = J1∪J2∪J3∪J4, and Cn ⊂ Cn−1 for all n ∈ N. Finally,
define

C =
∞
⋂
n=0

Cn,

Then fλ ∶ C → C is a discrete dynamical system.
What does this set C look like? For starters, it seems quite similar in con-

struction to our Canter Ternary Set. Be careful here, though. The connected
subintervals of Cn will not always be the same length in Cn. You can see this in
the above figure, but should also check specifically for C2. It should be certain
that if x ∈ I is n-periodic, then x ∈ C. But are these the only points whose entire
orbit lies in I? What about a point y ∈ [0,1] which is well-approximated by pe-
riodic points? This means that there is a sequence of periodic points in I which
converges to y. Is that enough to ensure that Oy ∈ [0,1]? This is an important
question (which should be yes, by continuity.) It turns out that there are a lot
of non-periodic points in C. In fact, there are an uncountable number. In fact, a
Cantor’s set-worth! To see this, we need a better definition of a Cantor Set than
what comes from our Canter Ternary Set above.

Definition 6.5. A non-empty subset of I is called a Cantor Set if it is a closed,
totally-disconnected, perfect subset of I.

Definition 6.6. A non-empty subset C ⊂ I is perfect if, for every point x ∈ C,
there exists a sequence of points xi ∈ C, i ∈ N, where {xi}i∈N Ð→ x.

Definition 6.7. A non-empty subset C ⊂ I is totally-disconnected if, for every
x, y ∈ C, the closed interval [x, y] /⊂ C.

Roughly, there are no isolated points in a perfect set. And there are no closed,
positive-length intervals in a totally disconnected subset of an interval.

Proposition 6.8. Let fλ ∶ I → R be defined byfλ(x) = λx(1 − x), where λ > 4
and let

C = {x ∈ I ∣ Ox ∈ I} .

Then C is a Cantor Set and fλ∣C is a discrete dynamical system.

Proof. By the exercise above, we already know that all periodic points are in
C. For the moment, let’s consider only the case that λ > 2 +

√
5 > 4. In this case,

we are assured that ∣f ′λ(x)∣ > µ > 1, ∀x ∈ C1 and some number µ.

Exercise 158. Verify this fact.
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And hence, by the Chain Rule, we have ∣f ′λ(x)∣ > 1, ∀x ∈ C. By Definition ??,
we know fλ is expanding. Since C is an arbitrary intersection of closed sets, it is
certainly closed.

As for totally-discontinuous, let’s assume that for x, y ∈ C, where x /= y, the
interval [x, y] ∈ C. Then the orbit of the entire interval lies completely in C. But
since fλ is expanding, ∣f(x) − f(y)∣ > µ∣x − y∣. And for each n ∈ N, ∣fn(x) − fn(y)∣ >
µn∣x − y∣. Choose n > − ln ∣x−y∣

lnµ
. Then ∣fn(x) − fn(y)∣ > 1. But then fn+1 ([x, y]) /∈

C. This contradiction means that no positive-length intervals exist in C, and
establishes that C is totally discontinuous.

To see that C is perfect, assume for a minute that there exists an isolated
point z ∈ C. Being isolated means that there is a small open interval U(z) ⊂ I,
where for all x ∈ U(z), where x /= z, we have x /∈ C. Now, since z ∈ C, it is in a
subinterval of every Cn. For any choice of n ∈ N, call the interval [xn, yn] ∈ Cn
where z ∈ [xn, yn]. Create a sequence of nested closed intervals {[xi, yi]}i∈N, where
for every i, z ∈ [xi, yi] ⊂ Ci. Each endpoint xi is eventually fixed and hence xi ∈ C
for all i ∈ N. But C is totally disconnected. Hence the intersection

∞
⋂
i=1

[xi, yi]

can only consist of one point, and z is in this set. Thus, as a sequence {xi}i∈N Ð→ z,
and z is NOT isolated in C. Hence C is perfect, and hence C is a Canter Set.

As a final note, we will relegate a discussion of why C is still a Canter set when
4 < λ < 2 +

√
5 to the following remark, noting that the proof requires a subtle bit

of finesse not totally germane to the current discussion. �

Remark 6.9. When 4 < λ < 2 +
√

5, the map fλ is not expanding on C1.
Indeed, for ε > 0, let λ = 4 + ε. Then the first intersection of the graph of fλ and

the y = 1 line is at x1 = 1
2
(1 −

√
1 − 4

λ
). The derivative of fλ at this crossing is

f ′λ(x1) =
√
λ2 − 4λ, which evaluates (when λ = 4 + ε, see the figure below, to

f ′λ(x1) =
√
λ2 − 4λ =

√
4ε + ε2 > 2

√
ε.

The derivative of the square of the map at x1 has a much higher derivative since
the derivative of the image of x1 is −λ = −(4 + ε) at the image point fλ(x1) = 1.
Hence the derivative of the square of this map is greater than 8

√
ε. This happens

all though the interval, and the map can be said to be eventually expanding, in that
∃N ∈ N where for all n > N the map fnλ (x)∣Cn is expanding. Then the proof above

holds. Thus the proposition is true for all λ > 4.

This quadratic family is an example of a
unimodal map: A continuous map defined on
an interval that is increasing to the left of an
interior point and decreasing thereafter.

Proposition 6.10. Let f ∶ [0,1] → R be
continuous with f(0) = f(1) = 0 and suppose
there exists c ∈ (0,1) such that f(c) > 1. Then
Pn(f) ≥ 2n. If, in addition, f is unimodal and
expanding, then Pn(f) = 2n.
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Definition 6.11. A map f ∶ [0,1] → [0,1]
is expanding if

∣f(x) − f(y)∣ > ∣x − y∣

on each interval of f−1 ([0,1]).

Examples of expanding maps include the logistic map for suitable values of
λ > 4, and the circle maps Em, where m ∈ Z and ∣m∣ > 1 (you should modify the
definition here to include maps of S1). Note here:

● In the Proposition, the condition f(0) = f(1) = 0 and continuity ensure
that the map will “fold” the image over the domain, and

● the condition f(c) > 1 ensures the folding will be complicated, with lots
of points escaping, while lots of points will not.

6.1.2. Expanding Maps. Here is a better definition of an expanding map
(albeit limited now to circle maps):

Definition 6.12. A C1-map f ∶ S1 → S1 is expanding if ∣f ′(x)∣ > 1, ∀x ∈ S1.

Example 6.13. It should be obvious by this definition that the map Em, where
m ∈ Z and ∣m∣ > 1 is expanding, since Em(x) = mx mod 1 is differentiable and
∣E′
m(x)∣ = ∣m∣ > 1 for all x ∈ S1.

Recall that the degree of a circle map is a well defined property that measures
how many times the image of a map of S1 winds itself around S1.

Lemma 6.14. Let f, g ∶ S1 → S1 be continuous. Then

deg(g ○ f) = deg(g)deg(f).

Proof. Degree is defined via a choice of lift: Given lifts F,G ∶ R→ R of these
two maps, we have for s ∈ S1 and k ∈ Z,

G(s + k) = G(s + k − 1) + deg(g) = G(s + k − 2) + 2 deg(g) = ⋯ = G(s) + k deg(g).

But this means

G (F (s + 1)) = G (F (s) + deg(f)) = G (F (s)) + deg(f)deg(g).

�

Example 6.15. deg(fn) = (deg(f))n.

Hence we can use this to show:

Proposition 6.16. If f ∶ S1 → S1 is expanding, then ∣deg(f)∣ > 1 and Pn(f) =
∣(deg(f))n − 1∣.

6.1.3. Hyperbolic Toral Automorphisms. Here is a 2-dimensional version
of periodic point growth. Let L ∶ R2 → R2, L(x, y) = (2x + y, x + y). We can also
write L as the linear vector map

L(x) = Ax, where A = [ 2 1
1 1

] .
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Remark 6.17. Note here that when vector spaces are finite dimensional and
bases are given or understood, then any linear map can be represented by the
matrix defining the action. Hence we will simply call L the transformation of
the plane given by the matrix A, and refer to L as either the map or the matrix

L = [ 2 1
1 1

]. In mathematics, this is known as an abuse of notation. And when

little added confusion results, it can be an effective way to reduce the number of
objects involved in a discussion.

We know that since A has integer entries, it takes integer vectors to integer

vectors, and hence descends to a map on the two torus T2. Indeed, if x1 = [ x1

y1
]

and x2 = [ x2

y2
] satisfy x1 − x2 ∈ Z2, then

L(x1 − x2) = L(x1) −L(x2) ∈ Z2.

But then L(x1) − L(x2) = 0 mod 1, which means L(x1) = L(x2) mod 1. Hence
the map L induces a map on T2 which assigns

(x, y) z→ (2x + y mod 1, x + y mod 1).
We will call this new induced map on the torus FL ∶ T2 → T2, where

FL(x) = Ax, A = [ 2 1
1 1

] , x ∈ T2.

Some notes:

● This map is an automorphism of T2: A homeomorphism that preserves
also the ability of points on the torus to be added together (multiplied, if
one defines the multiplication correctly).

● FL is also invertible since it is an integer matrix of determinant 1. The

inverse map F −1
L ∶ T2 → T2 is given by the matrix A−1 = [ 1 −1

−1 2
].

● The eigenvalues of FL (really the eigenvalues of A) are the solutions to
the quadratic equation λ2 − 3λ + 1 = 0, or

λ = 3 ±
√

5

2
.

Note that

λ1 =
3 +

√
5

2
> 1, and λ2 = λ−1

1 = 3 −
√

5

2
< 1,

so that the matrix defining FL is a hyperbolic matrix (determinant-1 with
eigenvalues off the unit circle in C). Hence L here is a hyperbolic map of
the plane, given the classification in Section 3.3. Than FL is is an example
of a hyperbolic toral automorphism.

Generalize all of this to hyperbolic toral automorphisms: Let L ∶ R2 → R2,
L(x, y) = (ax + by, cx + dy) be a linear map of R2, where ad − bc = 1 and ∣a + c∣ > 2.
These are the hyperbolic planar maps that descend to hyperbolic toral automor-
phisms FL.

Exercise 159. Show that a determinant-1, 2× 2-matrix with integer entries is
hyperbolic iff the trace has magnitude greater than 2.
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Question 6.18. How does FL act on T2?

Really the answer to this question relies on how L acts on R2. Watching the
model of T2 as the unit square in R2 as it is acted on by L provides the means to
study the FL action on T2. This is the two dimensional version of studying a lift
of a circle map on R as a means of studying the circle map.

Linear maps of the plane take lines to lines. Hence they take polygons to
polygons, and, in this case, they take parallelograms to parallelograms. The image
of the unit square can be found by simply finding the images of the four corners
of the square and constructing the parallelogram determined by those points by
connecting corresponding adjacent point via lines. See the left side of Figure 3.
But there is more. L is area preserving. Hence the image of the parallelogram will
also have area 1 (remember the discussion around Equation 5.1.1.) And due to the
equivalence relation given by the exponential map on R2, every point in the image
of the unit square has a representative within its equivalence class INSIDE the unit
square. We can reconstruct the unit square by translating back all of these outside
points back into the square. This becomes the image of points on the torus back
into the torus, as seen in Figure 3 on the right.

Figure 3. The map FL, for

Notice in the figure that

L([ 1
1

]) = [ 3
2

] , L([ 1
0

]) = [ 2
1

] , and L([ 0
1

]) = [ 1
1

] .

Exercise 160. Draw the torus in its representation in R3 (as the surface of
a doughnut) with its two canonical loops that correspond to the edges of the unit
square in R2, viewed as a fundamental domain. Then carefully draw the images of
these two curves under the following hyperbolic linear toral maps given by the fol-
lowing matrices. You may want to draw the images of the edges of the fundamental
domain in R2 first.

(a) [ 2 1
1 1

].

(b) [ 3 2
1 1

].

Question 6.19. How are any periodic points distributed?
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we have the following proposition:

Proposition 6.20. The set of all periodic points of FL ∶ T2 → T2 is dense in
T2 and Pn(FL) = λn1 + λ−n1 − 2.

Proof. The first claim we will make to prove this result is the following: Every
rational point in T2 is periodic. To see this, note that every rational point in T2 is
a point in the unit square with coordinates x = s

q
, and y = t

q
, for some q, s, t ∈ Z. For

every point like this, FL(x, y) is also rational with the same denominator (neglecting
fraction reduction, do you see why?) But there are only q2 distinct points in T2

which are rational and which have q as the common denominator. Hence, at some
point, O(x,y) will start repeating itself. Hence this claim is proved. Now notice that

the set of all rational points in T2 is dense in T2, or

Q ∩ [0,1] ×Q ∩ [0,1] = [0,1]2.

Hence the periodic points are dense in T2.
The next claim is: Only rational point are periodic. To see this, assume

FL ([ x
y

]) = [ x
y

]. Then

FnL ([ x
y

]) = [ a b
c d

] [ x
y

] = [ x
y

] mod 1,

and this forces the system of equations

ax + by = x + k
cx + dy = y + ` , for k, l ∈ Z.

Simply solve this system for x and y and you get that x, y ∈ Q.

Exercise 161. Solve this system for x and y.

The number of periodic points can be found by creating a new linear map.
Define

Gn ([ x
y

]) = FnL ([ x
y

]) − [ x
y

] = (FnL − I2) [
x
y

] .

The n-periodic points are precisely the kernel of this linear map:

Pern(FL) = ker(Gn) =
⎧⎪⎪⎨⎪⎪⎩
[ x
y

] ∈ R2
RRRRRRRRRRR
Gn ([ x

y
]) = [ 0

0
]
⎫⎪⎪⎬⎪⎪⎭
.

We can easily count these now to calculate Pn(FL). They are precisely the pre-
images of integer vectors!

Claim. All pre-images of [ 0
0

] under the map Gn = FnL − I2 are given by

Z2 ∩ (Ln − I2) ([0,1) × [0,1)).

● Since FL is to be understood as simply the matrix L where images are
taken modulo 1, the map Gn is simply the map Ln − I2 where images are
taken modulo 1. Hence we can study the effect of Gn by looking at the
image of Ln − I2.
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● To avoid over-counting points, we modify our unit square, eliminating
twice-counted points (on the edges) and quadruply-counted points (the
corners). Consider the “half-open box” [0,1)2 as our model of T2. In this
model, every point lives in its own equivalence class.

We try a few early iterates:

Example 6.21. G1 = FL − I2. Then the corresponding map on R2 is

L − I2 = [ 2 1
1 1

] − [ 1 0
0 1

] = [ 1 1
1 0

] .

This map is a shear on [0,1)2 and we see that the only integer vector in the image
is the origin: The red dot in Figure 4. Thus

P1(FL) = λ1 + λ−1 − 2 = 3 +
√

5

2
+ 3 −

√
5

2
− 2 = 3 − 2 = 1.

Figure 4. G1-action on T2 as seen through the map L − I2 on [0,1)2.

Example 6.22. G2 = L2 − I2. Here

G2 = L2 − I2 = [ 2 1
1 1

] [ 2 1
1 1

] − [ 1 0
0 1

] = [ 5 3
3 2

] − [ 1 0
0 1

] = [ 4 3
3 1

] .

This map is a little more complicated, and we see in Figure 5 that there are a few
more integer vectors in the image, namely the points (2,1), (3,2), (4,2), and (5,3).
And since

P2(FL) = λ2 + λ−2 − 2 = 7 − 2 = 5,

we see that the formula continues to hold.

Exercise 162. What were the original points in [0,1)2 that correspond to
these 5 integer vectors under G2?

Exercise 163. Draw the image of [0,1)2 in R2 under the linear map corre-
sponding to G3 for FL above. Calculate P3(FL) via the formula and verify by
marking the integer points in (L3 − I2) ([0,1)2). Choose two non-zero integer vec-

tors in the image and identify the original 3-periodic points in T2 that correspond
to them.

This proof ends by appealing to a strikingly beautiful result by Georg Alexander
Pick in 1899, which we now call Pick’s Theorem:
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Figure 5. G2-action on T2 as seen through the map L2 − I2 on [0,1)2.

Theorem 6.23 (Pick’s Theorem). Let A ∈ R2 be a polygon in the plane whose
vertices are integer points (points with integer coordinates). Then for I the number
of integer-points in the interior of A and B the number of integer-points on A, we
have

area(A) = I + 1

2
B − 1.

Here, the polygonal integer points are edge points and vertex points, so that
1
2
B − 1 = B−2

2
. For a parallelogram, as in our case, this amounts to collecting up

all integer-points on the polygon, and counting each as a half and also counting all
four vertices as 1. Sort of like double counting edge points and quadruple counting
vertex points. The unit square is the fundamental domain of T2. Hence opposite
edges are identified and all four corners are the same point in the quotient. Hence
Pick’s Formula, applied to our square [0,1)2 with its only two edges and o vertex,
reduces to a simple counting of interior points and the remaining edge points (See
Figure 6. In sum: The area of Gn ([0,1)2) is precisely equal the number of integer-
vectors in the image. And the latter is given by

∣det (Gn)∣ = ∣detLn − I2∣ = ∣(λn − 1)(λ−n − 1)∣ = λn + λ−n − 2,

where λ is the largest eigenvalue (in magnitude) of L. �

Figure 6. Pick’s Formula for parallelograms.
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Note: G2 on R2 is NOT area preserving! In fact,

det(G2) = ∣ 4 3
3 1

∣ = 5.

Note that the map FL above was area-preserving on the torus. It is also in-
vertible (any determinant one matrix with integer coefficients is invertible, and the
inverse is also of determinant one with integer entries!) However, area-preserving
does NOT ensure invertibility of the map. The prime example is the circle map
Em ∶ S1 → S1, where Em(z) = zn. The map is area-preserving, if we sum all of the
lengths of the disjoint pre-images of small sets. But it is also of degree m. And if
∣m∣ > 1, the map is m to 1. Invertibility is a very desirable quality for a map, as
it allows us to work both forwards and backwards in constructing orbits. Fortu-
nately, there are ways to study non-invertible maps by encoding their information
in a (different) invertible dynamical system. We will introduce this concept here,
but not spend a lot of time on it for now:

6.1.4. Inverse Limit Spaces. One issue with many-to-one maps like E2

above is precisely that the map is not invertible: Each point in the range of the
function has two distinct pre-images. For example,

E−1
2 (1

4
) = {1

8
,
5

8
} .

That the map is volume preserving is well-hidden by this property as we have seen.
One can account for the non-injectivity via a “choice” of pre-image for a particular
point, but one cannot move backward along an orbit in general. There is a way to
account for all orbits pre-origins, however, which we do now.

For X a metric space with f ∶X →X a surjective map, let

(X,f) = {x = (. . . , xi, . . . , x−2, x−1, x0) ∣ xi ∈X, i ∈ −N, f(xi) = xi+1}
be the set of all sequences of points in X that serve as orbits leading up to x0, for
all choices of x0 ∈ X. The set (X,f) may seem a bit unwieldy and complicated,
but it has some nice properties. For example, one can use the topology of X to
endow this set with its own topology. Indeed, (X,f) is a subset the bigger set of all
infinite sequences of X, called sometimes X∞, a space given the (infinite) product
topology. By a famous theorem of Tychanoff, if X is compact, then so is (X,f).
And, as a topological space, (X,f) also can be made a metric space with the metric

d(x,y) = ∑
i≤0

2idxi − yi),

where d is the metric on X.

Exercise 164. Show that this is a metric.

Now, define the map Tf ∶ (X,f) → (X,f) by

Tf (. . . , x−3, x−2, x−1, x0) = (. . . , x−2, x−1, x0, f(x0)) .
It turns out that this map is a homeomorphism: It is continuous in the product
topology (we will not show this), as is its inverse (drop off the final term), and we
have the exercise:

Exercise 165. Show Tf is one-to-one and onto.
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In fact,
Tf(x) = f(x).

Here, (X,f) is called the inverse limit space of X, given f . It catalogs every
orbit that leads to x0. Now create the space of bi-infinite sequences (or a two-sided
sequence space)

X ′ = {(. . . , x−3, x−2, x−1, x0,O+
x0

) ∣ xi ∈X, i ∈ Z, f(xi) = xi+1}
and extend Tf to X ′. Then Tf is just the left shift map on X ′. It remains a
homeomorphism, X ′ is also compact when X is, and every point in X ′ constitutes
an entire Z-orbit. The inverse, T −1

f is the right shift.

Example 6.24. For E2(x) = 2x mod 1 on S1, some of these sequences which
correspond to x0 = 1 look like

0th place

↓

{. . . , 1

8
,
1

4
,
1

2
, 1 ,1,1, . . .}

{. . . , 1

4
,
1

2
,1, 1 ,1,1, . . .}

{. . . , 3

8
,
3

4
,
1

2
, 1 ,1,1, . . .}

{. . . , 7

8
,
3

4
,
1

2
, 1 ,1,1, . . .}

Definition 6.25. For X a metric space and f ∶X →X continuous, the inverse
limit is defined on the space of sequences

X ′ =
⎧⎪⎪⎨⎪⎪⎩
{xn}n∈Z

RRRRRRRRRRR
xn ∈X, f(xn) = xn+1, ∀n ∈ Z

⎫⎪⎪⎬⎪⎪⎭
by F ({xn}n∈Z) = {xn+1}n∈Z.

This is a new dynamical system defined by the map F on the inverse limit
space X ′. Note that since this map takes entire sequences to sequences, it is 1-1,
and hence we can go backwards. On sequences, this map is invertible, since the
entire history of a point is already in the “point” (read: sequence).

Example 6.26. Back to the map E2 on S1, the limit space is

S =
⎧⎪⎪⎨⎪⎪⎩
{xn}n∈Z

RRRRRRRRRRR
xn ∈ S1, E2(xn) = xn+1, ∀n ∈ Z

⎫⎪⎪⎬⎪⎪⎭
with the map F ({xn}n∈Z) = {2xn mod 1}n∈Z. The space S is called a solenoid, and
a picture of it site on the cover of the book.

6.2. Symbolic Dynamics

Thinking along the lines of the inverse limit spaces we saw recently, we can
adapt that construction to create a new type of dynamical system that serves as a
beautiful and important model for many of the concepts we will see soon. To start,
let M = {0,1,2, . . . , n − 1} be a finite, discrete set of n symbols (we use numbers
here, but there is no natural reason why.) We can topologize M with the discrete
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topology (every subset is considered “open”) so that M is a topological space. It
is even a metric space, as one can define dM(x, y) = 1− δij onM as a metric where
every element is distance-1 from every other element.

Exercise 166. Show that this is a metric.

Now construct two other sets,

MN = {x = {xi} ∣ i ∈ N, xi ∈ M} ,
MZ = {x = {xi} ∣ i ∈ Z, xi ∈ M} ,

respectively the set of one-sided and two-sided infinite sequences of elements in
M. It is easy to see that these sets can also be made into spaces via the product
topology. In this topology, one can construct open sets via a metric. Let

d(x,y) = ∑
i∈K

xi − yi
2∣i∣ .

Then the 1
2n

-neighborhoods of a particular sequence are the precisely the set of all
sequences that agree with the particular sequence at every position from 0 to n in
the case of MN. And in the case of MZ, that agree on the positions from −(n + 1)
to n + 1. These are called open cylinders in the product topology.

Definition 6.27. Let (X,P) be a partitioned space. We say a map f ∶X →X
respects P, if ∀i ∈ {1,2, . . . , n},

f(Pi) =
n

⋃
j=1

δijPj , where δij = { 1 ∃x ∈
○
Pi such that f(x) ∈

○
Pj

0 otherwise.

Here, when (X,P) is a partitioned space and f respects the partition, we say
that f has the Markov condition and will call P a Markov partition for f on X.

Definition 6.28. For P a Markov partition for f on X, the transition matrix
is an n × n matrix A where aij = δij .

Figure 7. The
graph of f(x).

Markov partitions are way of encoding in-
formation about orbits without tracking the
precise points in the orbit. In essence, one di-
vides a domain into a finite number of pieces,
and then records only the piece an orbit visits at
each natural number or integer. Now this only
works when the map takes each partition ele-
ment onto a union of other partition elements;
partition elements must map to partition ele-
ments. But this course record of orbit behavior
can illustrate a lot of dynamical information, as
we will see.

Example 6.29. Let I = [0,1] and f ∶ I → I
be defined as

f(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3x + 1
4

0 ≤ x ≤ 1
4

4
3
− 4

3
x 1

4
≤ x ≤ 1.

See Figure 7. Here we create P = {P1,P2}, where P1 = [0, 1
4
] and P2 = [ 1

4
,1]. Then

P is a Markov partition for f on I, since f(P1) = P2 and f(cP2) = P1⋃P2. The
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transition matrix is then A = [ 0 1
1 1

]. And f on I is a subshift of finite type.

One can say that, symbolically, f corresponds to the one-sided left shift map on
the sequence space MN, where M = {0,1},where the invariant subset of allowable
sequences are the ones with no consecutive 0’s in them.

Figure 8. The
graph of g(x).

The number of elements in the partition
dictates the “size” of the sequence space, and
accordingly the size of the transition matrix.
That the map f above is not injective will play
a crucial role later, as we will see. For now,
contrast this with another example:

Example 6.30. Let g ∶ I → I be given as
in Figure 8. Then a Markov partition for g is
P = {P1,P2,P3}, where P1 = [0, 1

3
], P2 = [ 1

3
, 2

3
]

and P3 = [ 2
3
,1]. The transition matrix here is

A =
⎡⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
. Here, g corresponds to the

left shift map on the subshift of finite type on

{0,1,2}N characterized by the forbidden blocks
F = {23,33}.

Exercise 167. Create a piecewise linear
C0 map on I where F = {11,22,23}, and write out the transition matrix A.

Figure 9. The
graph of the full
tent map T2(x).

When each element of a partition maps to
the union of all of the element of the partition,
there are no forbidden blocks. Here, the sub-
shift is a full shift on M.

Example 6.31. Consider the map on I at

left, given by T2(x) = { 2x 0 ≤ x ≤ 1
2

2(1 − x) 1
2
≤ x ≤ 1

.

The graph of T2(x), the notation will become
apparent soon) is often called the full tent map
on the unit interval I, as seen in Figure 9. Given
the obvious partition, T2 corresponds to the full

left shift on the sequence space {0,1}N. As both
partition intervals are mapped onto I, there are
no forbidden blocks here. A slight alteration of
notation reveals another interesting fact. Write
each sequence as a binary expansion:

x = {xi}i∈N = (.x1x2x3 . . .)2 ,

where the decimal simply indicates a starting point for the sequence. Then the
shift map is just the map 2x mod 1 on these binary numbers, since

f(x) = f ({xi}) = 2 ⋅ (.x1x2x3 . . .)2 mod 1

= (x1.x2x3x4 . . .)2 mod 1 = (.x2x3x4 . . .)2 = {xi+1} .
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6.3. Chaos and Mixing

Recall a map f ∶ X → X on a metric space is topologically transitive if there
exists a dense orbit. Some examples that we looked at included the irrational
rotations of S1 and the irrational linear flows on the two torus T2. Note that these
examples had no periodic points at all, and all orbits were dense. Contrast that
with the idea some dynamical systems seemed to be full of periodic points. Think of
rational rotations of S1 and rational linear flows on T2. Again, on these examples,
all points were periodic, and none of these maps are topologically transitive.

These properties seem to be mutually exclusive, and are when the dynamics
are relatively simple to describe. However, for dynamical systems which possess
both a dense supply of periodic orbits as well as a dense orbit, the dynamics can
be labeled quite complex. How complex?

Definition 6.32. A continuous map f ∶X →X of a metric space is said to be
chaotic if

● f is topologically transitive,

● Per(f) =X.

Notes:

● There are many definitions of chaos floating around in this area, as efforts
to finally pin down the concept continue. This definition really is one of
the better universal definitions we have for the concept. That said, there
is still a slight problem even with this definition. For details now, see
Theorem 6.52 and and adjacent Example 6.53.

● Either one of these properties without the other means that the dynamics
are relatively simple to describe.

Some examples that we were recently playing with:

(1) Let Em ∶ S1 → S1 be the linear expanding map of S1, for ∣m∣ > 1.
(2) Let fλ ∶ C → C be the logistic map for λ > 4, restricted to the Cantor set

of point whose orbit lies completely within the unit interval.
(3) Let FL ∶ T2 → T2 be the linear hyperbolic automorphism of the two-

torus given by the linear automorphism of the plane determined by the
hyperbolic matrix L.

In the first and third cases, we showed that the periodic points are dense in
the respective spaces. Hence the dynamical systems are chaotic if we can show
there actually exists a dense orbit. The same holds for the Cantor map, although
we did not actually show that the periodic points are dense. However, showing
directly that there exists a dense orbit is not easy. We will instead construct a bit
more machinery, and show that these maps possess some stronger properties that
transitivity. In this way, we can study the maps in more detail, and gain some
additional insight into the structure of these dynamical systems. To start:

Proposition 6.33. Let X be a complete separable metric space with no isolated
points. For f ∶X →X continuous, the following are equivalent:

(1) f has a dense orbit and is topologically transitive,
(2) f has a dense positive semiorbit,
(3) if U,V ⊂X are open and nonempty, ∃N ∈ Z such that fN(U) ∩ V /= ∅,
(4) if U,V ⊂X are open and nonempty, ∃N ∈ N such that fN(U) ∩ V /= ∅.
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Remark 6.34. Recall that a metric space is complete if all Cauchy sequences
converge. And X is separable if there exists a countable dense subset. These
properties, along with the “no isolated points” condition, are technical in nature and
while necessary, should not keep you from well understanding how this proposition
works on the nice spaces we are used to. So don’t worry too much at this point
about these technicalities.

Proof. Obviously 4 ⇒ 3 and 2 ⇒ 1. If we can show that 3 ⇒ 2 and 1 ⇒ 4,
we would be done. We will not do this, however. The real point of this exposition
is to understand the relationship between 1 and 3. To this end, we will prove the
statement 1⇒ 4.

Let f be topologically transitive, with a dense orbit given by Ox, x ∈X. Then
for any choice of nonempty, open sets U,V ⊂ X, ∃n,m ∈ Z such that fn(x) ∈ U ,
and fm(x) ∈ V . If we suppose for a minute that m > n, then we would get that
fm−n(U) ∩ V /= ∅, with N = m − n > 0. In the case that f is invertible, this makes
sense, since f−n(U) would be a neighborhood of x, so that fm(x) ∈ fm(f−n(U)).
With fm(x) ∈ V , the result follows. However, this works even in the case where f
is not invertible. Simply think of f−n(U) as being the inverse (set theoretic) image
of U (the set of all things that go to U under fn). See the picture.

If m−n < 0, then we can either increase the value of m if f has a dense positive
semiorbit, or decrease n if f has a dense negative semiorbit (it must have at least
one), via a construction similar to that of Corollary 5.7 of Theorem 5.6. Indeed,
suppose f has a dense positive semiorbit. Then, since X has no isolated points,

y = fm(x) ∈ U is not isolated, and there must be a m′ > m where fm
′(x) ∈ U

(close enough to y to be in U .) Indeed, there will be a sequence mk → ∞, where
fmk(x) ∈ U and fmk(x) → y. Choose k such that mk > n. Then let N = mk − n.
Decreasing the value of n is similar. �

Corollary 6.35. A continuous, open map f of a complete metric space is
topologically transitive iff there does not exist two disjoint, open f -invariant sets.

It will help in understanding this last statement to understand the notion of
an open map. Roughly speaking, a map is open if it takes open sets to open sets,
something that is not generally true for continuous maps (think of a constant map).
We will expound on this and topology in general shortly. However, the idea in the
previous corollary and discussion is that finding a dense orbit is equivalent to the
notion that the orbit of ANY open set in X must eventually intersect any other
open set in X actually provides a method of discovery for dense orbits. A set V ⊂X
is f -invariant, if f(V ) ⊂ V . Now assume that you have such a set V which is open.
Now take any other open set U . Whether it is invariant or not, its entire orbit OU
is a union of all of its images and is hence open in X if the map f is open. The
Corollary says that an open map is topologically transitive iff we cannot divide the
space into two disjoint open sets which are each invariant under f . Put this way,
the two notions look very much alike.

To better get some of these ideas, lets go over a bit of topology:

Definition 6.36. A topology on a set X is a well-defined notion what consti-
tutes an open subset of X.

What well-defined means is: A topology on X is a collection TX of subsets of
X that satisfy
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● ∅ and X are in TX ,
● the union of the elements of any subcollection of TX is in TX , and
● the intersection of the elements in any finite subcollection of TX is in TX .

For a topology TX on X, the elements of TX are called open. Also, any set that
is given a topology, is called a topological space.

Example 6.37. The set of all open intervals (a, b) ⊂ R constitutes a topology
on R, called the standard topology TR, for −∞ ≤ a ≤ b ≤ ∞. It should be obvious
that this allows all of R to be in TR, and if we let a = b, then the element (b, b) = ∅
is also in TR. The union of any collection of open intervals is certainly open also.
Now, without the last condition, however, we would have a problem: Suppose we
allowed that the intersection of any subcollection of TR to be in TR. Then the set

∞
⋂
n=1

(− 1

n
,

1

n
) = {0}

would have to be open. But then all individual points would also be open, and thus
by the middle constraint, any subset of X would be open! You can see why the
third provision is necessary. Incidentally, there is a topology on R (or any other
set), where each of the points is considered open. It is called the trivial topology
on the set, and although it works via the definitions, it does not describe well the
actual set as a space.

Some facts:

Definition 6.38. For f ∶ X → Y a (not necessarily continuous) map between
two topological spaces, f is continuous if whenever V ⊂ Y is open (an element of
its topology TY ), then f−1(V ) ⊂X is open (an element of TX).

This allows us to talk about maps being continuous between arbitrary topo-
logical spaces, in a way that is entirely compatible with what you already learned
as the definition of continuity between spaces like subsets of R in Calculus I, or
subsets of Rn in Calculus III. Then, we simply assumed the standard topologies on
Euclidean space, and the notions of “nearness” which is at the center of continuity
comes out of the little ε-balls used to define continuity.

We can alter this definition to better fit the notion you are already familiar
with:

Definition 6.39. A function f ∶ X → Y is continuous at some point x ∈ X if
and only if for any neighborhood V of f(x), there is a neighborhood U of x such
that f(U) ∈ V .

In topology, any open set in X (a member of TX) is called a neighborhood
of any of its points. Hence again, this definition depends on the topologies of X
and Y . It basically says that no matter how “small” we choose an open set V
containing f(x), we can always find an open set U , containing x, where f(U) sits
entirely inside V .

Now, for a minute, choose Y = X, a metric space (so that we can talk about
ε-balls around points given a metric). Then we have

Definition 6.40. For x a metric space, a function f ∶X →X is continuous at
a point x = a ∈ X, if given ε > 0, there is a δ > 0 such that when ∣x − a∣ < δ, (really,
when x ∈ Bδ(a)), then ∣f(x) − f(a)∣ < ε (really, f(x) ∈ Bε(f(a)).)
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Now think about this last definition and the definition you saw in Calculus
(either Calculus I or Calculus III). In Calculus I, the standard ε-δ definition of a
limit, altered for continuity by switching the L for f(a), is exactly the last definition
above, as the graph at right shows.

Back to the task at hand, we go one step farther with another definition:

Definition 6.41. f ∶ X → Y is called an open map, if it is continuous and if
whenever U ⊂X is open, then f(U) ⊂ Y is open also.

While continuity is common among maps, “openness” is not, and is kind of a
special property. When the map f has a continuous inverse, then f is open. But
this is not that common a property.

Exercise 168. Prove Corollary 6.35 in detail.

Now, we know expanding maps of S1 and hyperbolic automorphisms of T2 look
messy dynamically. The question is: How messy are they?

Definition 6.42. A continuous map f ∶ X → X is said to be topologically
mixing if, for any two nonempty, open set U,V ⊂X, ∃N ∈ N, such that fn(U)∩V /=
∅, ∀n > N .

Notes:

● Do you see how much stronger (more restricting) this is to topological
transitivity? For instance, (topologically mixing)⇒(topologically transi-
tive), but not vice-versa. To see why, think of the irrational rotations of
the circle. The orbit of a small open interval will eventually intersect any
other small open interval. But, depending on the rotation, will most likely
leave again for a while before returning. This is not mixing!

Exercise 169. Show that topological mixing implies topological tran-
sitivity.

● Actually, the problem with irrational circle rotations is a bit deeper; they
are isometries:

Lemma 6.43. Isometries are not topologically mixing.

Proof. Under an isometry, the diameter of a set U ⊂X, diam(U) is
preserved. Let U = Bδ(x) ⊂X be a small δ-ball about a point x ∈X. Here
diam(U) = 2δ and ∀n ∈ N, diam(fn(U)) = 2δ. Now choose v1, v2 ⊂ X,
such that the distance between v1 and v2 is greater than 4δ. Let V1 =
Bδ(v1) and V2 = Bδ(v2) (so that the minimal distance between these two
balls is greater than 2δ). If we assume that the isometry f ∶X →X is top.
mixing, then there will be a k ∈ N, such that both fn(U) ∩ V1 /= ∅, and
fn(U)∩V2 /= ∅. ∀n > k. But this is impossible since V1 and V2 are too far
apart to both have nonempty intersection with an iterate of U . Hence f
cannot be mixing. �

Proposition 6.44. Expanding maps on S1 are topologically mixing.

Proof. for now, suppose that the expanding map is C1. Differentiable ex-
panding maps have the property that for f ∶ S1 → S1, ∣f ′(x)∣ ≥ λ > 1, ∀x ∈ S1. Let
F ∶ R→ R be a lift. it is an exercise to show that the lift also shares the derivative
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property, ∣F ′(x)∣ ≥ λ, ∀x ∈ R. So choose a small closed interval [a, b] ⊂ R, where
b > a. Then, by the Mean Value Theorem, ∃c ∈ (a, b), such that

∣F (b) − F (a)∣ = ∣F ′(c)∣∣b − a∣ ≥ λ(b − a).
Hence, the length of the iterate of the interval is greater by a factor of λ than the
interval. This continues at each iterate of F , so that ∃n ∈ N, such that ∣∣Fn ([a, b])∣∣ >
1. But then π (Fn ([a, b])) = S1.

Now simply grab the open interval (a, b), noting that π((a, b)) will also be open
(on small intervals, π is a homeomorphism), and let U = π ((a, b)). With V be any
other open set in S1, we are done. �

Corollary 6.45. Linear expanding maps of S1 are chaotic.

Exercise 170. Without using Proposition 6.44 and topological mixing, show
expanding maps are chaotic.

Somewhere around here, place the Smale Horseshoe as a means to describe a
planar chaotic set.

Proposition 6.46. FL ∶ T2 → T2, the linear hyperbolic automorphism of the
two torus given by the hyperbolic matrix L is topologically mixing.

Corollary 6.47. FL is chaotic.

For a brief idea why the previous proposition is true, recall for FL given by the

matrix L = [ 2 1
1 1

], the eigenvalues were λ = 3±
√

5
2

, and the eigenvalue greater than

1 (the “expending” eigenvalue) has eigendirection given by the vector [
1

−1+
√

5
2

].

Choose a small open line segment T along the line y = (−1+
√

5
2

)x+ c within the box

representing the torus. As we iterate the map, the orientation of the line stays the

same, while the length of the line grows by a factor of λ = 3+
√

5
2

at each iterate.
For N >> 1, we would find that the length of FL(T ) will be huge, and wrap around
the torus quite densely. In fact, we can choose this N so that FNL (T ) will intersect
ANY ball of radius ε in T2. Hence choose any ε-ball V and any other ε-ball U , and
take as our T the diameter of U in the direction of the line y = (−1 +

√
52)x + c.

Then after the above chosen N , we would have FnL (U)∩V /= ∅, for all n > N . Hence
FL is topologically mixing on T2.

And finally, we will not prove this explicitly, but we have the following:

Proposition 6.48. The logistic map fλ ∶ C → C, where λ > 2 +
√

5 > 4, and
where C ∈ [0,1] is the Canter set of points whose entire orbits stay within [0,1] is
expanding.

Proposition 6.49. fλ as above, is topologically mixing.

Corollary 6.50. fλ as above, is chaotic on C.

6.4. Sensitive Dependence on Initial Conditions

So the next questions is: What information does chaos, as a property, convey
about the dynamical system? Flippantly speaking, it tells us that the orbit struc-
ture is quite complicated. It tells us that arbitrarily close to a periodic point, are
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non-periodic points whose orbits are dense in the space. On the other hand, it tells
us that arbitrarily close to a point whose orbit is dense in the space, are periodic
points of arbitrarily high period. Hence simply being very close to a point of a cer-
tain type does not mean that the orbits will be similar. This means that one cannot
rely on estimates or precision to help determine orbit behavior. Mathematically, it
means the following:

Definition 6.51. A map f ∶ X → X of a metric space is said to exhibit a
sensitive dependence on initial conditions if ∃∆ > 0 (called a sensitivity constant),
where ∀x ∈X and ∀ε > 0, ∃ a point y ∈X where d(x, y) < ε and dA(fN(x), fN(y)) >
∆ for some N ∈ N.

There are lots of notes to say on this topic:

● The idea here is, for certain constants, no matter how small a neighbor-
hood of a chosen point x you start, there will always be a point y in this
neighborhood that after a time, its neighborhood will be far away from
the orbit of x.

● The existence of at least one point in each neighborhood of an arbitrary
point x whose orbit veers away from the orbit of x is the notion that
everywhere there is an expanding direction (think of a differentiable map
whose derivative everywhere, as a matrix, has at least one eigenvalue of
modulus greater than 1). This is like the hyperbolic action on the torus.

● This idea was quite profound: Early developers of classical mechanics
tended to believe that eventually we would understand the universe com-
pletely. Given the universes state in an instant, we should be able to
predict its state at any future moment. This was the thinking around the
early 1800’s of people like Laplace.

● Poincare, in the late 1800’s, saw this phenomenon of a sensitive depen-
dence on initial conditions in the classical three-body problem. He under-
stood immediately that the earlier reasoning was flawed. Indeed, knowing
the precise state of all things in the universe was impossible. And with
the presence of a sensitive dependence on initial conditions (even in the
simplistic three-body problem), a reasonable approximation to the uni-
verse’s state in an instant would never be good enough to make good long
term predictions.

● Edward Lorentz, studying early climate models on a computers like at
MIT in the 1960’s, saw his deterministic (though nonlinear!) computer
model make wildly divergent predictions given the exact same input values
in redundant runs of his program. Puzzled as to why this was the case,
it became clear that the model was fine. It was the assumption that any
number is known to infinite precision in a computer. For example, zero
is not zero on a computer. Setting a variable to 0 on a computer makes
the number 0 only to within a certain precision (it stores the number in a
certain number of bytes). For example, 0 in single precision, is only 0 down
to 10−7. If in the model this number is multiplied by a very large number,
any variance from true 0 would be multiplied into the realm where it will
change the calculations. Do this same run twice and you would get two
different values for the result. This small variance is like trying to grab
a point like x above and instead getting a nearby number like y instead.
In the calculations, the resulting orbits would veer away from each other,
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and the results would be different. Eventually, this was the discovery that
Lorentz had made. Incidentally, the Lorentz Butterfly is an example of
what is called a “strange attractor”, and came out of the puzzle Lorentz
created.

● Isometries cannot exhibit a sensitive dependence on initial conditions.
Why not?

● For f(x) = 2x mod 1, distance between nearby points grow exponentially
by 2n. This is a sensitive dependence on initial conditions. Eventually,
this distance is larger than 1, and at this point, future iterates of each
orbit tend to look unrelated to each other.

● for a map exhibiting a sensitive dependence on initial conditions in a
compact space (closed and bounded), one can see how the orbit structure
can be complicated. If all orbits are moving away from each other, and yet
cannot go beyond the boundaries of the space, they just wind up mixing
around each other. Think of smoke rising form a hot cup of coffee, or
rising from a cigarette, and you can see just how complicated the orbits
can be in this case.

Exercise 171. Show isometries cannot exhibit a sensitive dependence on initial
conditions.

Theorem 6.52. Chaotic maps exhibit a sensitive dependence on initial condi-
tions, except when the entire space consists of one periodic orbit.

Example 6.53. Let

X = { 0 ,
1

5
,

2

5
,

3

5
,

4

5
} ,

and f ∶ X → X, f(x) = x + 1
5

mod 1. Here, f is continuous with respect to the
topology X inherits from R (this is called the subspace topology: Write X ⊂ R in
the obvious way. Then declare any subset of X to be open if it can be written as an
intersection of X with open set of R. This is really the trivial topology of X as it
is a finite, discrete subset of R, so each point of X is open). Here, X certainly has
a dense orbit (every point of X live in the orbit of 1

5
). And the set of all periodic

points of X are dense in X (ALL points of X are periodic). Hence f is chaotic on
X. But there certainly is not a sensitive dependence on initial conditions here.

Example 6.54. The twist map on the cylinder does have a sensitive dependence
on initial conditions. To see this, recall that each horizontal circle is invariant, and
has a different rotation along it which is a linear function of height. Now take any
point x, and any small neighborhood of x. This small neighborhood will include
points on horizontal circles different from that of x. Choose any one of these points.
Eventually, x and this other point will wind up pretty much on opposite sides of
the cylinder. So what is the sensitivity constant (the largest such ∆)?

Exercise 172. For the twist map and the standard parameterization (and
metric) of the circle given by the exponential map f(x) = e2πix, show the sensitivity
constant is 1

2
.

Proposition 6.55. A topological mixing map (on a non-trivial space) exhibits
a sensitive dependence on initial conditions.
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Remark 6.56. Perhaps a better definition of chaos is one which requires a
sensitive dependence on initial conditions as a third condition along with the other
two. This would discount the “chaotic” map in the above example (which is hardly
chaotic in a non-mathematical sense), while not restricting in any detrimental way
the intent of the property. In fact, this is a fairly widely accepted set of conditions
for a map to be chaotic. Note also that the condition of sensitive dependence on
initial conditions cannot by itself constitute a chaotic system. The twist map is
an example of a system hardly in a chaotic state. And even the star node, the
equilibrium at the origin of the map ẋ = I2x exhibits a sensitive dependence on
initial conditions. Again, hardly chaotic, with neither of the other two conditions
satisfied.

6.5. Topological Conjugacy

Place here the example of the flow on three space with one attractive cycle as
an example of how the time-t maps of a flow may not be topologically conjugate.
Also place here Denjoy’s Theorem. And then work out the idea of equivalency of
flows and do that also.

Definition 6.57. Suppose g ∶X →X and f ∶ Y → Y are maps of metric spaces
and there exists a surjective map h ∶X → Y such that

h ○ g = f ○ h.
Then f is called a factor of g under h and f is said to be topologically semiconjugate
to g via the semiconjugacy h. Furthermore, if h is a homeomorphism, then h is a
conjugacy and f is topologically conjugate to g. We say in this case that f ∼h g.

Remark 6.58. Homeomorphism defines an equivalence relation on the set of
all topological spaces, in the sense that if two spaces are homeomorphic, they are
for all intents and purposes equivalent. Indeed, via Definition 2.82, if h ∶X → Y is a
homeomorphism, then X ∼h Y . With X ∼X, using the identity map, Y ∼X using
h−1, also a homeomorphism when h is, and for g ∶ Y → Z a homeomorphism, we
have X ∼ Z using the homeomorphism g ○h. Now for maps on each of these spaces,
we can construct the same properties: f ∼ f , f ∼ g iff g ∼ f and when f ∼ g and
g ∼ j, then f ∼ j. And in a conjugacy, we can see directly that gm = h−1 ○ fm ○ h,
so that orbits go to orbits via h. Thus the orbit structure of g and that of f are
the same. This becomes an isomorphism for dynamical systems; as we will see, the
existence of a conjugacy allows us to study hard-to-study dynamical systems by
instead establishing a conjugacy between them and easy to study ones.

Figure 10. The
tent map Tr.

We can generalize the full tent map
from Example 6.31 to the tent map Tr ∶
[0,1] → [0,1] in Figure 10; a continuous,
piece-wise linear, unimodular interval map
given by

(6.5.1) Tr(x) = { rx if 0 ≤ x ≤ 1
2

r(1 − x) if 1
2
≤ x ≤ 1.

This is also sometimes called the sawtooth
function. Its height, at x = 1

2
, is r

2
.

In contrast, the linear expanding map
E2 on S1 has the graph at left. As a map
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on S1, it is certainly continuous (here, the
point 0 is the same as 1 in both the domain
and the range. Hence the map can run off
the top of the graph and reappear at the
bottom and still be continuous). As a graph in the unit square displays much of
the same information as the tent map when the peak is precisely at 1. In fact, we
can define E2 as an interval map via

E2(x) = { 2x if 0 ≤ x ≤ 1
2

2x − 1 if 1
2
≤ x ≤ 1.

Proposition 6.59. The logistic map f4(x) = 4x(1−x) on [0,1] is topologically
semi-conjugate to E2(x) = 2x mod 1 on S1 via h1(x) = sin2 πx, and topologically
conjugate to the tent map T2 ∶ [0,1] → [0,1] via the conjugacy h2(x) = sin2 π

2
x.

Exercise 173. Show that h2(x) is a homeomorphism, while h1(x) is surjective
but cannot be a homeomorphism.

Proof. Here, we will explicitly show the conjugacies. First, we show h1 ○E2 =
f4 ○ h1. This semi-conjugacy condition needs to be parsed along the linear pieces
of E2. Hence we want

h1(2x) = f4 (sin2 πx) for 0 ≤ x ≤ 1

2
and(6.5.2)

h1(2x − 1) = f4 (sin2 πx) for
1

2
≤ x ≤ 1.(6.5.3)

As for the left hand sides of these two equations, in Equation 6.5.2, we get h1(2x) =
sin2 π(2x) = sin2 2πx.. And in Equation 6.5.3, on the left, we also have

h1(2x − 1) = sin2 π(2x − 1) = sin2(2πx − π) = sin2 2πx

since sin(x − π) = − sinx. On the right hand side of each, we see

f4 (sin2 πx) = 4 (sin2 πx) (1 − sin2 πx)
= 4 (sin2 πx) (cos2 πx)

= 4(1

2
− 1

2
cos 2πx)(1

2
+ 1

2
cos 2πx)

= 4(1

4
− 1

4
cos2 2πx)

= 4(1

4
sin2 2πx) = sin2 2πx.
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As for the conjugacy h2(x), we need to show that h2 ○ T2 = f4 ○ h2. Again,
we would need to parse this condition along the two linear pieces of T2. The two
resulting equations are almost identical to the previous case. In fact, Equation 6.5.2
is precisely the same with all of the factors π replaced by π

2
(thereby replacing h1

with h2). And for Equation 6.5.3, this time we get

h2(2 − 2x) = sin2 π

2
(2 − 2x) = sin2 π(1 − x) = sin2 π − πx = sin2 2πx

since sin(π − x) = sinx. �

Notes:

● The maps h1 and h2 are truly re-
lated, and come from the relation-
ship between S1 and I. Conju-
gacies are really all about maps
that take orbits to orbits, and
any map that satisfies this con-
dition will transfer the dynamics
of one system to the other. In
this case, both the tent map and
the expanding circle map have
a certain symmetry about them;
E2 (x + 1

2
) = E2(x) on I, while T2(x) = T2(1 − x). f4 shares the latter

property with T2, and T2(x) = 1 − E2(x) on the interval 1
2
≤ x ≤ 1. The

sine function has the appropriate property that sinπx = sinπ(1− x). The
sine function is also a beautiful way to map S1 down onto an interval. In-
deed, view points of S1 as e2πix, for x ∈ I, and the real part of z = e2πix ∈ S1

is cos 2πx. We can scale this as a “tent-like” map on I as the function

x↦ 1 − cos 2πx

2
= 1

2
− 1

2
cos 2πx = sin2 πx.

This is precisely h1 above. For h2, halving the angle makes h2 1-1 on I.
● Once a (semi)-conjugacy is spec-

ified, ALL of the interesting dy-
namics of the logistic map for λ =
4 are present in the tent map for
r = 2, as well as the linear expand-
ing map E2 on S1.

Example 6.60. The map f4(x) = 4x(1−x) on [0,1] is not topologically conju-
gate to fλ(x) = λx(1 − x), for λ ∈ [0,1] since for each choice of λ, the latter family

does not have a nontrivial period-2 point, while x∗ = 5+
√

5
8

satisfies f4(x∗) /= x∗, but

f2
4 (x∗) = x∗. Check this.

Exercise 174. Show that the map h ∶ [0,1] → [−2,2], h(x) = 2 cosπx, estab-
lishes a conjugacy between the Tent map T2 and the map g(x) = 2 − x2.

Here is another beautiful family of examples:

Example 6.61. For α > 0 a real number, let ϕα ∶ R→ R be defined by

ϕα(x) = { xα x ≥ 0
−∣x∣α x < 0.
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Exercise 175. Show ϕα is a homeomorphism on R, and ϕ−1
α = ϕ 1

α
.

This family has the following property: Let gλ ∶ R→ R, gλ(x) = λx be a family
of linear maps for λ ∈ R. Then for λ′ = ϕα(λ), we have gλ = ϕ−1

α ○ gλ′ ○ ϕα, so that
gλ and gλ′ are topologically conjugate.

Exercise 176. Verify that for λ ∈ R, and α > 0 real, gλ = ϕ−1
α ○ gλ′ ○ ϕα, when

λ′ = ϕα(λ).

This leads to the following. Partition R into the following intervals:

(−∞,−1),{−1} , (−1,0),{0} , (0,1),{1} , (1,∞)
and define an equivalence relation R on R with these equivalence classes. We have
the following:

Proposition 6.62. For the family of linear maps gλ ∶ R → R, gλ(x) = λx,
λ ∈ R,

gλ ∼ gλ′ iff λ ∼R λ′.

Exercise 177. Prove Proposition 6.62.

Some notes about conjugacy:

● The Grobman-Hartman Theorem is a statement on the local conjugacy of
two flows: In a neighborhood of a hyperbolic equilibrium solution, the flow
of ẋ = f(x) is topologically conjugate to a linear flow W[GHTheorem].

● In general, the homeomorphism h establishing the conjugacy (or the sur-
jective map establishing the semi-conjugacy) is difficult, if not impossible,
to find. And even in the case where both f and g are smooth (C∞), h
need not be differentiable at all! As an example, f(x) = 2x and g(x) = 4x
are topologically conjugate, as in Example 6.61. But the conjugacy ϕ2(x)
has an inverse which is not differentiable. However, showing two maps
are not conjugate may in fact be quite easy. For example, if one map has
more fixed or n-periodic points then the other, they are not conjugate.

Here are a couple of interesting examples:

Example 6.63. [Arrowsmith & Price] Let f ∶ R → R be a diffeomorphism (a
C1-homeomorphism with a C1-inverse), where Df(x) > 0 for some x ∈ R. Then
f ≃ ϕ1, where ϕ1 is the time-1 map of the flow ϕt ∶ R3 → R2 of the differential
equation ẋ = f(x) − x. Indeed, f and ϕ1 share many of the same properties as
diffeomorphisms:

● Both are strictly increasing functions on R (do you see why?).
● Both have precisely the same fixed points, which correspond to the equi-

libria of the ODE.

Exercise 178. Show this.

Note. f can have an arbitrary finite number of fixed points (even
zero), a countably infinite number, or even a continuum. However, Fix(f)
is always a closed subset of R.

● If there exist gaps between successive fixed points for f , these gaps form
open intervals without fixed points. There can only be a countable number
of such fixed point gaps (why?)
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Suppose f /= IdR and choose one such gap I0. Its endpoints, if they
exist, will be fixed points. Suppose, for the sake of argument, it has both,
so that we can label them I0 = (x∗0, x∗1) (we will leave it to the reader to
adapt this argument for I0 an infinite length interval.) Now index the rest
of the gap intervals using a subset of Z compatible with the ordering on
R.

● f has no nontrivial periodic points and hence each gap Ii on the index set
is invariant: If x ∈ Ii, then Ox ⊂ Ii.

Figure ?? is an example of this construction. Here, we explicitly construct
h ∶ R→ R so that h ○ ϕ1 = f ○ h. Choose Ii and x0, y0 ∈ Ii. Construct the orbits

Ox0,f = {Pn}n∈Z = {fn(x0)}n∈Z , and(6.5.4)

= Oy0,ϕ1 = {Qn}n∈Z = {ϕn(y0)}n∈Z .(6.5.5)

Then f ∶ [Pn, Pn+1] → [Pn+1, Pn+2] and ϕ1 ∶ [Qn,Qn+1] → [Qn+1,Qn+2] are orientation-
preserving diffeomorphisms. Construct the homeomorphism (any will do, but we
will use the linear one)

h0(y) = x0 + (y − y0)(
f(x0) − x0

ϕ1(y0) − y0
) .

Extend this homeomorphism to all of the closed interval Ii = [x∗0, x∗1] via

hn ∶ [Qn,Qn+1] → [Pn, Pn+1], hn(y) = fn ○ h0 ○ ϕ−n(y).
Here, on the successive interval edges, we have hn(Qn+1) = hn+1(Qn+1) = Pn+1.

Then hIi ∶ Ii → Ii is defined by

hIi(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x∗i y = x∗i
hn(y) y ∈ [Qn,Qn+1] n ∈ Z
x∗i+1 y = x∗x+1 .

Do this on each interval gap Ii, and extend to all of R via

h(y) = { hIi(y) y ∈ Ii
y otherwise.

Exercise 179. Verify that this h is indeed a homeomorphism.

It is also a conjugacy, since if y ∈ Fix(f), then it is obvious that h ○ ϕ1(y) =
f ○ g(y). But also if y /∈ Fix(f), then y ∈ [Qn,Qn+1] ⊂ Ii for some n, i ∈ Z. And
then

h ○ ϕ1(y) = hn+1 ○ ϕ1(y) = fn+1 ○ h0 ○ ϕ−(n+1) ○ ϕ1(y)(6.5.6)

= f (fn ○ h0 ○ ϕ−n(y)) = f ○ hn(y) = f ○ h(y).(6.5.7)

Example 6.64. Let f, g ∶ R→ R both satisfy f(x) > x, g(x) > x ∀x ∈ R, so that
both are strictly increasing functions. Then f ∼ g. Indeed, let x0 ∈ R and consider
Ox0 = {f i(x0)}i∈Z ⊂ R. Here, of course, Ox0 , for any x0 is monotonically increasing
and defines a partition of R,

Px0 = ⋃
i∈Z

[xi, xi+1] .

Then for y0 ∈ (x0, x1), we have automatically yi = f i(y0) ∈ (xi, xi+1), ∀i ∈ Z. Hence
for all x ∈ R, Ox has a unique iterate in [x0, x1). f defines an equivalence relation
on R and the set of equivalence classes can be represented by the interval [x0, x1).
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Now choose any x′0 ∈ R and under g, construct another equivalence relation on
R in the same manner. Let h0 be any orientation-preserving bijection from [x0, x1]

to [x′0, x′1]. Then h0 defines a unique homeomorphism h ∶ R→ R where h∣
[x0,x1]

= h0

which takes Ox0,f to Ox′0,g and indeed takes every orbit of f to a unique orbit of g.

Exercise 180. Formally construct h from h0 and the two maps f and g.

Now if we very g, the new map will still be conjugate to the original f as long
as the condition of strictly increasing holds. To lose this condition would be to
introduce a fixed point for the new g. Since f has no fixed points, the two maps
would at this point not be conjugate.

There is a tendency to identify maps that seem to do the same thing even
though their descriptions are different. This is an abuse of logic that we try to get
away with when we value understanding over formal accuracy. For example, recall
that S1 had multiple geometric interpretations.

Example 6.65. Let X = R/Z and define the rotation Rα ∶ X → X by Rα[x] =
[x+α], where again [⋅] denotes the fractional part of any real number (Mod 1). Then
let Y = {z ∈ C ∣ ∣z∣ = 1}, and define the map rα(z) = zαz, where zα = e2πiα. Then
Rα and rα are really just topologically conjugate. SO what is the homeomorphism
that takes X to Y ? It is the exponential map h ∶ x ↦ e2πix. Now show that it is a
homeomorphism (on S1.) And what is its inverse?



CHAPTER 7

Dynamical Invariants

Recall our indicators of dynamical complexity from before: topological transi-
tivity, minimality, density of periodic orbits, chaos, growth rates of periodic orbits,
etc. These properties are called dynamical invariants under conjugacy:

● Allows you to study a new dynamical system by establishing a conjugacy
with a known one.

● Allows you to classify dynamical systems (everything conjugate to a known
dynamical system has the same dynamical invariants.

Theorem 7.1. Any two degree-2, expanding maps of S1 are conjugate.

Thus, the only degree-2 expanding map to study is the map E2 ∶ S1 → S1,
E2(x) = 2x mod 1.

Example 7.2. Rotation number classifies circle homeomorphisms

Herein we define a new dynamical invariant, called the topological entropy of a
map. Roughly speaking, it is the exponential growth rate of the number of orbit
segments distinguishable with arbitrary precision. To motivate this discussion, we
can say that entropy is a sort of analytical version of Lyapunov exponents.

Do a historical treatment and give a better description. W[Lyapunov Exponent]

Definition 7.3. Lyapunov Exponents are numbers which represent the expo-
nential rate of divergence of nearby trajectories.

The idea here is to take two trajectories of initial separation δ0 > 0. If after
time-t, the separation is δt = eλtδ0, then the Lyapunov exponent is λ. Note that
this depends largely on the direction of the measurement. Different directions of
travel will result in different separation rates. Of interest typically is the largest:

● For C1-dynamical systems, the exponents are related directly to the eigen-
values of the Jacobian matrix, a local linearization of the system.

● for C0-systems, there is no Jacobian matrix to work with. However, one
can still calculate the maximum exponent via

λ = lim
t→0

1

t
lim
δ0→0

log
δt
δ0
.

● Calculations of Lyapunov exponents are usually done numerically and
only locally. Only rarely can they be calculated analytically or over the
entire space.

Now to actually define topological entropy, we will need some more machinery:

171
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7.1. Box Dimension.

7.1.1. Capacity. Let X be a metric space. A set E ⊂ X is called r-dense if,
using the metric,

X ⊂ ⋃
x∈E

Br(x).

That is, if X can be covered by a set of r-balls all of whose centers lie in E. Then,
in the case that X is a compact metric space (both closed and bounded), the r-
capacity of X, with metric d is the minimal cardinality of any r-dense set. Denote
the r-capacity of a set X by SX,d(r) (or simply Sd(r) when the space X is either
understood or not necessary to be explicit about).

Some Notes:

● This is simply a way of denoting the “thickness” of sets which have no
actual volume by how they sit inside X (think cantor sets sitting inside
an interval).

● It does not really matter ultimately, but we will mostly consider closed
balls in these calculations.

● Some examples:

Example 7.4. Z is r-dense in R if r > 1
2

if the balls are open, and

r ≥ 1
2

is the balls are closed.

Example 7.5. Z2 is r-dense in R2 if r >
√

2
2

if the balls are open, and

r ≥
√

2
2

is the balls are closed. Can you visualize this?

Example 7.6. Let I = [0,1] be the unit interval. Using open balls
here, the 1

2
-capacity of I is 2. The 1

4
-capacity is 3. The 1

8
-capacity is 5,

and the 1
16

-capacity is 9. One can show that Sd ( 1
2n

) = 2n−1 + 1.

Exercise 181. Show this.

Exercise 182. Determine a bound on r for which Z3 is r-dense in
R3.

● These calculations work well with Cantor Sets. Studying how Sd(r)
changes as r changes (really, it is the order of magnitude of Sd(r)) leads
to a generalized notion of dimension.

A rough notion of dimension for a topological space would be how many coordi-
nates it would take to completely determine a point in the space (in relation to the
other points). For example, the common description of the two-sphere S2 is as the
unit-sphere in R3; the set of all unit-length vectors in R3. However, using spherical
coordinates (ρ, θ, φ) (see the connection), all of these points have coordinate ρ = 1,
and hence each point on the sphere only requires two coordinates to differentiate
between them. Hence, in a way, S2 is two-dimensional as a space. This notion is
not mathematically precise, however, as there do exist curves (1-dimensional lines)
that can “fill” a two-dimensional space (Peano curves, some examples are called).
Hence is this curve 1-dimensional, or 2 dimensional? Here, we will explore one
mathematically precise notion of dimension (there are many), which will be useful
in our definition of topological entropy.

Definition 7.7. A metric space X is called totally bounded if ∀r > 0, X can
be covered by a finite set of r-balls all of whose centers are in X.
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Really, this definition is technical, and is meant to account for the general
metric space aspect of this discussion. That the centers need to be within X really
only is a factor when the metric space X is a subspace of another space Y (otherwise
there is no “outside” of X. And in Euclidean space, the notion of totally bounded
is just the common notion of bounded that you are used to.

Definition 7.8. For X totally bounded,

bdim(X) ∶= lim
r→0

− logS(X,d)(r)
log r

is called the box dimension of X.

Notes:

● This concept is also called the Minkowski-Bouligard dimension, or the
entropy dimension or the Kolmogorov dimension.

● This is an example of the idea of fractional dimension; some sets may look
bigger then 0-dimensional, yet smaller than 1-dimensional, for example.

● In the case where this limit may not exist (I cannot think of an example
where it wouldn’t for a totally bounded set), certainly one can use the
limit superior or the limit inferior to gain insight as to the “size” of a set.

● To calculate, really simply find a sequence of r-sizes going to 0, and cal-
culate the r-capacities for this sequence. If the limit exists, then ANY
sequence of r’s going to 0, with their associated r-capacities will deter-
mine the same box dimension (Why?).

See W[Box Dimension]. Do a bit of history. Compare to Hausdorff dimension?
Perhaps do a treatment of that also? Nice fractals satisfy the Open Set Condition
(OSC). BoxD and Hausdorff are equal here.

Example 7.9. Calculate bdim(I), for I[0,1] with the metric d that I inherits
from R. Recall that if we were to use closed balls, then the 1

2n
-capacity for I is

S(X,d) ( 1
2n

) = 2n−1. But for open balls, we have S(X,d) ( 1
2n

) = 2n−1 + 1. The box
dimension should be the same for both. Indeed, it is: For the harder one,

bdim (I) = lim
r→0

− logS(X,d)(r)
log r

= lim
n→∞

− log (2n−1 + 1)
log ( 1

2n
)

= lim
n→∞

log (2n−1 + 1)
log 2n

≥ lim
n→∞

log 2n−1

log 2n
= lim
n→∞

n − 1

n
= 1,

and

bdim (I) = lim
r→0

− logS(X,d)(r)
log r

= lim
n→∞

− log (2n−1 + 1)
log ( 1

2n
)

= lim
n→∞

log (2n−1 + 1)
log 2n

≤ lim
n→∞

log 2n−1 ⋅ n
log 2n

= lim
n→∞

log 2n−1

log 2n
+ lim
n→∞

logn

log 2n

= lim
n→∞

n − 1

n
+ lim
n→∞

logn

n
= 1 + 0 = 1.

Hence bdim (I) = 1. Using the closed ball construction is even easier.

Example 7.10. Let C be the Ternary Cantor Set. Show bdim(C) = log 2
log 3

. Here,

assume that C sits inside I from the previous example, and again inherits its metric
d from I. And since we can choose our sequence of r’s going to zero, we will choose
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r = 1
3n

, and consider only closed balls. Then one can show that S(C,d) ( 1
3n

) = 2n+1.
(Think about this: At each stage, we remove the middle third of the remaining
intervals. That means that at each stage we can cover each interval by a closed
ball of radius 1

3n
. But the mid-point is NOT in C, Hence we have to shift over a

bit to find a point in C. Which means that we will need another ball to cover the
remainder on this side. This over covers the interval, but is not enough to cover two
adjacent intervals. And since at each stage there are 2n+1 intervals, we are done.
See the figure.

The calculation is now easy:

bdim (C) = lim
r→0

− logS(C,d)(r)
log r

= lim
n→∞

− log (2n+1)
log ( 1

3n
)

= lim
n→∞

log (2n+1)
log 3n

= lim
n→∞

n + 1

n
⋅ log 2

log 3
= log 2

log 3
.

Exercise 183. By construction, calculate the r-capacity and hence the box
dimension of the Cantor set formed by removing the middle half of each subinterval
of the unit interval at each stage.

Exercise 184. Let B = {0,1, 1
2
, 1

3
, 1

4
, . . . , 1

n
, . . .}. Calculate bdim (B).

In fact, we have the following:

Theorem 7.11. Let C ⊂ I be the Cantor set formed by removing the middle
interval of relative length 1 − 2

α
at each stage. Then

bdim(C) = log 2

logα
.

A special note: All Cantor sets are homeomorphic. Yet, if we change the
size of a removed interval at each stage, we effectively change the box dimension.
This means that box dimension is NOT a topological invariant (remains the same
under topological equivalence). Since a homeomorphism here would also act as a
conjugacy between two dynamical systems on Cantor Sets, this also means that box
dimension is also NOT a dynamical invariant. Here we define the Bowen-Dinaburg
(metric) topological entropy. W[Top Ent].

For f ∶X →X, a continuous map on a metric space (X,d), consider a sequence
of new metrics on X indexed by n ∈ N:

dfn (x, y) ∶= max
0≤i≤n

d (f i(x), f i(y)) .

Here, with df0 = d, the new metrics dfn actually measure a “distance” between orbit
segments

Ox,n = {x, f(x), . . . , fn(x))

Oy,n = {y, f(y), . . . , fn(y))

as the farthest that these two sets diverge along the orbit segment, and assigns this
distance to the pair x and y.

Exercise 185. Show for a given n that dfn actually defines a metric on X.
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Now, using the metric dfn, we can define an r-ball as the set of all neighbor
points y whose nth orbit-segment Oy,n stays within r distance of Ox,n:

Br(x,n, f) = {y ∈X∣dfn(x, y) < r} .

Convince yourself that as we increase n, the orbit segment is getting longer, and
more and more neighbors y will have orbit segments that move away from Ox,n.
Thus the r-ball will get smaller as n increases. But by continuity, the r-balls for
any n will always be open sets in X that have x as an interior point. Also, as r
goes to 0, the r-balls will also get smaller, right?

Now define the r-capacity of X, using the metric dfn and the new r-balls
Br(x,n, f), denoted S(X,d)(r, n, f) (this is the SAME notion of r-capacity as the

one we used for the box dimension! We are only changing the metric on X to dfn.
But the actual calculations of the r-capacity depend on the choice of metric). As
before, as r goes to 0, the r-balls shrink, and hence the r-capacity grows. And
also, as n goes to ∞, we use the different dfn to measure ultimately the distances
between entire positive orbits. This also forces the r-balls to shrink, and hence the
r-capacity to grow. What is the exponential growth rate of the r-capacity as r → 0?
This is the notion of topological entropy:

Definition 7.12. Let hd(r, f) ∶= limn→∞
logSd(r, n, f)

n
. Then

hd(f) ∶= lim
r→0

hd(r, f)

is called the topological entropy of the map f on X.

There are many things to say about this. To start:

● Topological entropy is a measure of the tendency of orbits to diverge from
each other. It will always be a non-negative number, and the higher it
is, the faster orbits are diverging. In Euclidean space, maybe this is not
so special (think of the linear map on R2 given by the matrix λI2, with
λ > 1. All orbits diverge, but the dynamics is not very interesting), but
in a compact space with all orbits diverging, the resulting messy nature
of the dynamics can be quite interesting. Thus, topological entropy is a
measure of the orbit complexity, and the higher the number, the more
interesting (read messy) the dynamical structure.

● Another common notation for topological entropy is htop(f) or hT (f)
or even h(f). These are, in a sense, more accurate since it turns out
that the topological entropy of a map does not actually depend on the
metric d, at least up to equivalence, chosen for use in its definition. It is
possible, however, that inequivalent metrics may lead to either the same
or a different entropy. We will use the notation h(f) in our subsequent
discussion.

● Contractions and isometries have no entropy:

Proposition 7.13. Let f be either a contraction or an isometry.
Then h(f) = 0.

Proof. In the case of f an isometry, for any n ∈ N, dfn = d, since dis-
tances between iterates of a map are the same as the original distances be-
tween the initial points. Hence the r-capacity S(X,d)(r, n, f) = S(X,d)(r, f)
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does not depend on n, and hence h(r, f) = 0. For a contraction, the it-
erates of two distinct points are always closer together than the original
points. Hence also here dfn = d. This leads to the same conclusion. �

● Topological entropy is a dynamical invariant (invariant under conjugacy).
This means that if f is (semi-)conjugate to g, then h(f) = h(g). However,
it is also useful to use the contrapositive: If one has two maps where
h(f) /= h(g), then it is not possible that f is (semi-)conjugate to g.

● topological entropy measures, in a way, the exponential growth rate of the
number of trajectories that are r-separable after n iterations. Suppose this
number is proportional to enh. Then h would be the growth rate for a
fixed r, and as r → 0, this h would tend to the entropy.

● defining the topological entropy for a flow is simply a matter of replacing
the n ∈ N with t ∈ R in all of the definitions for the invariant. we can
relate the two in a way: The topological entropy of a flow is equal to the
topological entropy of its time-1 map (really, its time-t for any choice of
t, since the flow provides the conjugacy of any t-map with any other).

● In practice, topological entropy is quite hard to calculate. However, in
many cases, and in response to the last bullet point, the entropy is directly
related to the largest Lyapunov exponent of the system, at least for C1

systems.

Proposition 7.14. For the expanding map Em ∶ S1 → S1, where Em(x) =mx
mod 1, and ∣m∣ ≥ 1, h(Em) = log ∣m∣.

Proposition 7.15. For f ∶ T2 → T2, given by x⃗ = [ 2 1
1 1

] x⃗ (this was the map

FL from before), h(f) = log 3+
√

5
2

.

Note: In both of these cases, the topological entropy of the map IS the maximum
positive Lyapunov exponent of the system.

Example 7.16. Show that h(E2) = log 2.
To do this calculation, we will need to quantify the r-capacity of S1 under this

map. This amounts to calculating S(S1,d) (r, n,E2) for a fixed r and as a function
of the iterate number n. Hence we start with a good idea of what constitutes
the actual size of an r-ball Br (x,n,E2) for a choice of n. Note first that by its
definition, Br (x,n,E2) is the set of points whose distance away from x is less than
r after n iterates of E2. As the map is expanding by a factor of 2 (locally), distances
double after each iterate (see the figure). Hence we will have to get closer to x when
we start iterating to remain within r as we iterate. Hence Br (x,n,E2) will shrink
in size as n increases. How will it shrink?

Suppose for a minute that r = 1
4
. Choose an x ∈ S1, and recall that

B 1
4
(x,0,E2) = {y ∈ S1∣dE2

0 (x, y) = d(x, y) = ∣x − y∣ < 1

4
} .

The radius of Br (x,n,E2) is 1
4

here. After one iterate, however,

B 1
4
(x,1,E2) = {y ∈ S1∣dE2

1 (x, y) = max{∣x − y∣, ∣2x − 2y∣} < 1

4
} .

Here, it is obvious that the condition that dE2

1 (x, y) = ∣2x − 2y∣ = 2∣x − y∣ < 1
4

means

that the actual distance between x and y would have to be ∣x − y∣ < 1
4
⋅ 1

2
= 1

8
. Hence
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the radius of B 1
4
(x,1,E2) is only 1

8
. Similarly, the radius of B 1

4
(x,2,E2) is only

1
16

, and in general we have that

radius(B 1
4
(x,n,E2)) =

1

4
⋅ 1

2n
.

But, really, the initial size of r does not determine the relative sizes of the r-balls
with respect to each other. Hence, we can say that, for any choice of r > 0, we have

radius(Br (x,n,E2)) = r ⋅
1

2n
.

Recall that the r-capacity, S(S1,d) (r, n,E2) is the minimum number of the r-

balls Br (x,n,E2) it takes to cover S1. Think of S1 as being parameterized by the
unit interval [0,1] with the identification of 0 and 1. Then we really only need to
find out how many r-balls we need for a given iterate n to cover an interval of length
1. Call this number Kn. Hence, we solve the equation (really, it is an inequality,
but since adding one more ball to each quantity will not change the limit, this is
an okay simplification)

#(Br (x,n,E2)) ⋅ 2 ⋅ radius(Br (x,n,E2)) =Kn ⋅ 2 ⋅ r ⋅
1

2n
= 1.

Which is solved by Kn = 1
r
⋅ 2n−1. This is S(S1,d) (r, n,E2).

We now calculate

h (E2, r) = lim
n→∞

logS(S1,d) (r, n,E2)
n

= lim
n→∞

log 1
r
⋅ 2n−1

n

= lim
n→∞

(
log 1

r

n
+ log 2n−1

n
)

= 0 + log 2 ⋅ ( lim
n→∞

n − 1

n
) = log 2.

Here again, the r-topological entropy does not depend on r at all, so that

h (E2) = lim
r→0

h (E2, r) = lim
r→0

log 2 = log 2.

7.2. Quadratic Maps (revisited)

We begin today by going back to quadratic maps:
Let I = [0,1] and fλ ∶ I → I, fλ(x) = λx(1 − x), but this time let λ ∈ [3,4].
Definition 7.17. Let x ∈ X be fixed for the map f ∶ X → X. The basin of

attraction of x is

B(x) = {y ∈X∣Oy → x} .

● Sometimes the basin of attraction is easy to describe:

Example 7.18. Let ṙ = r(r − 1), θ̇ = 1 be the planar ODE system. It
should be obvious now that the only equilibrium solution is at the origin
of the plane, and the only other “interesting” behavior is the unstable
limit cycle given by the equation r(t) ≡ 1. Since solutions are unique on
all of R2 (and hence cannot cross), what starts inside the unit circle stays
inside. And since the limit cycle is repelling, and there are no other limit
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cycles or equilibria inside the unit circle, it must be the case that the
origin is attracting (you can also see this directly by noting that ṙ < 0,
∀r ∈ (0,1)). hence the basin of attraction of the origin is the open unit
disk

B ((0,0)) = {(r, θ ∈ R2∣ r < 1} .

● Sometimes, it is not:

Example 7.19. Let f ∶ C → C, f(z) = z2 + c, for c ∈ C a constant.
For c = 0, we get a rather plain model. Oz → 0 ∀∣z∣ < 1, and Oz → ∞
∀∣(∣z) > 1. Do you recognize the map on the unit circle ∣z∣ = 1? It is the
expanding (and chaotic) map E2 ∶ S1 → S1 from before.

Definition 7.20. For P ∶ C → C a polynomial map, the Julia Set is
the closure of the set of repelling periodic points of P .

Keep this in mind. For the map E2 in the circle, recall that the
periodic points are dense in S1 (this was a feature of chaos). And since
the map is expanding, you can show that all of these periodic points are
actually repelling (simultaneously!). The resulting mess is actually what
a “sensitive dependence on initial conditions” is all about. Here again,
the origin in C is an attracting fixed point, and its basin of attraction is
everything inside the unit circle.

Now, though, let c be small and non-zero. There will still be two
fixed points, right? (think of solving the equation z = f(z) = z2 + c. The

solutions will be z = 1±
√

1−4c
2

. For z ∈ C, this always has two solutions!)
The one near the origin will still be attracting, while the one near the
unit circle will still be a part of a set of repelling periodic points whose
closure will form a (typically) fractal structure. This is again the Julia
Set for this value of c, and can be highly bizarre looking. I showed you a
few examples in class.

In sum, for general c ∈ C, the Julia set is not a smooth curve. For
example, let c < −2 be real. Then fc(z) = z2 + c is topologically conjugate
to a map of the form x↦ λx(1−x) for λ > 4 (this conjugacy is really just
a change of variables. Can you find it?) The ramifications of this being
that 1) the dynamics outside of the Julia Set are rather simple (think
that outside of those interesting orbits of fλ that stay within I forever,
all orbits basically go to −∞). But this implies that that Julia Set is
conjugate to a Cantor Set. But this also means that the Cantor Set of
points whose orbits stay within I under fλ, λ > 4, consists of the closure
of a set of repelling periodic points.

Definition 7.21. An m-periodic point p is called attracting under a continuous

map f if ∃ε > 0 such that ∀x ∈X, where d(x, p) < ε, then d (fn(x), fn(p)) n→∞Ð→ 0.

Exercise 186. Show that for an attracting m-periodic point p, each distinct
point in its orbit is also attracting.

Call the basin of attraction for an m-periodic point p the union of the basins of
attraction for each point of Op. That is, for Op = {p.f(p), f2(p), . . . , fm−1(p)}, the
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basin of attraction of p is

B(p) = {x ∈X∣d(fn(x), fn+k(p)) n→∞Ð→ 0 for some k ∈ N} .

Definition 7.22. The immediate basin of attraction of an m-periodic point p
is the largest interval IB(p) containing p such that ∀x ∈ IB(p), Ox Ð→ Op. The
immediate basin of attraction of a periodic orbit is the union of the immediate
basins of attraction of each point in the orbit.

The basin of attraction of a periodic
point will in general not consist of a single
contiguous interval. However, the immedi-
ate basin always is. For h(x) in the fig-
ure, for example, B(p) = (x0, x1)∪ (x2, x3),
while IB(p) = (x0, x1) (draw some mental
cobwebs to convince yourself of this). Back
to our discussion of the logistic map, we see
that the structure of the graph of fλ(x) on
[0,1] says a lot about the dynamical struc-
ture of the map:

Proposition 7.23. Let f ∶ [a, b] →
[a, b] be C2 and concave down, where
f(a) = f(b) = a. Then f has at most one
attracting periodic orbit.

We will not prove this here, but the idea rests on three important facts:

● The structure of f (twice-differentiable, concave down with images of end-
points equal) implies that it has a unique critical point x0 ∈ (a, b);

● the immediate basin of attraction of any attracting periodic orbit must
contain x0 (this is the non-trivial part of the proof); and,

● basins of attraction cannot overlap.

This proves very useful in our analysis of the logistic map.

Example 7.24. In all of our examples of fλ ∶ I → I, where λ ∈ [0,3] there was
always an attracting fixed point. However, for λ = 3.1, for example, the fixed point
at x = 0 is repelling, and there is an attracting period-2 orbit (can you find the
numeric values for this orbit?)

Theorem 7.25. If fλ has an attracting periodic orbit, then the set outside of
the basin of attraction (called the universal repeller) is a nowhere-dense null set.

Some notes:

● A nowhere dense null set in a metric space is a set that can be covered by
balls whose total volume is less than ε.

● What can lie within the universal repeller? First, any repelling fixed or
periodic points, of course. But since the logistic map is a two-to-one map,
the pre-image of a fixed point consists of two points, and includes a point
that was not previously fixed.

Example 7.26. Let λ = 3.1 = 31
10

. It can be shown that f3.1 has an

attracting period-2 orbit. And xλ = 1 − 1
λ
= 1 − 1

31
10

= 21
31

is fixed under
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f3.1 and repelling (check this!) But the point 1 − xλ = 10
31

also maps to
21
31

. In fact, the point 1 − xλ is always the pre-image of the fixed point xλ
due to where it sits on the graph of fλ. Both of these points are NOT
in the basic of attraction of any periodic orbit. But also, 1 − xλ is NOT
a periodic point. It is an eventually fixed point, but that is different.
Now the point 1 − xλ also has two pre-images (find them: cobwebbing
them is easy. Calculating them?)), and these two pre-images also have
two pre-images. In fact, there are a countable number of pre-images that
eventually get mapped onto xλ. All of this set lies outside of the basic of
attraction of any attracting periodic orbit, when xλ is repelling. These
points also give a sense for the difference between the basin of attraction
and the immediate basin of attraction of an attracting periodic or fixed
point. This gives you an idea of what is considered part of the universal
repeller. Now think about how this set of pre-images of xλ sit inside the
interval! If you think about it correctly, you start to see just how fractals
are born.

Example 7.27. For λ ∈ [3,1 +
√

6], there exists an attracting, period-2 orbit.

The basin of attraction is everything except for the points 0, and xλ = 1 − 1
λ

and
ALL of their pre-images.

Let’s work out the situation: For λ ∈ (1,3], 0 is a repelling fixed point, xλ is
an attracting fixed point, and there are no other periodic points. In contrast, for
λ ∈ (3,1 +

√
6), both x = 0, and xλ are repelling fixed point, and there now exist

an attracting period-2 orbit. This means that we have reached a bifurcation value
for λ at λ = 3. This type of bifurcation is called a period-doubling bifurcation, and
is visually a “pitchfork” bifurcation for the map f2

λ. See the figure. Analytically,
what happens is that the value of ∣f ′(xλ)∣ < 1 for λ < 3 and ∣f ′(xλ)∣ > 1 for λ > 3.
But these derivatives are negative, right? for the map f2

λ, this means that the same
thing happens but the derivative are positive!. Geometrically, this determines how
the graph of f2

λ crosses the line y = x, and the crossing changes from over/under to
under/over as we pass through the value λ = 3. And when the graph of f2

λ passes
to the under/over configuration, it creates two new fixed points (for the f2

λ map).
You do not see these new crossings in the original map fλ because they are only
period two points. You can cobweb them to see that they are there, though. The
under/over crossing means that the derivative is greater than 1, and hence the map
is expanding near the fixed point (repelling). In contrast, the two new fixed points
are over/under crossings, with a derivative less than 1, and hence are attracting.
Again, see the figure. it is all in there.

Finally, what happens when λ = 1+
√

6. Basically, the same thing, except that
the period-2 orbit becomes a repelling orbit and a period-4 orbit is born and is
attracting! Another period-doubling bifurcation.

Theorem 7.28. There exists a monotonic sequence of parameter values

λ1 = 3, λ2 = 1 +
√

6, λ3 = . . . , such that ∀λ ∈ (λn, λn+1) ,
the quadratic map fλ(x) = λx(1−x) has an attracting period-2n orbit, two repelling
fixed points at x = 0, xλ, and one repelling period-2k orbit for each k = 1, . . . , n − 1.

Notes:

● This is called a period-doubling cascade.
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● At every new λn, the previous attracting periodic orbit becomes repelling,
and adds (with all of its pre-images) to the universal repeller.

● The length of the intervals (λn, λn+1) decrease exponentially as n in-
creases, and go to 0 somewhere before λ = 4.

● In fact, one can calculate the exponential decay of these interval lengths:

δ = lim
n→∞

length (λn−1, λn)
length (λn, λn+1)

= lim
n→∞

λn − λn−1

λn+1 − λn
≅ 4.6992016010⋯.

This number has a universal quality to it, as it is always the exponential
decay rate of the lengths between bifurcation values in period-doubling
cascades. It is called the Feigenbaum Number.

● The full bifurcation diagram looks like the figure. At the back edge of the
cascade is a place called the transition to chaos. At this point, there are a
countable number of repelling periodic points. This collection along with
all of their pre-images wind up being dense in the interval, and hence cause
a sensitive dependence on initial conditions, commonly found in chaotic
systems. This is the Julia set, which in a chaotic system is the entire set.

● Note the self-similar structure of the bifurcation diagram. it is not a
fractal, really, but it is related to many of them in interesting ways.

● Look carefully at the bifurcation diagram. Even after the transition to
chaos, there seem to be regions of calm periodic behavior. These are not
artifacts. In fact, there exists an attracting period-3 orbit 9can you see it?)
for a small band of values of λ. This attracting period-3 orbit eventually
becomes a repeller, and starts another period doubling cascade (period-6
to period-12, etc.). In fact, there exists a period doubling cascade within
this diagram for each prime number n. Look carefully and check in the
book in chapter 11 for more details on this fascinatingly simple compli-
cated map.


