MATH 421 DYNAMICS

Week 6 Lecture 2 Notes

Proposition 1. if v = Z—f 15 irrational, then the flow s minimal. If v € Q,
then every orbit 1s closed.

Proof idea. Choose any circle (an easy-to-see choice would be the x; = 0 circle,
which is represented in the plane by the left edge of the unit square). We
could call this the waist circle. Then for any point (0,y) on the waist circle,
the first-return map of O(+O,y) is exactly the rotation map of this circle given
by R,. As the entire waist circle flows around T, and with the irrational

rotation, the orbit O(+0 ») will intersect the waist circle densely, the orbit of

(0,7) (and hence every point) will be dense in all of T.

For the other statement, simply show that the orbit of every point will
eventually return to its starting point, and since the flow is always along
straight lines, this is enough to show the periodicity of any and hence all
points. []

Example 2. We can look at this another way: Think of S' € R? as a circle
of radius r centered at the origin. Then we can represent T as the set

2 2

_ 4] .2 _ 2, 2 9
T—{($1,9€27$3,$4)€R ry+xy =77, 5’33+$4—7°2}-

Now recall a continuous rotation in R? is given by the linear ODE system

x = B,x, where B is the matrix whose eigenvalues +ai are purely

0 «
-a 0
imaginary. Do this for each pair of coordinates (each of two copies of R?) to
get the partially uncoupled system of ODEs on R4,

X1 0 aq 0 0 I
. T2 | | —aa 0 0 0 9
x= AX’ T3 B 0 0 0 (0%) T3
Ty 0 0 —(9 0 Ty

We will eventually see that this is the model for the spherical pendulum.

Some notes:
Date: March 8, 2013.



e The two circles a2 + 23 = r¥ and 23 + 27 = r5 are invariant under this
flow.
e We can define angular coordinates on T via the equations

X1 =T1COS2mp1 Xo =T1SIN2TP,
T3 =T9COS2M(Py Ty = ToSIN2TYs.

Then, restricted to these angular coordinates and with w; = §*,i=1,2,
we recover
P1=-wi, P2 =—Ws.
Motion is independent along each circle, and the solutions are ;(t) =
wi(t - to).
o If 52 =22 ¢Q, then the flow is minimal.

Exercise 1. Do the change of coordinates explicitly to show that these two
interpretations of linear toral flows are the same.

Now, for a choice of w and r; = ro = 1, project a solution onto either the
(21, x3) or the (9, x4)-planes. The resulting figure is a plot of a parameterized
curve whose two coordinate functions are cosine (resp. sine) functions of
periods which are rationally dependent iff w is rational. In this case, the
figure is closed, and is called a Lissajous figure. See the figure below for the
case of two sine functions (projection onto the (x2,z4)-plane, in this case),
where wy =2 and wy = 3.

Q. What would the figure look like if w; and wy were not rational multiples
of each other?
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A nice physical interpretation of this curve is as the trajectory of a pair of
uncoupled harmonic oscillators, given by

T4 = —wiT

3‘7.2 = —WaTa.

Next class, we will begin a study of a related type of dynamical system
called a billiard. In one of its most elementary forms, the model of straight-
line motion in the plane and its corresponding linear low on a 2-torus again
appear.

LINEAR FLOWS ON THE 2-TORUS: AN APPLICATION (CONT’D.)

Besides Lissajous figures, another application of Linear flows on the 2-torus
T involves an area of dynamics called Billiards. Our first example of such a
dynamical system uses toral flows directly to give a very strong conclusion.

Consider the unit interval I = [0, 1] with two point masses z; and x5, with
respective masses my; and mo respectively, free to move along I but confined
to stay on I. Without outside influence, these point masses will move at a
constant, initial velocity. Eventually, they will collide with each other and
with the walls. Assume also that theses collisions are elastic, with no energy
absorption or loss due to friction. Here, elastic means that, upon a wall
collision, a point mass’ velocity will only switch sign. And upon a point mass
collision, the two point masses will exchange velocities. For now, assume that
mi=mo = 1.
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1
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The state space in R? is

T = { (21, 29) € R

0333135(3231}.

Here, T' is the region in the unit square above the diagonal line which is the
graph of the identity map on I (can you see this?). The edges of the region T’
are included; since the point masses have no size, they can occupy the same
position at the point of contact. An interesting question to ask yourself is:
How does the state space change if the point masses had size to them?

Now, given an initial set of data, with initial positions and velocities v;
and vy, respectively, what is the evolution of the system? The answer lies in
the study of these types of dynamical systems called billiards. Evolution will
look like movement in 7T'. A point in 7" comprises the simultaneous positions
of the two particles, and movement in T will consist of a curve parameterized
by time ¢. The idea is that this curve will be a line since the two velocities
are constants. The slope of this line (in the figure, line a is the trajectory
before any collisions have happened), will be {2. (why?) Once a collisions
happens though, this changes. There are two types of collisions: Assuming
that 22 is the ratio of the velocities of the two point masses before a collision,
we have

e When a point mass hits a wall, it “bounces oft”, traveling back into ¢
with equal velocity and of opposite sign. Thus the new velocity is ——1
(This is the slope of line b in the figure above).

e When the two point masses collide, they exchange their velocities (re-
ally, think of billiard balls here). Thus the new velocity is . Caution:
This reciprocal velocity is NOT the slope of a perpendlcular lme which
would be the negative reciprocal.

Envision these collisions in the diagram and the resulting trajectory curves
before and after each type of collision, as in the figure. What you see are
perfect rebounds off of each of the three walls, where the angle of reflection
equals the angle of incidence. An ideal billiard table, although one with no
pockets. Which leads to the obvious question: What happens if a trajectory
heads straight into a corner? For now, we will accept the stipulation that
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e When the two point masses collide with a wall simultaneously, either
at separate ends of I or at the same end, both velocities switch sign.
While this will not change the slope of the trajectory, it will change
the direction of travel along that piece of trajectory line.

Some questions to ask:

Q. Can there exist closed trajectories?

Q. Can there exist a dense orbit?

Q. The orbits of points in 7" will very much intersect each other and many
trajectories will intersect themselves also. The phase space will get
quite messy. Is there a way to better “see” the orbits of points more
clearly?

The answer to the last question is yes, although this table is fairly special.
Here, one can “unfold” the table:

e Think of the walls of T as mirrors. When a trajectory hits a wall,
it rebounds off in a different direction. However, its reflection in the
mirror simply continues its straight line motion. Think of a reflected
region T across this wall. The trajectory looks to simply pass through
the wall and continue on.

e Envision each collision that follows also via its reflection. Motion con-
tinues in a straight line fashion through each mirrored wall. By con-
tinuing this procedure, the motion will look linear for all forward time,
no?

e This idea works because this particular triangle, under reflections, will
eventually cover the plane in a way that only its edges overlap and
all points in R? are covered by at least one triangle. This is called a
tiling of the place by T, and works only because T' has some special
properties. See below.

e The unfolded trajectory is called a linear flow on the billiard table R2.

So what does a billiard flow in R?look like? Obviously, it is just straight line
motion at a slope 2 forever since there are no collisions. The better question
to ask is: What does this tell us about the original flow on the triangle 77



By continually unfolding (reflecting) the table 7', on starts to notice that
there are only 8 different configurations: the four orientations of T given by
rotations by multiples of § radians, and the reflection of each. If you collect up
a representative of each of these configurations into a connected region, you
wind up with enough information to characterize the entire flow in R?: Each
time your R? linear flow re-enters a region of a particular configuration of T,
you can simply note the trajectory in your representative of that region. This
region of representative configurations is called a fundamental domain for the
flow. One such fundamental domain or this flow is the square of side length 2
in the figure. Noting the configurations, as the trajectory leaves the square,
it enters a configuration exactly like that at the other side of the square. One
can see the trajectory then re-enter the square from the other side. Similarly,
when one leaves the square at the top, it enters a configuration represented
at the bottom of the square. Thus one can continue the trajectory as if it
had re-entered the square at the bottom.

X, Note: There was a famous arcade
video game from the Middle Ages (you
know, like, the 80’s!!) where a space
ship was planted in the middle of a
square screen. It could turn but not
move. Various boulders (asteroids,
actually: this was the name of the
game) would float in and out of the
e screen. Should an asteroid hit the
ship, the game is over. The ship can
fire a weapon at an asteroid, and if
hit, would break into two smaller ones,
which would go off in different direc-
tions. The asteroids (or pieces of asteroids) always traveled in a straight line.
And as an asteroid left the screen, it would always reappear on the opposite
side and travel in the same direction. Really, the asteroids were only exhibit-
ing a linear toral flow. Who would have though that in playing this game,
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one was actually playing in a universe which was not the plane at all but
rather the torus T?

Hence linear flows on R? again look like toral flows on this fundamental
domain, which comprises the space of configurations of 1" as one uses T' to
tile R2. SO what do linear toral flows say about the trajectories on T'?

Proposition 3. If the ratio of initial velocities % € Q, then the orbit is closed
(on' T and thus also on T). If 32 ¢ Q, then the orbil is dense in T

Note: Now, it is easier to see what a collision in a corner will look like.
Like I said, this table T is quite special in many ways. These ways do not
generalize well. However, with 7" we can say much more:

Proposition 4. For any starting set of data (point mass positions and ve-
locities), the trajectory will assume at most 8 different velocity ratios.

Count them: There are two possible ratio magnitudes, each with two signs.
That makes 4. But travel along the lines of each of these slopes can be in each
of the two directions due to the reflected configurations in the fundamental
domain.

How can one generalize these results to other tables:

e Unequal masses.

— An elastic collision between unequal masses will not result in what
would look like a reflection off of the diagonal wall in 7. One could
certainly accurately chart the collision as a change in direction off of
the wall. However, when unfolding the table, the resulting flow in
R? will not be linear (each reflected trajectory through the diagonal
wall will be a change in direction in the planar flow. You will see
a piecewise linear flow in R? and hence also on the fundamental
domain T. While this is workable, it is not such as easy leap to a
conclusion.

— One can also actually change the table. Use momenta to define the
collision between the point masses, and alter the diagonal wall to
be a perfect reflective wall. The resulting will not be linear. The



new table will not tile the plane anymore, but in many cases the
unfolded table will cover the plane with many holes (the reflecting
curve will be concave, so will fit into the original 7. The unfolded
flow will look liner until it hits a hole, where it will reflect through
he hole perpendicularly through its center axis and appear on the
other side to continue at the same slope. I haven’t worked out the
details here (and a hat tip to Jonathan Ling who started to work
on this idea), but there should be results here that are similar to
the original table T', as long as one is careful with the analysis.

e Other tilings of R2. It is easy to see that some shapes tile the plane
while others do not. Rectangles, and a few other triangles work fine.
And a few other polygonal shapes, like regular hexagons also. There
are some examples in the book. But examples are fairly rare. And
in each case, one would need to find a fundamental domain and then
interpret the resulting flow on that domain in terms of the original flow
as well as that on the place. All good stuff, and are the initial ways
one may study polygonal billiards. However, later, we will generalize
our analysis of billiards in a completely different direction.



