HOMEWORK SET 2. SELECTED SOLUTIONS

DYNAMICAL SYSTEMS (110.421)
PROFESSOR RICHARD BROWN

1. GENERAL INFORMATION

The homework sets are listed here:
http://www.mathematics. jhu.edu/brown/courses/s11/Syllabus421.htm

First, I want to establish a general claim used in the book.
Claim. Forz € I =[1,00) and t >0, Vo +¢ <z + 3t

Note. There is a typo in the book when they establish this claim (can you find
it?) Here we show this with a little bit of Calculus II. Really, this only involves a
statement that the tangent line to the graph of v/z lies above the graph for z € I.

Proof. Let g(t) = vz +t for some fixed z € I defined on ¢ > 0 (really, we need
t € (—¢,00) for a small € > 0 since we will need the differentiability of g at ¢t = 0).
Expand ¢(t) about t = 0 as a Taylor Series:
1
0
g(t) = g(0) + ¢'(0)t + QT()tQ e
Here, all of the derivatives of g(¢) at 0 are defined and positive, so for t > 0,
g(t) < g(0) + ¢’'(0)t (this is what I mean by the tangent line lying over the graph).
Hence

Vat+t=g(t) <g(0) +4(0)t = Va+ %tﬁ \/5+%t,

since v/ > 1 on I. O

2. SELECTED EXERCISES

Exercise (2.2.5). There are a number of ways to find the second-order recursion
that defines the population of lemmings. For one, start from the bottom and work
your way up. Consider it this way: Take you census every spring. Then last year’s
summer litter is maturing and the 2 year-olds have just recently died. In year 1,
we have just the one pair, and they are preparing to have young. They will have
4 young and the next winter, none will die. The next spring (year 2), there are
6 now, but the original pair is turning 2 this summer. They all produce, and the
12 new young make the fall population 18. The original 2 die in the winter, and
the next spring (year 3), there are 16. More precisely, let y,, = spring population
in year n, b, the summer population 3 months later, and d,, the winter deaths 6
months after that. Then it is easy to see that

Yn+1 = Yn + bn - dn
1
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However, there are relationships between these variables. For one, every spring pair
produces four young in the summer. Thus
1
b, = §y7L -4 = 2y,.
Next, the number of deaths in any winter is precisely the number of births 2 sum-
mers before the previous spring (lemmings die in the winter of their third year).
Thus
dp =bp_s.

Thus, up to now, we get

Yn+tl = Yn T+ 2yn — bp—2
= 2yn + (yn - bn—2) .

The last line is written this way because it is also true that the population in
any spring minus the births two years before is precisely the number of births in
the intermediate year, which is precisely twice the spring population of that year.
Indeed,

Yn — bn—2 = bn—l = 2yn—1-
Putting this in for the term in the parentheses, we get

Ynt1l = 2Yn + 2Yn—1

and we are done.

Notice that the book is incorrect in its solution to this problem. However, the
rest of the problem is fine. Let x,41 = ”:1 Recall that the growth of a second
order recursive sequence is not quite exponential, but asymptotically exponential,
with a growth rate given by the limit of the sequence {z,}. To find this, notice

that

Tnyq = Il 2Yn +2yn—1 _ 9L oUnl _ o 2
Yn Yn Yn Tn
If we let g(z) = 2+ 2, then z,41 = g(x,). This is a contraction on a suitable
interval like I = [2,4], and all orbits are asymptotic to the fixed point at © = 2+ %,
which is 22 — 22 — 2 = 0 (notice this similar structure of this last equation and the
recursive y-sequence that defined it). The only root to thisin I is 2 =1+ V3.
One final note here; there are other ways to do this. One is to count lemmings
each year by age. To do this every spring, simply note that every spring only the
0-year olds and the 1-year olds are to be counted, because the two year olds in that
spring are actually 2% years of age, and have died before getting there. To get the
living lemming counts, just follow the number of births each year. You still have
to work out the recursion formula, but the sequence is simple to calculate.

Exercise (2.2.6). The conditions here stipulate that z¢ is a fixed point with a
unit slope in absolute value and that zy is not an inflection point or part of an
interval of fixed points, so f”(x¢) # 0. One case of this is f'(xz¢) =1 (the graph of
f(z) is tangent to the fixed point line ¢ (the line y = x). One conclusion one can
immediately draw is that near 2o (except at zg), either the graph of f is completely
above £ or completely below it (draw pictures). Indeed, consider the former. Let
U(xg) = B<(xp) be a small neighborhood around zg, where Yy € U, y # xq, we
know f(y) > y. But then for y > xo, we have f(y) > f(xo) = xo. This says the
elements of the orbit of y, O, are not moving towards xy. And since the only way
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for an orbit to approach xg is from below, it must be the case that to converge to
%o, the elements of O, would have to jump to the other side of z¢. But if g is the
largest fixed point for f, then O, is monotonic and we are done with this case.

For an orbit of y € u(xg), where
Yy > g, to cross to the other side
of xg, the graph of f(x) must again
cross £ and dip down sufficiently
Yot é quickly (see the figure). Thus there

exists a fixed point yg > xg. Look
at the structure of the graph of f.

If the maximum of f on [z, yo] is

Xt )
0 Yo, then O, — yo. Hence for it to
be possible that O, converge to zy,

part of the interval [z, yo] must be
mapped to an interval greater than
yo (again, see the figure). This
is actually possible, and will allow
: cO, to converge to .
xo y N7 0 However, this is not a problem.
Z Since the graph of f(z) on [xo, yo
.4 lies completely ABOVE the y = x
line, the pre-image of yo will be in (zg, yo), as an eventual fixed point. But so will the
pre-image of that point, as well as its pre-image. In fact, if we go backwards, there
will be a sequence of pre-images of yg, a backwards orbit which is monotonically
DECREASING. Hence it must converge and must converge to the only fixed point,
it can: xg. But that means precisely that as close as you like, there WILL BE a
point z, € U(zo), an eventually fixed point, where O, does NOT converge to .
Note that the other case, with all of f(z) under xo near x¢ is similar. And I
leave the case where f'(x) = —1 to you.

Exercise (EP6). I will prove this two ways. The book uses a claim, which I
proved above. Let’s prove this result first using the claim. Let f(x) = y/z forz € T
defined in the claim above. Choose two points z,y € I and suppose without lodd
of generality that y —x =¢ > 0. Then y =z + ¢ and

dlz,y) =z +t—z| =t

For the images, we have d (f(z), f(y)) = V& +t—+/z. By the claim above we know
that o+t —/x < %t for x € I. Thus

A(F(@), 1 (9) = VE T E— V< gt = sd(r.y).

hence f is a 1-contraction on I.
However, without all of this machinery, there is a more direct way to show this.

Again, choose any two z,y € I, where z # y. Then

A @), 1) = VE = Vil = [VE - Vil (M)

(5l -vi =gk
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since for all z,y > 1, the expression \/z + \/y > 2.

Exercise (EP8). The model for this function is given in the book: Example 2.2.4
and the function /z on [1, 00). In our case, with f(z) =log(z—1)+5o0n I = |2, c0),
we need a slight modification. Here, f is increasing on all of I, and differentiable,
with f’(z) = 5. However, by Proposition 2.2.3, we only know here then that f(z)
is 1-Lipschitz, since f/(2) = 1. Thus, we cannot say directly that f is a contraction.
To cure this, notice that f(2) = 5 and indeed f(I) = [5,00). Hence, after one
iteration of f, we can regard f as a map on [5,00). Here, since f'(5) = i, it is
easy to see that f is a i—contraction (on [5,00) only, but remains a contraction
throughout I in this case), and hence has a global attractor. This immediately
rules out any periodic points of order higher than 1. To find the only fixed point,
simply solve x = f(x), or take any starting point and iterate. It is approximately

6.74903 using the natural log and 5.66925 using the common log.



