
MATH 421 DYNAMICS

Week 7 Lecture 2 Notes

1. Conservative Systems: Systemic Recurrence

In Chapter 4, we first looked at what was considered “recurrent” behavior at a point in a
dynamical system, which roughly means that the orbit of a point passes arbitrarily close to
the point. This worked well in the classification of circle rotations, since either the orbit of
a point was closed (the orbit was periodic; the rotation was rational) or the orbit was dense
(for an irrational rotation). In either case, every point was recurrent. The same was true for
the linear toral flows and their time-t maps.

Contrast this with the dynamical systems that we studied in Chapters 2 and 3. Here, with
examples like contracting maps and sinks and sources, the only recurrent points were the
fixed and periodic points, and there were very few of those in each system. More generally,
maps can exhibit much more complicated behavior. To understand this behavior, we will
have to broaden our idea of how to study such systems. This chapter begins this study.

To start, let’s change our perspective. Given a dynamical system, let’s not worry about
how an individual orbit behaves so much as how whole families of nearby orbits evolve. This
would be more like following all of the orbits that start in a small open subset of the state
space over the evolution of the map. For a contraction, this would be easy and not very
insightful. (why?) But for a general map, this idea can be quite interesting.

2. Incompressibility

The notion of incompressibility in a dynamical system means that positive volume domains
in the state space do not change their volume as the orbits of their points evolve. This notion
is also called phase volume preservation. Suppose we have a dynamical system where this
property holds; as one evolves via a flow, or iterates via a map, the volume of a small domain
does not change. Then the volume is said to be preserved by the flow (respectively, map),
or the volume is invariant under the flow (respectively, map). Obvious examples include
linear flows in Rn, rotation maps on S1 (remember that volume in a space like R or S1 is
just length, and in dimension 2 is just area), and linear toral flows. Examples which do not
preserve volume include contraction maps, and flows (defined by ODEs) that include sinks
and sources (saddles and centers, maybe, though).

In fact, if the map is by isometries, or the flow has all of its time-t map given by isometries,
then the volume will be preserved. This should be obvious, as if all of the distances between
the points of a small domain are preserved, the volume cannot change. The converse is not
true however. Lots of maps and flows preserve volume but are not isometries.
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Example 1. Consider the linear twist map on the cylinder

T ∶ S1 × [0,1]Ð→ S1 × [0,1], T (x, y) = (x + y, y).

What does this twist look like? See the figure below.

Exercise 1. Show that (1) T is not an isometry, but (2) T preserves area on the cylinder.

T(x,y)

Now, let’s consider a linear map on Rn:

f ∶ Rn → Rn, f (x) = Ax,

where A is a n × n matrix. Choose an or-
thonormal basis for Rn. Then the standard
cube C whose sides are the basis vectors
(this is the “unit cube” relative to the ba-
sis) will be mapped by f to a parallelepiped.
What would be the volume of this image?
Well, here

vol (f(C)) = ∣detA∣.

What would be the conclusion one can draw
from this? This is simply the infinitesimal

version of any smooth map on Rn. Indeed, let’s start with a better idea of what kind of sets
have positive volume in Rn. Recall in any metric space X, we can define a small open set
via an inequality:

Bϵ(x) = {y ∈X∣d(x, y) < ϵ} .

Definition 2. A subset U ∈X is called open if ∀x ∈ U , ∃ϵ > 0 such that Bϵ(x) ∈ U . A subset
is called closed if its complement is open.

Definition 3. A domain in X is either an open subset of X, or the closure of an open subset
of X

This last definition ensures that a domain has non-zero volume, although the volume may
be infinite. In Rn with the standard Euclidean metric, the ϵ-balls have volume 4

3πϵ
3 > 0,

when ϵ > 0.

Proposition 4. let U ∈ Rn be an open domain. A differentiable map f ∶ U → Rn preserves
volume iff ∣det(Dfx)∣ = 1, ∀x ∈ U .

The Jacobian matrix of a function like f is the matrix of partial derivatives of f , and their
values at a point x ∈ U become the derivative matrix at that point Dfx. It is common to
refer to the determinant of this matrix the Jacobian of f , Jac(f).
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Definition 5. A map f ∶ U → Rn, where U ⊂ Rn is a domain, preserves orientation if ∀x ∈ U ,
Jac(f) > 0.

“Nice” ODEs (where solutions exist and are unique everywhere, for example), are always
orientation preserving. Recall the relationship between the time-1 map of any linear ODE
system on R2. It always has eigenvalues which were related to those of the original flow
by the exponential map. Under the exponential map, the time-1 map will always have a
positive Jacobian (why?).

More generally, let ẋ = f(x) be an ODE on Rn. Then the function f defines a vector field
on Rn (to each point x we attach the vector f(x)). Remember this fact about the divergence
of the vector field from Calculus III?

Proposition 6. If the divergence of the vector field f vanishes (that is, if div(f) = 0), then
f preserves volume.

Theorem 7. let X be a finite volume domain in Rn or Tn, and f ∶X →X be an invertible,
volume preserving C1-map. Then ∀x ∈X and ∀ϵ > 0, ∃n ∈ N such that

fn (Bϵ(x)) ∩Bϵ(x) /= ∅.

Proof. This can be easily see as follows: Suppose ∃x ∈X, and ∃ϵ > 0 such that ∀n ∈ N
fn (Bϵ(x)) ∩Bϵ(x) = ∅.

Since f is volume preserving, we must have at the nth iterate:

∞ > vol(X) >
n

∑
i=1

vol (f i (Bϵ(x))) = n ⋅ vol (Bϵ(x)) .

But for all choice of ϵ > 0,
lim
n→∞

n ⋅ vol (Bϵ(x)) = ( vol (Bϵ(x))) lim
n→∞

n =∞

since vol (Bϵ(x)) > 0. This contradiction establishes the proof. �

This gives us an immediate consequence:

Corollary 8. For f ∶ X → X as above, ∀x ∈ X, there exists a sequence {yk} Ð→ x and a
sequence {ik}Ð→∞ where {f ik(yk)}Ð→ x.

B (x)
ε

f   (B (x))
ε

X

yk

x

ik

See the figure to get an idea of
what is going on. Given any small
neighborhood of Bϵ(x) ⊂ X, There
will be a iterate (here, the ik-th it-
erate) of f in the forward orbit of
Bϵ(x) which will intersect Bϵ(x).
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Choose any point yk in the intersec-
tion. Now choose a new ϵ > 0 where
ϵ < d(x, yk), and repeat the proce-
dure. Play this game for a decreas-
ing sequence of ϵ’s going to 0. At
each stage, you produce a yk close

to x that has a forward iterate that is even closer. In the limit, you show that arbitrarily
close to x is a recurrent point. As the choice of x does not matter, you have that recurrent
points are almost everywhere.

Exercise 2. Produce this sequence.

Recall Definition ?? on a point being recurrent. We can extend that notion now to

Definition 9. For f ∶X →X a continuous map of a metric space, a point x ∈X is called

● positively recurrent with respect to f if ∃ a sequence {nk}Ð→∞ such that {fnk(x)}Ð→
x,
● if f is invertible, negatively recurrent if ∃ a sequence {nk}Ð→ −∞ such that {fnk(x)}Ð→
x,
● recurrent if it is both positively and negatively recurrent.

Definition 10. For f ∶X →X a continuous map of a metric space, the set

ω(x) = ⋂
n∈N
{f i(x)∣ i ≥ n}

is the set of all accumulation points of the orbit of x. It is called the ω-limit set of x ∈ X
with respect to f . For f an invertible map on X, the set

α(x) = ⋂
n∈N
{f−i(x)∣ i ≤ n}

is called the α-limit set of x with respect to f .

Note: x ∈X is positively recurrent if x ∈ ω(x) (if x is in its own ω-limit set).

Exercise 3. Show, by construction, that ∀α ∈ R, all points of S1 are recurrent under the
rotation map Rα.

Exercise 4. Show the same by construction for a translation on T2.

Theorem 11. Let X be a closed finite-volume domain in Rn or Tn and f ∶ X → X an
invertible volume preserving map. Then the set of recurrent points for f is dense in X.

Note; This does not mean that all points are recurrent, not that there may be tons of points
whose ω-limit sets do not include the original point. It does mean that every point either
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is recurrent, or has a recurrent point arbitrarily close to it. We won’t prove this here. The
proof is in the book on page 160. Instead, let’s skip ahead to Section 6.2.


