
HOMEWORK SET 3. SELECTED SOLUTIONS

DYNAMICAL SYSTEMS (110.421)
PROFESSOR RICHARD BROWN

1. General Information

The homework sets are listed here:

http://www.mathematics.jhu.edu/brown/s10/SyllabusS10421.htm

2. Selected Exercises

Exercise (2.3.2). Since f : [0, 1] → [0, 1] is non-increasing, for x0, y0 ∈ [0, 1], if
y0 > x0, then f(y0) ≤ f(x0). Rewritten, we have for y0 > x0, f(y0) = y1 ≤ x1 =
f(x0). And since x1 ≥ y1, we get f(x1) = x2 ≤ y2 = f(y1). Put these together to
get

if y0 > x0, then f (f(y0)) ≥ f (f(x0)) .

That is, the map f2 : [0, 1] → [0, 1] is a non-decreasing map. By Proposition 2.3.5,
all x ∈ [0, 1] are either fixed points or asymptotic to fixed points. This automatically
rules out any higher order periodic points for f2 (Why?). Thus, f2 can have only
fixed points, which means that f can periodic points of order at most 2.

Example. Let f(x) = 1− x. Here all points are of order-2 except for x = 1
2 . Also

for g(x) = 1− x2, the end points are of period 2 and the only fixed point is
√
5−1
2 .

What can you say about the dynamics of g(x)?

Exercise (2.4.6). This is really just basic ODE theory: If an autonomous, first
order ODE ẋ = f(x) has an isolated equilibrium solution at x0, and f ′(x0) < 0,
then the equilibrium solution is a sink. The reasoning goes that for any x < x0 but
sufficiently close, the unique solution x(t) passing through x at time-0 will always
have ẋ(t) > 0 for all t > 0, since here f(x) > 0 for x < x0 and close by. On the
other side of x0, at least nearby, ẋ = f(x) < 0. Hence solutions that start on this
side of x0 will decay to x0.

In a more general sense, a system of first order ODEs ˙⃗x = f(x⃗) which is “nice”
near a fixed point x⃗0 has a special quality near that fixed point. This special quality
is that, under certain non-degeneracy conditions, the behavior of solutions on the
original nonlinear system is qualitatively the same as that of the linear system
formed by the first Taylor approximation to the right hand side f at the point x⃗0

(this is the essence of the term local linearization. The term “nice” can be defined
as “f(x) is continuously differentiable in a neighborhood of x0). For a 1×1 system,
the original equation can be linearized around x0, since f ′(x0) exists, and as long
as f ′(x0) ̸= 0, the solution near x0 of the original equation will behave much like
that of the linear equation.

Given that discussion, the linearized equation is

ẋ = f ′(x0)x = kx, where k < 0.
1
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Solutions to this equation are x(t) = Cekt, and with k < 0, and all nearby solutions
exponentially decay to 0 exponentially. Thus the original system has the same
property asymptotically at x0. Indeed, this linear system has a linear time-1 map
g : R → R, g(x) = ekx. This is obviously a ek-contraction since k < 0. Since
the vector field f(x) is continuously differentiable, the original ODE will be a ek-
contraction asymptotically at x0. Hence, there will assuredly be a small interval
around x0 where the ODE will remain a contraction. Hence, on this interval, all
solutions will converge exponentially to x0.

Exercise (2.5.3). Suppose the fixed point set Fix(f) is not connected. Then there
must be a gap between two points in the fixed point set where no other fixed points
reside. Call this gap the open interval (x0, x1) where x0, x1 ∈ Fix(f) x1 − x0 > 0
(assuming x1 > x0) and ∀x ∈ (x0, x1), x ̸∈ Fix(f).

f(x) < x between

x   and x
f `(d) > 1

f `(c) = 1

cx xd 10

0 1

Then it must be the case that for all x ∈ (x0, x1), either f(x) > x or f(x) < x
(the graph of f either lies completely above the diagonal in the unit square, or
completely below it). Suppose for instance, f(x) < x, for all x ∈ (x0, x1). By the
Mean Value Theorem, there must exist a point c ∈ (x0, x1) where

f ′(c) =
f(x1)− f(x0)

x1 − x0
=

x1 − x0

x1 − x0
= 1.

However, now consider the interval (c, x1). Again by the Mean Value Theorem,
there must exist a point d ∈ (c, x1), where

f ′(d) =
f(x1)− f(c)

x1 − c
>

x1 − c

x1 − c
= 1

since here f(c) < c. But this is impossible, because by supposition, on all of [0, 1],
we have |f ′(x)| ≤ 1. Thus, by contradiction, there can be no gap between the fixed
points x0 and x1 where the graph of f lies completely below the diagonal.

The proof in the other case, where f(x) > x for all x ∈ (x0, x1) is entirely
symmetric and is left to you.

Exercise (2.5.4). First, some general information. Due to the previous problem,
the fixed point set of any map of this kind, must be connected, so either a point
or a (closed) interval. There are many reasons why it must be closed (include the
endpoints), but think about why. And second, if the fixed point set is an interval,
then it must be the case that the derivative along the fixed point interval is definitely
1. Draw a picture if you do not see this.
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Now, to solve this problem, we will work in cases. First, let’s suppose that our
function f(x) on I = [0, 1] has |f ′(x)| < 1 and the inequality is strict. Then Fix(f)
consists entirely of one point, say x0 = Fix(f) by Exercise 2.5.3. In the event that
f ′(x) > 0, it should be obvious that x0 is an attractor, at least nearby (draw a
picture: with these conditions, nearby orbits that start on either side of the fixed
point will stay on that side, and the orbits nearby will all be monotonic, tending
toward the fixed point. As there are no other fixed points around, they must tend
toward x0. In the case that f ′(x0) < 0, we may have orbits that jump from one
side of x0 to the other side and then back again. However, looking at f2(x),

d

dx
f2(x) = f ′ (f(x0)) f

′(x0) = [f ′(x0)] > 0.

Then by the same argument as above, x0 will again be an attractor.
Do you see how important this is? Suppose there exists a periodic point y0 < x0

of of minimal period n > 1. Then y0 ∈ Fix(fn). But also x0 ∈ Fix(fn). Since
by Exercise 2.5.3, fixed point sets of maps of I with derivatives bounded by 1 in
absolute value must have connected fixed points, this says that the entire interval
[y0, x0] ⊂ Fix(fn). This is true here because for any n ∈ N, the map fn also
has the SAME bound on its derivative (can you see this?). As we have already
established that x0 is an attractor, there can be NO periodic points in a small
enough neighborhood of x0. This contradiction establishes the result in the case
that the derivative of f is never equal to 1 or −1.

Now suppose that f ′(x0) = 1. Then either Fix(f) is either just the point x0, or
includes an entire interval containing x0. Either way, the edges of this interval will
have attractors on the sides outside of the interval of fixed points. Again, draw a
picture to see this. The same argument above will establish the same contradiction.

Finally, suppose f ′(x0) = −1. Again, then x0 = Fix(f). If you look toward f2,
d
dxf

2(x0) = 1. It may now be the case that Fix(f2) IS an interval containing x0

(picture the map f(x) = 1−x on [0, 1]). In fact, the interval of fixed point of f2 in
this case is precisely the image of the interval containing x0 where the derivative
of f is precisely −1. But the above argument will again show that ther can be NO
other periodic point besides these possible order-2 points. We are done.

Exercise (EP9). Let I = [a, b]. For part a), make the assumption that the invert-
ible map f : I → I is not one-to-one (injective). Then ∃x, y ∈ I such that x ̸= y
but f(x) = f(y). Since f(x) is invertible, f−1 is a function. But then

x = f−1 (f(x)) = f−1 (f(y)) = y

is a contradiction. Hence the assumption must be wrong. The other two parts are
constructed similarly.

Exercise (EP10). To answer the first request, take any increasing function f :
I = [0, 1] → I that fixes both endpoints, and you are done. This will correspond
to an injective continuous function on S1. Note the fact that it is increasing allows
that the inverse exists, and the fact that the endpoints are fixed makes the inverse
continuous. For an example, the function f(x) = x2 is a continuous invertible
function on I which induces a continuous, invertible function on S1 (What is an
expression for the inverse?) See the figure:

Really, the end point need not be fixed, as long as f(0) = f(1). For a differ-
entiable circle map, the one-sided derivatives of the map f at the endpoints must
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f(x) = x2

agree in addition to the map being continuous. Try f(x) = x3 − 3
2x

2 + 3
2 , as in the

next figure:

f(x) = x  -   x  +   x3 23
2

3
2

Here, considered as a function on R, f ′(0) = f ′(1). Finally, since the graph of
f(x) on I need not actually be in I due to the fact that we are identifying the
endpoints of I, it is quite easy to create a differentiable function on the circle that
comes from a function whose domain is I but whose range is shifted a bit. This leads
to an easy to describe differentiable fixed point free map on the circle f(x) = x+ r,
where r ∈ I, as in the figure:

f(x) = x + r

r

Note that this only works due to the fact the via the identification of the end-
points, one can “wrap” the graph vertically. You will see these kind of graphs again
in circle , cylinder and toral maps later.

Exercise (EP11). The general solution to this uncoupled system is

r(t) =
r0

r0 + (1− r0)e−
t
2

θ(t) = t+ θ0

z(t) = z0e
−t.

Along the circle given by the two equations r = 1 and z = 0 (remember from
Calculus III that the typical 1-dimensional set in R3 requires two equations), the
motion is constant velocity. More precisely, the solution passing through the initial
point x⃗ = (r0, θ0, z)) = (1, 0, 0) is given by

r(t) = 1, θ(t) = t, z(t) = 0.
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Since by observation, there are no other cycles near this one (or anywhere else, for
that matter), this is an isolated cycle, with period 2π.

Choose the plane passing through the point (1, 0, 0), and normal to the motion
along the cycle; the tangent vector to the motion passing through (1, 0, 0) is the
tangent vector (0, 1, 0). Note that with cylindrical coordinates, we only view this
plane as a half-plane, to distinguish it from the plane as that described by the
equation θ = π. Call this plane Pθ.

Every orbit that starts in this plane (even the origin) intersects this plane again
at t = 2π. Using (r, z) as coordinates on Pθ, we get a function f : R2 → R2

(actually it is a function on the half-plane defined by r ≥ 0 and z, but near the
point (r, z) = (1, 0), this will not matter) defined by the condition that (r0, z0) =
(r(0), z(0)) 7→ (r(2π), z(2π)). Thus

f(r, z) =

(
r

r + (1− r)e−π
, ze−2π

)
.

Notice that the point (1, 0) is fixed by f and that f is nonlinear (in r only,
though). However, to understand the qualitative behavior of f near the fixed point
at (1, 0), we calculate the derivative map there:

Df(1,0) :

(
∂fr
∂r

∂fr
∂z

∂fz
∂r

∂fz
∂z

)∣∣∣∣
(1,0)

=

(
e−π 0
0 e−2π

)
.

It is immediate that all of the eigenvalues of the fixed point (1, 0) under the map
f are positive and strictly less than 1. Hence this orbit is an attractive orbit and a
limit cycle.

Exercise (EP12). Really, for λ outside of the interval [0, 4], the range of f as a
real-valued function includes points outside of [0, 1].


