MATH 421 DYNAMICS

Week 12 Lectures Notes

For f: X — X, a continuous map on a metric space (X,d), consider a sequence of new
metrics on X indexed by n e N:

f = i '
d} (z,y) = max d(f'(z). f'(y)).
Here, the new metrics d?, actually measure a “distance” between orbit segments

Opn = {:E,f(x),...,f"‘l(x))
O = {ufW)s " w)

as the farthest that these two sets diverge along the orbit segment, and assigns this distance
to the pair z and .

Exercise 1. Show for a given n that df actually defines a metric on X.

Now, using the metric dZ, we can define an r-ball as the set of all neighbor points y whose
nth orbit-segment O, ,, stays within r distance of O, :

B.(z,n,f) = {y e X|dl(z,y) < 'r}.

Convince yourself that as we increase n, the orbit segment is getting longer, and more and
more neighbors y will have orbit segments that move away from O, ,. Thus the r-ball will
get smaller as n increases. But by continuity, the r-balls for any n will always be open sets
in X that have x as an interior point. Also, as r goes to 0, the r-balls will also get smaller,
right?

Now define the r-capacity of X, using the metric df and the new r-balls B.(x,n, f),
denoted S(x q)(r,n, f) (this is the SAME notion of r-capacity as the one we used for the box
dimension! We are only changing the metric on X to df. But the actual calculations of the
r-capacity depend on the choice of metric). As before, as r goes to 0, the r-balls shrink, and
hence the r-capacity grows. And also, as n goes to oo, we use the different d to measure
ultimately the distances between entire positive orbits. This also forces the r-balls to shrink,
and hence the r-capacity to grow. What is the exponential growth rate of the r-capacity as
r — 07 This is the notion of topological entropy:

lOg Sd(r7 n, f)

n
half) = lim ha(f.r)
is called the topological entropy of the map f on X.

Definition 1. Let hg(f,7) := lim, e . Then

There are many things to say about this. To start:
Date: April 24, 2013.



e Topological entropy is a measure of the tendency of orbits to diverge from each other.
It will always be a non-negative number, and the higher it is, the faster orbits are
diverging. In Euclidean space, maybe this is not so special (think of the linear map
on R? given by the matrix A\ly, with A > 1. All orbits diverge, but the dynamics is
not very interesting), but in a compact space with all orbits diverging, the resulting
messy nature of the dynamics can be quite interesting. Thus, topological entropy is
a measure of the orbit complexity, and the higher the number, the more interesting
(read messy) the dynamical structure.

e Another common notation for topological entropy is hs.,(f) or hr(f) or even h(f).
These are, in a sense, more accurate since it turns out that the topological entropy of
a map does not actually depend on the metric d, at least up to equivalence, chosen
for use in its definition. It is possible, however, that inequivalent metrics may lead
to either the same or a different entropy. We will use the notation A(f) in our
subsequent discussion.

e Contractions and isometries have no entropy:

Proposition 2. Let f be either a contraction or an isometry. Then h(f) = 0.

Proof. In the case of f an isometry, for any n € N, dl = d, since distances between
iterates of a map are the same as the original distances between the initial points.
Hence the r-capacity S(x.q)(7,n, f) = S(x.q)(r, f) does not depend on n, and hence
h(r,f) = 0. For a contraction, the iterates of two distinct points are always closer
together than the original points. Hence also here d! = d. This leads to the same
conclusion. O

e Topological entropy is a dynamical invariant (invariant under conjugacy). This means
that if f is (semi-)conjugate to g, then h(f) = h(g). However, it is also useful to use
the contrapositive: If one has two maps where h(f) # h(g), then it is not possible
that f is (semi-)conjugate to g.

e topological entropy measures, in a way, the exponential growth rate of the number
of trajectories that are r-separable after n iterations. Suppose this number is pro-
portional to €. Then h would be the growth rate for a fixed r, and as r — 0, this h
would tend to the entropy.

e defining the topological entropy for a flow is simply a matter of replacing the n e N
with ¢t € R in all of the definitions for the invariant. we can relate the two in a way:
The topological entropy of a flow is equal to the topological entropy of its time-1
map (really, its time-t for any choice of ¢, since the flow provides the conjugacy of
any t-map with any other).

¢ In practice, topological entropy is quite hard to calculate. However, in many cases,
and in response to the last bullet point, the entropy is directly related to the largest
Lyapunov exponent of the system, at least for C'! systems.

Proposition 3. For the expanding map E,, : S' - S, where E,,(r) = mx mod 1, and
im| > 1, h(E,,) = log|m].
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Proposition 4. For f:T? — T2, given by T = l % 1 ]:f (this was the map Fy, from before),

h(f) =log 255

Note: In both of these cases, the topological entropy of the map IS the maximum positive
Lyapunov exponent of the system.

Example 5. Show that h(E;) = log?2.

To do this calculation, we will need to quantify the r-capacity of S! under this map. This
amounts to calculating S(g1 4y (7,1, ) for a fixed  and as a function of the iterate number n.
Hence we start with a good idea of what constitutes the actual size of an r-ball B, (z,n, Es)
for a choice of n. Note first that by its definition, B, (z,n, Es) is the set of points whose
distance away from x is less than r after n iterates of Ey. As the map is expanding by a factor
of 2 (locally), distances double after each iterate (see the figure). Hence we will have to get
closer to = when we start iterating to remain within r as we iterate. Hence B, (x,n, Es) will
shrink in size as n increases. How will it shrink?

Suppose for a minute that r = %. Choose an x € St, and recall that

By (2,0.F) = {ye s’

1
A (29) = () = -yl < |
The radius of B, (x,n, E) is 1 here. After one iterate, however,

Bi (z,1,E5) = {ye St

1
de(x,y) = max {|x - y|, |22 - 2y|} < Z}

Here, it is obvious that the condition that d}?(z,y) = [22 - 2y| = 2|z - y| < 1 means that the

actual distance between z and y would have to be [z —y| < 1-1 = 5. Hence the radius of
B (z,1,E,) is only §. Similarly, the radius of B L (2,2, E») is only 15, and in general we

have that
. 1 1
radius | B1 (z,n,Ey) | = 1o
But, really, the initial size of r does not determine the relative sizes of the r-balls with respect
to each other. Hence, we can say that, for any choice of r > 0, we have

1
radius (BT (z,n, Eg)) =T o

Recall that the r-capacity, S(s1 4y (7,7, E) is the minimum number of the r-balls B, (z,n, E)
it takes to cover S'. Think of S! as being parameterized by the unit interval [0, 1] with the
identification of 0 and 1. Then we really only need to find out how many r-balls we need for
a given iterate n to cover an interval of length 1. Call this number K,,. Hence, we solve the
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equation (really, it is an inequality, but since adding one more ball to each quantity will not
change the limit, this is an okay simplification)

1
# (B,, (z,n, Eg)) -2 -radius (B,, (z,n, Eg)) =K, 2-r- o = 1.
Which is solved by K,, = 1-27=1. This is S(s1 4 (1,1, E»).

We now calculate

— lOg S(Sl,d) (7”, n, EQ)
lim
n—oo n
) log% .on-1
= lim —X—

n—oo n

logl log2n-1
= lim( gr+og

h(EQ,’f’)

-1
= 0+log2-(lim n_) =log 2.
n

Here again, the r-topological entropy does not depend on r at all, so that
h(Es) = lir% h(Ey,r) = lir% log2 =log2.

1. QUADRATIC MAPS (REVISITED)

We begin today by going back to quadratic maps:
Let I =[0,1] and fy: I — I, fa(x) = Az(1-x), but this time let A € [3,4].
Definition 6. Let x € X be fixed for the map f: X — X. The basin of attraction of x is

B(x):{yeX‘Oyex}.

e Sometimes the basin of attraction is easy to describe:

Example 7. Let 7 = #(r = 1), § = 1 be the planar ODE system. It should be
obvious now that the only equilibrium solution is at the origin of the plane, and the
only other “interesting” behavior is the unstable limit cycle given by the equation
r(t) = 1. Since solutions are unique on all of R? (and hence cannot cross), what starts
inside the unit circle stays inside. And since the limit cycle is repelling, and there are
no other limit cycles or equilibria inside the unit circle, it must be the case that the
origin is attracting (you can also see this directly by noting that 7 < 0, Vr € (0,1)).
hence the basin of attraction of the origin is the open unit disk

B((O,O))z{(r,06R2 r<1}.




e Sometimes, it is not:

Example 8. Let f:C - C, f(z) =22 +¢, for c e C a constant. For ¢ =0, we get a
rather plain model. O, — 0 V|z| < 1, and O, — oo V|(|z) > 1. Do you recognize the
map on the unit circle |z| = 17 It is the expanding (and chaotic) map Fj : St — S*
from before.

Definition 9. For P : C — C a polynomial map, the Julia Set is the closure of the
set of repelling periodic points of P.

Keep this in mind. For the map FE5 in the circle, recall that the periodic points
are dense in S! (this was a feature of chaos). And since the map is expanding, you
can show that all of these periodic points are actually repelling (simultaneously!).
The resulting mess is actually what a “sensitive dependence on initial conditions” is
all about. Here again, the origin in C is an attracting fixed point, and its basin of
attraction is everything inside the unit circle.

Now, though, let ¢ be small and non-zero. There will still be two fixed points, right?
(think of solving the equation z = f(z) = 22+ ¢. The solutions will be z = I*TM. For

z € C, this always has two solutions!) The one near the origin will still be attracting,
while the one near the unit circle will still be a part of a set of repelling periodic
points whose closure will form a (typically) fractal structure. This is again the Julia
Set for this value of ¢, and can be highly bizarre looking. I showed you a few examples
in class.

In sum, for general ¢ € C, the Julia set is not a smooth curve. For example, let
¢ < =2 be real. Then f.(z) = 22 + ¢ is topologically conjugate to a map of the form
x— Ax(l-z) for A\ >4 (this conjugacy is really just a change of variables. Can you
find it?) The ramifications of this being that 1) the dynamics outside of the Julia
Set are rather simple (think that outside of those interesting orbits of f, that stay
within [ forever, all orbits basically go to —oo). But this implies that that Julia Set
is conjugate to a Cantor Set. But this also means that the Cantor Set of points
whose orbits stay within I under fy, A >4, consists of the closure of a set of repelling
periodic points.

Definition 10. An m-periodic point p is called attracting under a continuous map f if 3e >0

n—o0

such that Ya € X, where d(z.p) <€, then d(f"(z), f*(p)) — 0.

Exercise 2. Show that for an attracting m-periodic point p, each distinct point it its orbit
is also attracting.

Call the basin of attraction for an m-periodic point p the union of the basins of attraction
for each point of O,. That is, for O, = {p.f(p), f?(p),..., f™ *(p)}, the basin of attraction
of pis

B(p) = {x € X’d(f”(m),f”*k(p)) =20 for some k € N}.
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Proposition 11. Let f : [a,b] = [a,b] be C? and concave, where f(a) = f(b) =a. Then f
has at most one attracting periodic orbit.

We will not prove this. However, it is useful.

Example 12. As in the figure, in all of our examples of fy : I - I, where A € [0, 3] there
was always an attracting fixed point. However, for A\ = 3.1, for example, the fixed point at
x =0 is repelling, and there is an attracting period-2 orbit (can you find the numeric values
for this orbit?)

Theorem 13. If f\ has an attracting periodic orbit, then the set outside of the basin of
attraction (called the universal repeller) is a nowhere-dense null set.

Some notes:

e A nowhere dense null set in a metric space is a set that can be covered by balls whose
total volume is less than e.

e What can lie within the universal repeller? First, any repelling fixed or periodic
points, of course. But since the logistic map is a two-to-one map, the pre-image of a
fixed point consists of two points, and includes a point that was not previously fixed.

Example 14. Let A=3.1= %. It can be shown that fs;; has an attracting period-2

orbit. And 2 =1-1 =1- 3 = 3 is fixed under f3; and repelling (check this!) But
10

the point 1 -z, = % also maps to % In fact, the point 1-x) is always the pre-image
of the fixed point z) due to where it sits on the graph of f,. Both of these points
are NOT in the basic of attraction of any periodic orbit. But also, 1 —x, is NOT a
periodic point. It is an eventually fixed point, but that is different. Now the point
1 -z, also has two pre-images (find them), and these two pre-images also have two
pre-images. In fact, there are a countable number of pre-images that eventually get
mapped onto x,. All of this set lies outside of the basic of attraction of any attracting
periodic orbit, when x, is repelling. This gives you an idea of what is considered part
of the universal repeller. Now think about how this set of pre-images of ) sit inside
the interval! If you think about it correctly, you start to see just how fractals are
born.

Example 15. For ) € [3, 1+ \/6], there exists an attracting, period-2 orbit. The basin of
attraction is everything except for the points 0, and x, =1 - % and ALL of their pre-images.

Let’s work out the situation: For X € (2,3), 0 is a repelling fixed point, x, is an attracting
fixed point, and there are no other periodic points. In contrast, for \ € (3, 1+ \/6), both
x =0, and x, are repelling fixed point, and there now exist an attracting period-2 orbit.
This means that we have reached a bifurcation value for A at A = 3. This type of bifurcation
is called a period-doubling bifurcation, and is visually a “pitchfork” bifurcation for the map
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f3. See the figure. Analytically, what happens is that the value of |f’(z))| <1 for A <3 and
|f'(zx)| > 1 for A > 3. But these derivatives are negative, right? for the map f7, this means
that the same thing happens but the derivative are positive!l. Geometrically, this determines
how the graph of f} crosses the line y = z, and the crossing changes from over/under to
under/over as we pass through the value A = 3. And when the graph of f? passes to the
under/over configuration, it creates two new fixed points (for the ff map). You do not see
these new crossings in the original map f) because they are only period two points. You can
cobweb them to see that they are there, though. The under/over crossing means that the
derivative is greater than 1, and hence the map is expending near the fixed point (repelling).
In contrast, the two new fixed points are over/under crossings, with a derivative less than 1,
and hence are attracting. Again, see the figure. it is all in there.

Finally, what happens when \ = 1++/6. Basically, the same thing, except that the period-
2 orbit becomes a repelling orbit and a period-4 orbit is born and is attracting! Another
period-doubling bifurcation.

Theorem 16. There exists a monotonic sequence of parameter values

AM=3, X=1+V6, As=..., suchthat YAe (M, Aps1),
the quadratic map fi(x) = Ax(1 —x) has an attracting period-2" orbit, two repelling fired
points at x = 0,xy, and one repelling period-2F orbit for each k=1,...,n-1.
Notes:

e This is called a period-doubling cascade.

e At every new \,, the previous attracting periodic orbit becomes repelling, and adds
(with all of its pre-images) to the universal repeller.

e The length of the intervals (\,, \,;1) decrease exponentially as n increases, and go
to 0 somewhere before A = 4.

e In fact, one can calculate the exponential decay of these interval lengths:

length (Ay-1,An) A

. . - )\n—l
5=1 = Tim 2272771 & 4.6992016010---
ntvo0 1ength (A Amet) 7% Anet — Ao

This number has a universal quality to it, as it is always the exponential decay rate
of the lengths between bifurcation values in period-doubling cascades. It is called the
Feigenbaum Number.

e The full bifurcation diagram looks like the figure. At the bak edge of the cascade is
a place called the transition to chaos. At this point, there are a countable number
of repelling periodic points. This collection along with all of their pre-images wind
up being dense in the interval, and hence cause a sensitive dependence on initial
conditions, commonly found in chaotic systems. This is the Julia set, which in a
chaotic system is the entire set.



e Note the self-similar structure of the bifurcation diagram. it is not a fractal, really,
but it is related to many of them in interesting ways.

e Look carefully at the bifurcation diagram. Even after the transition to chaos, there
seem to be regions of calm periodic behavior. These are not artifacts. In fact, there
exists an attracting period-3 orbit 9can you see it?) for a small band of values of
A. This attracting period-3 orbit eventually becomes a repeller, and starts another
period doubling cascade (period-6 to period-12, etc.). In fact, there exists a period
doubling cascade within this diagram for each prime number n. Look carefully and
check in the book in chapter 11 for more details on this fascinatingly simple compli-
cated map.



