MATH 421 DYNAMICS

Week 9 Lecture 2 Notes

1. COUNTING PERIODIC ORBITS

It seems like we spend a lot of time in our study of dynamical systems on the classification
and counting of periodic orbits of a map f: X - X. To understand why, consider

e n-periodic points are the fixed points of the map f".

e Periodic points, like fixed points, have stability features.

e There are existence theorems for periodic points.

e many times, we can “solve” for them, without actually solving the dynamical systems.

Definition 1. For f: X - X a map, let
Po(f) = #{r e X|f"(z) =2}
be the set of all n-periodic points of f. And let
P(f):: UPn(f)

neN
Note that P,(f) also includes all m-periodic point when m|n. In particular, the 1-periodic
points are the fixed points and these are in P,(f) for all n € N.
As a sequence, {P,(f)}, can say a lot about f.

Recall Fy : St — S Ey(z) = 22, z = €2™@ ¢ S1 or Fy(s) = (2s mod 1), for s € S,
depending on your model for S*.

Proposition 2. P,(Ey) =2" -1, and all periodic points are dense in St (i.e., P(Ey) = St).

Proof. Using the model Es(z) = 22, we find that z is an n-periodic point if
2 n n
(((zQ)Z)) =zorz2 =zor 22X t=1.

Thus every periodic point is an order-(2" — 1) root of unity (and vice versa). And there are
exactly 2" — 1 of these, uniformly spaced around the circle. In fact, to any rational g €Q,

the point e%i(%) is a gth root of unity. If ¢ = 2" -1, for n € N, then e%i(g) is an order-n
fixed point. Now as n goes to oo, the spacing between order-(2" — 1) roots of unity goes to
0. Hence any point x € ST can be written as the limit of a sequence of these points. Hence
will be in the closure of P(FE3). O
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FIGURE 1. Order-n fixed points of Fy spaced evenly in S*

Example 3. z is 2-periodic if 22~ = 23 = 1. These are the points z = e2™(3)_ for k = 1, 2.
To see how this works,

Ba(em()) = (2D = 2milh)2 2 20i3), while
By (e (2) ) = (€2m(§))2 = e2mi(3)%2 _ p2mi(3) _ p2mi(3)

We can calculate the growth rate of P,(E;) in the obvious way: Define the truncated

natural logarithm
{ Inz rx>1
In, z = L.

0  otherwise
—1In, P,
Then define p(f) = limm—n(f)
n—oo n

periodic points of f with respect to n.

as the relative logarithmic growth of the number of n-

For our case, then, where Fy(z) = 22,

In, (2" - — In, 27(1 -2

(2 1) 212
n

n—>00 n

p(Fy) = hm

_ mln+2 +1n,(1-27) o,

n— 00 n

This is the exponential growth rate of the periodic points of the map FE,. Note that the
growth factor is 2 at each stage, hence the exponential growth rate is the exponent of e
which corresponds to the growth factor. Here 2 = el*2,

Proposition 4. For f:S' - St f(z) = z™, where m € Z and |m| > 1,

Po(f) =m" -1},
the set of all periodic points is dense in S, and p(f) =1In|m|.



Exercise 1. Show this for m = -3.

Here is an interesting fact: Let f(z) = 22. The image of any small arc in S* is twice as
long as the original arc. However, there are actually 2 disjoint pre-images of each small arc,
and each is exactly half the size. Combined, the sum of the lengths of these two pre-images
exactly matches the length of the image. Thus this expanding map on S' actually preserves
length! Some notes about this:

e This is actually true for all of the expanding maps E,, : St - S, E,,(z) = 2™, where
m € Z, and |m| > 1.

e This is a somewhat broadening of the idea of area preservation for a map. When the
map is onto but not 1-1 (in this case, the map is 2-1), the relationship between pre-
image and image is more intricate, and care is needed to understand the relationship
well.

1.1. The quadratic family. For A € R, let f\ : R - R, where f\(z) = Ax(1 - z) is also
called the logistic map on R. For A € [0,4], we can restrict to [ = [0,1], and fy: [ - [ is
the interval map family we partially studied already. In fact, we can summarize our results
so far: For A € [0,3], the dynamics are quite simple. There are only fixed points, and no
nontrivial periodic points, and all other points are asymptotic to them. The fixed points are
atz=0and x=1- 7.

Some new facts:

(1) for A€ [3,4], a LOT happens! (we will get to this later in the course.)

(2) for A >4, I is not invariant.

(3) since fy is quadratic, f} is at most of degree 2. Thus the set of n-periodic points must
be solutions to the equation fy(z) = x. Bringing « to the other side of the equation,
the set P,(fy) must consists of the roots of an (at most) 2"-degree polynomial. Hence

P.(f\) <2", for all AeR.

(4) For A >4, many points escape the interval I. However, as we will see, many points
have orbits which do not. We can still talk about the map on the set of all of these
points....

Let A >4, and consider the first iterate of fy. Notice (see the figure), that the intervals I
and I are both mapped onto [0,1] and that each contains exactly one fixed point. Under
the second iterate of the map, f3, only points in the 4 intervals J;, i = 1,2, 3,4 remain in
[0,1]. Here there are 4 fixed points (again one in each interval). But notice that only two of
them are new, y; and y,. These two new ones are period-2 points that are not fixed points.
See in the cobwebbed figure the period-2 orbit on the right of the figure.

Continue iterating in this fashion, and one can see that there will be
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FIGURE 2. The map f, f7, and the period-2 orbit

e 2" intervals of points that remain in [0, 1] after n-iterates.

e The next iterate of f) maps each of these 2" intervals onto [0,1], creating a single
fixed point in each interval (of f}).

e You can see then (and one can prove this by induction) that P,(f\) = 2", when A > 4.

This quadratic family is an example of a unimodal map: A continuous map defined on an
interval that is increasing to the left of an interior point and decreasing thereafter.

Proposition 5. Let f :[0,1] = R be continuous with f(0) = f(1) = 0 and suppose there
exists ¢ € (0,1) such that f(c) > 1. Then P,(f) > 2". If, in addition, f is unimodal and
expanding, then P,(f) =2m.

Definition 6. A map f:[0,1] - [0,1] is ezpanding if

[ (2) = F )] > |z -y
on each interval of f=1([0,1]).

Examples of expanding maps include the logistic map for suitable values of A > 4, and the
circle maps E,,, where m € Z and |m| > 1 (you should modify the definition here to include
maps of S1). Note here:

e In the Proposition, the condition f(0) = f(1) = 0 and continuity ensure that the map
will “fold” the image over the domain, and

e the condition f(c) > 1 ensures the folding will be complicated, with lots of points
escaping, while lots of points will not.

1.2. Expanding Maps. Here is a better definition of an expanding map (albeit limited
now to circle maps):

Definition 7. A Cl-map f:S! - St is expanding if |f'(x)| > 1, Yz € St
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Example 8. It should be obvious by this definition that the map FE,,, where m € Z and
|m| > 1 is expanding, since E,,(x) =mz mod 1 is differentiable and |E!,(x)| = |m| > 1 for all
xeSt.

Recall that the degree of a circle map is a well defined property that measures how many
times the image of a map of S winds itself around S*.

Lemma 9. Let f,g: S - St be continuous. Then
deg(g o f) = deg(g)deg(f).

Proof. Degree is defined via a choice of lift: Given lifts F, G : R - R of these two maps, we
have for s € St and k € Z,

G(s+k)=G(s+k-1)+deg(g) =G(s+k-2)+2deg(g) =---=G(s) + kdeg(g).
But this means
G(F(s+1)) =G (F(s) +deg(f)) = G (F(s)) + deg(f)deg(g).

Example 10. deg(f™) = (deg(f))".

Hence we can use this to show:

Proposition 11. If f: S* - S is expanding, then |deg(f)| > 1 and P,(f) =|(deg(f))" - 1|.

Here is a 2-dimensional version of periodic point growth. Let L : R? -» R2 L(z,y) =
(2z +y,x +y). We can also write L as the linear vector map

L(x) = Ax, whereA:[% i‘l

We know that since A has integer entries, it takes integer vectors to integer vectors, and

hence descends to a map on the two torus T?. Indeed, if x; = [ ?jl ] and Xy = [ 52 ] satisfy
1 2

X1 — Xy € Z2, then
L(X1 —Xg) = L(Xl) - L(Xg) € ZQ.
But then L(x;) — L(x2) =0 mod 1, which means L(x;) = L(x3) mod 1. Hence the map L
induces a map on T? which assigns
(z,y) — (2r+y mod 1,x+y mod 1).
We will call this new induced map on the torus Fy, : T? —» T?, where

21 ], x e T2

Fr(x) = Ax, A:l 11



Some notes:

e This map is an automorphism of T?: A homeomorphism that preserves also the
ability of points on the torus to be added together (multiplied, if one defines the
multiplication correctly).

e F is also invertible since it is an integer matrix of determinant 1. The inverse map
1 -1

-1 2

e The eigenvalues of F}, (really the eigenvalues of A) are the solutions to the quadratic
equation A2 -3\+1=0, or

3+V5

2
3+VH 3-V5

>1, and Ay =
2 2

so that the matrix defining F7, is a hyperbolic matrix (determinant-1 with eigenvalues
off the unit circle in C).

F;1:T? - T? is given by the matrix A1 =

A:

Note that
Al =

<1,

Question 12. How does Fy, act on T??

Really the answer to this question relies on how L acts on R2. Watching the model of T?
as the unit square in R? as it is acted on by L provides the means to study the F}, action on
T2. This is the two dimensional version of studying a lift of a circle map on R as a means of
studying the circle map.

Linear maps of the plane take lines to lines. Hence they take polygons to polygons, and,
in this case, they take parallelograms to parallelograms. The image of the unit square can
be found by simply finding the images of the four corners of the square and constructing
the parallelogram determined by those points. In this case, we have the figure. But there
is more. L is area preserving. Hence the image of the parallelogram will also have area 1.
And due to the equivalence relation given by the exponential map on R?, every point in the
image of the unit square has a representative within its equivalence class INSIDE the unit
square. We can reconstruct the unit square by translating back all of these outside points
back into the square. This becomes the image of points on the torus back into the torus.

H

See the drawing, where
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