
MATH 421 DYNAMICS

Week 9 Lecture 2 Notes

1. Counting Periodic Orbits

It seems like we spend a lot of time in our study of dynamical systems on the classification
and counting of periodic orbits of a map f ∶X →X. To understand why, consider

● n-periodic points are the fixed points of the map fn.
● Periodic points, like fixed points, have stability features.
● There are existence theorems for periodic points.
● many times, we can “solve” for them, without actually solving the dynamical systems.

Definition 1. For f ∶X →X a map, let

Pn(f) ∶=#{x ∈X ∣fn(x) = x}

be the set of all n-periodic points of f . And let

P (f) ∶= ⋃
n∈N

Pn(f).

Note that Pn(f) also includes all m-periodic point when m∣n. In particular, the 1-periodic
points are the fixed points and these are in Pn(f) for all n ∈ N.

As a sequence, {Pn(f)}n∈N can say a lot about f .

Recall E2 ∶ S1 → S1, E2(z) = z2, z = e2πix ∈ S1, or E2(s) = (2s mod 1), for s ∈ S1,
depending on your model for S1.

Proposition 2. Pn(E2) = 2n − 1, and all periodic points are dense in S1 (i.e., P (E2) = S1).

Proof. Using the model E2(z) = z2, we find that z is an n-periodic point if

(⋯((z2)2)⋯)
2
= z or z2

n = z or z2
n−1 = 1.

Thus every periodic point is an order-(2n − 1) root of unity (and vice versa). And there are
exactly 2n − 1 of these, uniformly spaced around the circle. In fact, to any rational p

q ∈ Q,

the point e2πi(
p
q
) is a qth root of unity. If q = 2n − 1, for n ∈ N, then e2πi(

p
q
) is an order-n

fixed point. Now as n goes to ∞, the spacing between order-(2n − 1) roots of unity goes to
0. Hence any point x ∈ S1 can be written as the limit of a sequence of these points. Hence
will be in the closure of P (E2). �
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Figure 1. Order-n fixed points of E2 spaced evenly in S1

Example 3. z is 2-periodic if z2
2−1 = z3 = 1. These are the points z = e2πi( k3 ), for k = 1,2.

To see how this works,

E2(e2πi(
1
3
)) = (e2πi( 13 ))

2
= e2πi( 13 )∗2 = e2πi( 23 ), while

E2(e2πi(
2
3
)) = (e2πi( 23 ))

2
= e2πi( 23 )∗2 = e2πi( 43 ) = e2πi( 13 ).

We can calculate the growth rate of Pn(E2) in the obvious way: Define the truncated
natural logarithm

ln+ x = {
lnx x ≥ 1
0 otherwise

.

Then define p(f) = lim
n→∞

ln+Pn(f)
n

as the relative logarithmic growth of the number of n-

periodic points of f with respect to n.

For our case, then, where E2(z) = z2,

p(E2) = lim
n→∞

ln+ (2n − 1)
n

= lim
n→∞

ln+ 2n(1 − 2−n)
n

= lim
n→∞

ln+ 2n + ln+(1 − 2−n)
n

= ln 2.

This is the exponential growth rate of the periodic points of the map E2. Note that the
growth factor is 2 at each stage, hence the exponential growth rate is the exponent of e
which corresponds to the growth factor. Here 2 = eln 2.

Proposition 4. For f ∶ S1 → S1, f(z) = zm, where m ∈ Z and ∣m∣ > 1,
Pn(f) = ∣mn − 1∣,

the set of all periodic points is dense in S1, and p(f) = ln ∣m∣.
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Exercise 1. Show this for m = −3.

Here is an interesting fact: Let f(z) = z2. The image of any small arc in S1 is twice as
long as the original arc. However, there are actually 2 disjoint pre-images of each small arc,
and each is exactly half the size. Combined, the sum of the lengths of these two pre-images
exactly matches the length of the image. Thus this expanding map on S1 actually preserves
length! Some notes about this:

● This is actually true for all of the expanding maps Em ∶ S1 → S1, Em(z) = zm, where
m ∈ Z, and ∣m∣ > 1.
● This is a somewhat broadening of the idea of area preservation for a map. When the
map is onto but not 1-1 (in this case, the map is 2-1), the relationship between pre-
image and image is more intricate, and care is needed to understand the relationship
well.

1.1. The quadratic family. For λ ∈ R, let fλ ∶ R → R, where fλ(x) = λx(1 − x) is also
called the logistic map on R. For λ ∈ [0,4], we can restrict to I = [0,1], and fλ ∶ I → I is
the interval map family we partially studied already. In fact, we can summarize our results
so far: For λ ∈ [0,3], the dynamics are quite simple. There are only fixed points, and no
nontrivial periodic points, and all other points are asymptotic to them. The fixed points are
at x = 0 and x = 1 − 1

λ .

Some new facts:

(1) for λ ∈ [3,4], a LOT happens! (we will get to this later in the course.)
(2) for λ > 4, I is not invariant.
(3) since fλ is quadratic, fn

λ is at most of degree 2n. Thus the set of n-periodic points must
be solutions to the equation fn

λ (x) = x. Bringing x to the other side of the equation,
the set Pn(fλ) must consists of the roots of an (at most) 2n-degree polynomial. Hence

Pn(fλ) ≤ 2n, for all λ ∈ R.
(4) For λ > 4, many points escape the interval I. However, as we will see, many points

have orbits which do not. We can still talk about the map on the set of all of these
points....

Let λ > 4, and consider the first iterate of fλ. Notice (see the figure), that the intervals I1
and I2 are both mapped onto [0,1] and that each contains exactly one fixed point. Under
the second iterate of the map, f 2

λ , only points in the 4 intervals Ji, i = 1,2,3,4 remain in
[0,1]. Here there are 4 fixed points (again one in each interval). But notice that only two of
them are new, y1 and y2. These two new ones are period-2 points that are not fixed points.
See in the cobwebbed figure the period-2 orbit on the right of the figure.

Continue iterating in this fashion, and one can see that there will be
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Figure 2. The map fλ, f 2
λ , and the period-2 orbit

● 2n intervals of points that remain in [0,1] after n-iterates.
● The next iterate of fλ maps each of these 2n intervals onto [0,1], creating a single
fixed point in each interval (of fn

λ ).
● You can see then (and one can prove this by induction) that Pn(fλ) = 2n, when λ > 4.

This quadratic family is an example of a unimodal map: A continuous map defined on an
interval that is increasing to the left of an interior point and decreasing thereafter.

Proposition 5. Let f ∶ [0,1] → R be continuous with f(0) = f(1) = 0 and suppose there
exists c ∈ (0,1) such that f(c) > 1. Then Pn(f) ≥ 2n. If, in addition, f is unimodal and
expanding, then Pn(f) = 2n.

Definition 6. A map f ∶ [0,1]→ [0,1] is expanding if

∣f(x) − f(y)∣ > ∣x − y∣

on each interval of f−1 ([0,1]).

Examples of expanding maps include the logistic map for suitable values of λ > 4, and the
circle maps Em, where m ∈ Z and ∣m∣ > 1 (you should modify the definition here to include
maps of S1). Note here:

● In the Proposition, the condition f(0) = f(1) = 0 and continuity ensure that the map
will “fold” the image over the domain, and
● the condition f(c) > 1 ensures the folding will be complicated, with lots of points
escaping, while lots of points will not.

1.2. Expanding Maps. Here is a better definition of an expanding map (albeit limited
now to circle maps):

Definition 7. A C1-map f ∶ S1 → S1 is expanding if ∣f ′(x)∣ > 1, ∀x ∈ S1.
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Example 8. It should be obvious by this definition that the map Em, where m ∈ Z and
∣m∣ > 1 is expanding, since Em(x) =mx mod 1 is differentiable and ∣E′m(x)∣ = ∣m∣ > 1 for all
x ∈ S1.

Recall that the degree of a circle map is a well defined property that measures how many
times the image of a map of S1 winds itself around S1.

Lemma 9. Let f, g ∶ S1 → S1 be continuous. Then

deg(g ○ f) = deg(g)deg(f).

Proof. Degree is defined via a choice of lift: Given lifts F,G ∶ R → R of these two maps, we
have for s ∈ S1 and k ∈ Z,

G(s + k) = G(s + k − 1) + deg(g) = G(s + k − 2) + 2deg(g) = ⋯ = G(s) + kdeg(g).
But this means

G (F (s + 1)) = G (F (s) + deg(f)) = G (F (s)) + deg(f)deg(g).
�

Example 10. deg(fn) = (deg(f))n.

Hence we can use this to show:

Proposition 11. If f ∶ S1 → S1 is expanding, then ∣deg(f)∣ > 1 and Pn(f) = ∣(deg(f))n − 1∣.

Here is a 2-dimensional version of periodic point growth. Let L ∶ R2 → R2, L(x, y) =
(2x + y, x + y). We can also write L as the linear vector map

L(x) = Ax, where A = [ 2 1
1 1

] .

We know that since A has integer entries, it takes integer vectors to integer vectors, and

hence descends to a map on the two torus T2. Indeed, if x1 = [
x1

y1
] and x2 = [

x2

y2
] satisfy

x1 − x2 ∈ Z2, then
L(x1 − x2) = L(x1) −L(x2) ∈ Z2.

But then L(x1) − L(x2) = 0 mod 1, which means L(x1) = L(x2) mod 1. Hence the map L
induces a map on T2 which assigns

(x, y)z→ (2x + y mod 1, x + y mod 1).
We will call this new induced map on the torus FL ∶ T2 → T2, where

FL(x) = Ax, A = [ 2 1
1 1

] , x ∈ T2.
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Some notes:

● This map is an automorphism of T2: A homeomorphism that preserves also the
ability of points on the torus to be added together (multiplied, if one defines the
multiplication correctly).
● FL is also invertible since it is an integer matrix of determinant 1. The inverse map

F −1L ∶ T2 → T2 is given by the matrix A−1 = [ 1 −1
−1 2

].

● The eigenvalues of FL (really the eigenvalues of A) are the solutions to the quadratic
equation λ2 − 3λ + 1 = 0, or

λ = 3 ±
√
5

2
.

Note that

λ1 =
3 +
√
5

2
> 1, and λ2 =

3 −
√
5

2
< 1,

so that the matrix defining FL is a hyperbolic matrix (determinant-1 with eigenvalues
off the unit circle in C).

Question 12. How does FL act on T2?

Really the answer to this question relies on how L acts on R2. Watching the model of T2

as the unit square in R2 as it is acted on by L provides the means to study the FL action on
T2. This is the two dimensional version of studying a lift of a circle map on R as a means of
studying the circle map.

Linear maps of the plane take lines to lines. Hence they take polygons to polygons, and,
in this case, they take parallelograms to parallelograms. The image of the unit square can
be found by simply finding the images of the four corners of the square and constructing
the parallelogram determined by those points. In this case, we have the figure. But there
is more. L is area preserving. Hence the image of the parallelogram will also have area 1.
And due to the equivalence relation given by the exponential map on R2, every point in the
image of the unit square has a representative within its equivalence class INSIDE the unit
square. We can reconstruct the unit square by translating back all of these outside points
back into the square. This becomes the image of points on the torus back into the torus.

See the drawing, where

L([ 1
1
]) = [ 3

2
] , L([ 1

0
]) = [ 2

1
] , and L([ 0

1
]) = [ 1

1
] .


