
MATH 421 DYNAMICS

Week 8 Notes

1. Newtonian Systems of Classical Mechanics

Your previous work in ODEs suggested a general premise about systems of differential
equations. If they are defined “nicely”, then the present state of a mechanical system deter-
mines its future evolution through other states uniquely. One can place this in the language
of dynamical systems to say that if a mathematical construction accurately models a me-
chanical system, than the construction determines a dynamical system on the space of all
possible states of the system. The trick in many cases is to well understand what constitutes
a state of a mechanical system. To start, given a mechanical system, the configuration space
of the system is the set of all possible positions (value combinations of all of its variables)
of the system. The state space, rather, is the set of all possible states the system can be in.
This is usually much broader a description.

For example, consider the pendulum, a mass is attached to the free end of a massless rigid
rod, while the other end of the rod is fixed. The set of all possible configurations of the
pendulum is simply a copy of S1. However, for each configuration, the pendulum is in a
different state depending on what the mass’ velocity is when it resides in a configuration.
One can think of all possible states as the space S1 ×R. This reflects the data necessary to
completely determine the future evolution of the pendulum by a knowledge of its position
and velocity at a single moment, and the evolution equation which is a second-order, possibly
non-linear and non-autonomous, ODE in the general form

ẍ = f(t, x, ẋ).
In the case of a pendulum, time is not explicit on the right hand side, and the equation is
autonomous. Under the standard practice of converting this ODE into a system of two first
order ODEs, we can interpret the evolution as giving a vector field on the state space S1×R,
with coordinates x and ẋ. This vector field determines a flow, which solves the ODE and
determines the future evolution of the system based on knowledge of the state of the system
at a particular moment in time.

Many systems behave in a way that their future states are completely determined by their
present position and velocity, along with a notion of how they are changing. In classical
(Newtonian) mechanics, Newton’s Second Law of motion states roughly that the force acting
on an object is proportional to how the velocity of the object is changing. The is the famous
equation f =ma, where f is the total force acting on the object and a is its acceleration. As
the velocity depends on the current position of an object, a good notion of how an object
moves through a space under the influence of a force is completely determined by how its
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position and velocity are changing, at least when the force is static:

f(x) =ma =mẍ =md2x

dt2
.

This is a special case of the general second order ODE mentioned above.

Example 1. An object under the influence of only gravity satisfies Newton’s Second Law
and the differential equation is ẍ = −g, where g is the gravitational constant. This is solved
by integrating the “pure time” ODE twice

x(t) = −g t2
2
+ v0t + s0,

where v0 and s0 are the initial velocity and initial position, respectively (the two constants
of the integrations).

Example 2. Harmonic Oscillator. Recall Hooke’s Law: the amount an object is deformed
is linearly related to the force causing the deformation. This translates to ẍ = −kx, which is
autonomous. Solutions are given by

x(t) = a sin√kt + b cos√kt,
where a and b are related to the initial starting position and velocity of the mass.

As stated above, note that any ODE of the form ẍ = f(t, x, ẋ) can be converted to a
system of two first order (generally coupled) ODEs of the form

ẋ = v

v̇ = f(t, x, v)
which defines a vector field (a static vector field if t does not appear explicitly in the equa-
tions) on the (x, v)-state space. For Newton’s Equation, the equivalent system is ẋ = v and
v̇ = 1

mf(x).
Note: For the n-system governed by Newton’s Law f = ma, we get the 2n-system of first
order equations defined as

ẋ = v

v̇ = f (t,x,v)
The state space consists of the 2n-dimensional vectors [ x

v
]. The vector field of this 2n-

system attaches the vector V = [ v
1
m f (x) ] to each point [ x

v
]. The divergence of this vector

field is

∇ ⋅ V = n∑
i=1

∂

∂xi

(vi) + n∑
i=1

∂

∂vi
( 1
m
fi (x)) = 0.

Hence the flow preserves volume.
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Remark 3. This fact is now true for general Newtonian systems. One facilitating idea in
Newtonian physics is to, in essence, factor out the mass. Define a new variable (a coordinate)
q ∶=mx, and then switch from the velocity coordinate to p ∶=mv as the (linear) momentum.
Then q̇ =mẋ =mv, and f =ma = f =mv̇ = ṗ, and the system becomes q̇ = p and ṗ = f ( 1

mq).
Not only does this make the system easier to work with, it exposes some hidden symmetries
within the equations of conservative systems. This forms the basic framework for what are
called Hamiltonian dynamics.

Now assume that the force f(x) is a gradient field (this means that the force is the gradient
of a function of position alone, or f = −∇V for some V (x). Then

f(x) =ma =mv̇ = −∇V.
Here, the function V is called the potential energy (energy of position), and the energy of
motion, the kinetic energy is

K = 1

2
m ∣∣v∣∣2 = 1

2
m(v ⋅ v).

The total energy H =K + V satisfies

d

dt
(H) = dK

dt
+ dV

dt
=mv̇ ⋅ v +∑

i=1

n
∂V

∂xi

⋅ ∂xi

∂t
=mv̇ ⋅ v +∇V ⋅ v = (∇V +mv̇, v) = 0.

The conclusion is the total energy H is conserved as one evolves in a system like this.
As H is a function defined on the state space given by the vectors x and mv, the solutions
to the system of ODEs are confined to the level sets of this function. A system like this is
called conservative, and is characterized by the idea that the force field is a gradient field.
You have seen this before in a different guise:

1.1. Exact Differential Equations. Consider the nonlinear system of 2 first-order, linear,
autonomous differential equations in 2 variables

(1)
ẋ = 4 − 2y
ẏ = 12 − 3x2.

This system can also be written by the single differential equation

(2) (12 − 3x2)dx − (4 − 2y)dy = 0.
Note that this equation is exact, and separable, and upon integration, one obtains

4y − y2 = 12x − x3 +C.
this defines our solutions implicitly. In fact, we can use this directly.
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Define a function H(x, y) = 4y − y2 − 12x + x3. Then
H is conserved by the flow, and the flow must live
along the constant level sets ofH (the sets that satisfy
H(x, y) = C.) These sets are given by the figure.

Now recall in Section ?? that an ODE M dx +
N dy = 0 is exact ifMy = Nx (this notation again refers
to the first partial derivatives of the functions with re-
spect to the subscripts). The reason is vector-calculus
in nature: The solution is a function ϕ(x, y) = C sat-
isfying ∂ϕ

∂x =M and ∂ϕ
∂y = N . The condition for exact-

ness is simply the statement that for any C2 function
ϕ(x, y), the mixed partials are equal:

My = ∂M
∂y
= ∂

∂y

∂ϕ

∂x
= ∂2ϕ

∂y∂x
= ∂2ϕ

∂x∂y
= ∂

∂x

∂ϕ

∂y
= ∂N

∂x
= Nx.

But we can now go even further: The vector field F(x, y) = (4 − 2y,12 − 3x2) of the system
in Equation 1 corresponds to the exact ODE given by Equation 2 when M = 12 − 3x2 and
N = −(4 − 2y), or F(x, y) = (−N,M). With this,

div(F) = ∂

∂x
(−N) + ∂

∂y
(M) = −Nx +My = 0.

The vector field F is conservative, and the flow will preserve volume (area) in the plane.
This is a general fact for vector fields of exact ODEs and leads directly to:

Proposition 4. The flow of an exact ODE in R2 preserves volume in phase space.

Corollary 5. Equilibria of exact ODEs in R2 can only be saddles or centers.

The repercussions of these facts are quite important: For instance, p = (−2,2) is an
equilibrium solution of Equation ??. What is its type and stability (forgetting the figure for
a moment, that is) of p? We can linearize this Almost Linear System (See Section ??) at p:

[ ẋ
ẏ
] = [ ∂(−N)

∂x (−2,2) ∂(−N)
∂y (−2,2)

∂M
∂x (−2,2) ∂M

∂y (−2,2) ] [
x
y
] = [ 0 −2

12 0
] [ x

y
] .

The eigenvalues r = ±√24 ar epurely imaginary. Hence teh linearlized equilibrium at the
origin is a center. But centers are NOT structurally stable, in that a small perturbation in
a center may result in a sink or a source, as well as a center (the eigenvalues may take on
small real parts, either negative or positive). Hence we cannot by itself declare that p is in
fact a center via the linearized system.
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However, with the additional knowledge that F is conservative, then sinks and sources are
not possible, and in fact, the point p, an equilibrium of the nonlinear system, MUST be a
center. Such is an import of phase volume preservation.

Exercise 1. Complete the phase diagram for this ODE by noting directions of motion along
the level curves. Also, note the values of the level sets corresponding to the two equilibria
solutions. Finally, show analytically that the equilibrium at (2,2) is unstable, while the
equilibrium at (−2,2) is stable.
1.2. Newton’s First Law. An object not under the influence of an external force will move
linearly and with constant (maybe zero) velocity. How does this notion of linear (constant
velocity) motion appear

● in Euclidean space?● on Tn?● On S2?● On an arbitrary metric space? Here we must get a better understanding of just what
a straight line is in a possibly curved space. We can use the metric to define a straight
line as the path that is the shortest distance between two points. This path is called
a geodesic.

v
n S

T

x

On a smooth surface S ⊂ R3, the
Euclidean metric on R3 induces a
metric on S. Choose a point x ∈ S.
The surface has a well-defined tan-
gent plane to S at x. With this tan-
gent plane, we can choose a normal
n to the surface at x, as well as a
desired direction v in the tangent
plane. Now, for a particle moving
freely along the surface S in the di-
rection of v at x, the ONLY force
acting on the particle is the force keeping it on S. Thus, the acceleration vector of the
particle is in the direction of n. With no component of the force in the direction of motion,
the speed ∣∣v∣∣ is constant along this intersection line.

Question 6. What do the geodesics look like on S2?

2πx

x.

mg

L

1.3. The Planar Pendulum. One can model the planar pendulum by
the autonomous second order differential equation

(3) 2πmLẍ +mg sin(2πx) = 0.
Some notes:
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● This is the undamped pendulum as stated. If one were to con-
sider damping, one can model this by adding a term involving ẋ.
A common one is cLẋ.● This equation can be rewritten as

2πL

g
ẍ + sin(2πx) = 0.

● To simplify even further, one can scale time by τ = t
T , where

T = √ g
2πL . Then we get

ẍ + sin(2πx) = 0.
So the model becomes

ẋ = v
v̇ = − sin 2πx,

which is Newtonian with f(x) = − sin 2πx. Here the kinetic energy is K = 1
2v

2, and V is the
potential energy, where

f(x) = −∇V, and V = ∫ sin 2πxdx = − 1

2π
cos 2πx.

The total energy is H = K + V = 1
2v

2 − 1
2π cos 2πx and is conserved. Hence motion is along

the level sets of H .

Some dynamical notes:

● For low energy values H ∈ (− 1

2π
,
1

2π
), motion is periodic and all orbits are closed.

● For high energy values H > 1

2π
, motion looks unbounded. But is it really? What

is the pendulum actually doing for these energy values? Recall the idea from before
that the actual phase space is a cylinder (the horizontal coordinate – the position of
the pendulum – is angular and hence periodic). Hence motion is still periodic and
orbits are still closed.
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● What happens for the energy value H = 1

2π
? What is the lowest energy value? What

are the energy values of the equilibria solutions?

x

x. MX

Back to Poincare Recurrence. This system is conservative and
hence exhibits phase volume preservation (incompressibility). What
can we say about the recurrent points? Theorem ?? required a finite
volume domain to establish the density of recurrent points. On the
phase cylinder, we can create a finite volume domain simply by
bounding the total energy H <M , for some M > − 1

2π , so

XM = {(x, v) ∈ S1 ×R ∣H(x, v) <M} .
Now by Theorem ??, almost all points on XM are recurrent. Can
you find points that are not recurrent in the phase space? Can
you classify them? Look for points x, where x /∈ ω(x). That the
phase plane for the pendulum is actually a cylinder is an extremely
important concept, if not for this reason alone.

Next class, we will continue with a few examples of such systems
before we analyze the structure these systems have.


