
MATH 421 DYNAMICS

Week 6 Lecture 1 Notes

Last week’s discussion on irrational rotations of S1 introduced a new type
of orbit behavior, where an orbit can densely fill a space. To continue this
discussion, we will need to name this type of behavior and try to characterize
why some dynamical systems behave this way. We start today with a few
definitions.

Definition 1. A set Y ⊂X is invariant under a map f ∶X →X, if

f ∣
Y
∶ Y → Y.

Definition 2. A homeomorphism f ∶X →X is called topologically transitive
if ∃x ∈ X such that Ox is dense in X. An non-invertible map is called
topologically transitive if ∃x ∈X such that O+x is dense in X.

Definition 3. A homeomorphism f ∶ X → X is minimal if ∀x ∈ X Ox is
dense in X (the forward orbit is dense for a noninvertible map).

Definition 4. A closed, invariant set is minimal is there does not exist a
proper, closed invariant subset.

More notes:

● Like in the case of open and closed domains in vector calculus, a set
is closed if it contains all of its limit points. And for any set X, the
closure of X, denoted X is defined to be the closed set obtained by
adding to X all of its limit points (think of adding the sphere which
is the boundary of an open ball in R3). In the case of a minimal map
f ∶X →X, for any x ∈X, we have Ox =X.
● Same is true for a topologically transitive map f , if one takes any point
on the dense orbit.
● Irrational rotations of the circle are minimal!.
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0.1. Application: Periodic Function Reconstruction via Sampling.
Consider the two functions in the picture.

● Each is periodic and of the same period as the other.
● Each can be viewed as a real-valued smooth function on S1. And each
takes values in the interval I = [−1,1].
● Question: Are the values of these two functions equally distributed
equally (or even evenly) on I?
● Question: If we knew the period and range of some unknown function,
and needed to sample the function (create a sequence of function val-
ues) to see which of the above two function was the one we are seeking,
how can we design our sampling to ensure we can differentiate between
these two?

Dynamics attempts to answer this question. Let {xn} be a sequence (think
of this sequence as a sampling of the function), and a < b two real numbers.
Define

Fa,b(n) =#{k ∈ Z∣1 ≤ k ≤ n, a < xk ≤ b}

as the number of times the sequence up to element n visits the interval
(a, b) ⊂ R. Really, this is the same definition of F as before on the arc
∆ ⊂ S1. The only change in this case is that we are defining F in this context
as an interval in R. Then define the relative frequency in the same way as
before. In the figure, the relative frequency of {xn} on the interval (a, b]
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shown is
Fa,b(n)

n
∣
n=6
= 2
6
= 1
3
.

We say that {xn} has an asymptotic distribution if ∀a, b, where −∞ ≤ a < b ≤
∞, the quantity

lim
n→∞

Fa,b(n)
n

exists. In a sense, we are defining the percentage of the time that a sequence
visits a particular interval.

In the case where the sequence has an asymptotic distribution, the function

Φ{xn}(t) = lim
n→∞

F−∞,t(n)
n

is called the distribution function of the sequence {xn}. Here Φ is monotonic,
and measures how often the values of a sequence visit regions of the real line
as one varies the height of an interval (−∞, t].

Definition 5. A real-valued function φ on a closed, bounded interval is called
piecewise monotonic if the domain can be partitioned into finite many subin-
tervals on which φ is monotonic. A real-valued function on R is piecewise
monotonic if it is piecewise monotonic on every closed, bounded subinterval
of R.

Remark 6. Monotonic means strictly monotonic here. Really, this means that
there are no flat (purely horizontal on an open interval) regions of the graph
of φ. Think of functions like f(x) = sinx, and polynomials of degree larger
than 1, which are piecewise monotonic, and functions like

g(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(x + 2)2 −4 ≤ x < −2
0 −2 ≤ x ≤ 0
x2 0 < x ≤ 2

,

which is not piecewise monotonic (See the graph of g(x) below).

When φ is piecewise monotonic, the pre-image of any interval I is a finite
union of intervals in the domain (see the figure).
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Definition 7. The φ-length of an interval I is

ℓφ(I) ∶= ℓ (φ−1(I)) .

● This is the total length of all pieces of the domain that map onto I. In
the figure, ℓφ(I) = ℓ(A) + ℓ(B).
● For piecewise monotonic functions φ, the φ-length is a continuous func-
tion of the end points of I (vary one end point of I continuously, and
the φ-length of I also varies continuously. This doesn’t work with flat
regions since the φ-length ellφ would then jump as one hits the value
of the flat region.

g(x)

r-4

-4

t

I

g  (I)-1

Indeed, let’s look at the g(x) in the figure more
closely. Here, one can calculate the φ-length. In-
deed, choose the interval I = [−4, t]. Here, t is the
function value, and there is only a single interval
mapped onto i for any value of t.

For t < 0, this interval is given in the figure as
the interval of the domain g−1 (I) = [−4, r], where
g(r) = t. Solving the equation g(r) = t for r yields

−(r + 2)2 = t ⇐⇒ r = −
√
−t − 2

where we chose the negative branch of the square root function in the middle
step to account for the domain restrictions. Here, the g-length of I,

ℓg(I) = ℓ (g−1 ([−4, t]))

= −2 −
√
−t − (−4) = 2 −

√
−t.

 l  (I)

-2

g

-4

 4

2

Now for t > 0, the same calculation yields ℓg(I) =
4+
√
t for I = [−4, t]. Putting these two pieces of the

g-length function together yields the graph of

ℓg(I) = {
2 −
√
−t −4 ≤ t < 0

4 +
√
t 0 < t ≤ 4

which has a jump discontinuity at t = 0. In fact,
the only way to change g(x) to make the g-length
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function continuous is to remove the middle piece
of the g(x) function and translate one or the other
pieces right or left to again make g(x) continuous. But that would have the
effect of moving the two pieces of the graph of ℓg(I) together. The jump
discontinuity becomes a hole in the graph, easily filled. But in this case, the
changed g(x) has been made piecewise monotone!

One can show that for a piecewise monotonic function φ, a distribution
function for φ is

Ψ ∶ R→ R, Ψφ(t) = ℓφ ((−∞, t)) .

We can use this for:

Theorem 8. Let φ be a T -periodic function of R such that φT = φ∣[0,T ] is
piecewise monotone. If α ∉ Q and t0 ∈ R, then the sequence xn = φ(t0 + nαT )
has an asymptotic distribution with distribution function

Φ{xn}(t) =
1

T
Ψφ(t) =

ℓ (φ−1 ((−∞, t)))
T

.

We won’t prove this or study it in any more detail. But there is an inter-
esting conclusion to draw from this. In the theorem, the sequence of samples
of the T -periodic function φ has the same distribution function as the actual
function φ, (defined over the period, that is) precisely when the sampling
is taken at a rate which is an irrational multiple of the period T . In this
way, the sequence, over the long term, will fill out the values of φ over the
period in a dense way. In a way, one can recover the function φ from a se-
quence of regular samples of it only if the sampling is done in a way which
ultimately allows for all regions of the period to be visited evenly. This is a
very interesting result.

In the book is an actual calculation of the distribution function for the
sequence {sinn}. Since the natural numbers are not a rational multiple of
2π, the period of the sine function, this distribution function is precisely
the same as that distribution function of the smooth function f(x) = sinx,
defined on the interval [0,2π]. Take a good look at this example.
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0.2. Application: Linear Flows on the 2-Torus. Here is another appli-
cation of circle rotations and their implications. This one involves generaliz-
ing circle maps via a corresponding circle flow into more than one dimension.

For this application, we will skip Section 4.2.2 on the distribution of first
digits of powers, and proceed to Section 4.2.3. To start, however, recall what
a flow is: Let ẋ = f(x), x(0) = x0 ∈ Rn be an IVP, where the vector field
f(x) ∈ C1. This IVP defines a flow on Rn. For I ⊂ R an interval containing
0, define a continuous map φ ∶ I ×Rn → Rn that satisfies the following:

● ∀T ∈ I, φt = φ (t, ⋅) ∶ Rn → Rn is a homeomorphism (for a given choice
of t, this is is simply the time-t map of the IVP).
● ∀s, t ∈ I, where s + t ∈ I, one has

φs ○ φt(x) = φs+t(x).

Now suppose that S1 = {e2πix ∈ C}, and dx
dt = α, x(0) = x0 is an IVP defined

on S1. This is solved by x(t) = αt+x0, which can also be written in flow form
φt
α(x) = αt+x. Notice in this last expression, we have included the subscript

α to denote the dependence of the flow on the value of the parameter α. here
the time-1 map is just

φ1
α(x) = α + x = Rα(x), x ∈ S1.

The time-1 map is just a rotation map of the circle by α. Keep in mind,
however, that the IVP will share the same time 1 map as the new IVP given
by dx

dt = α + 1, x(0) = x0. However, the original flows are very different!
Linear flows on S1 are not very interesting. They differ only by speed (and
possibly direction), and ultimately, all look like continuous rotations of the
circle, whether α is rational or not. However, we can generalize this flow to
a situation which does produce somewhat interesting dynamics.

Consider now a flow given by the pair of uncoupled circle ODEs:

dx1
dt
= ω1,

dx2
dt
= ω2.
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t = 0 t = 1 This system, which can be written as the uncoupled

vector ODE ẋ = ω, or [ ẋ1
ẋ2
] = [ ω1

ω2
], can be viewed

as defining a flow on the two-torus T = S1 × S1, and
has the solution

x = [ x1 + ω1t
x2 + ω2t

] .

In flow notation, we can write either

T t
ω(x1, x2) = (x1 + ω1t, x2 + ω2t) , or φt

ω(x) = x +ωt.

Graphically, solutions are simply translations along R or as straight line mo-
tion in R2. Note that in this last interpretation, the slope of the solution line
is γ = ω2

ω1
.

x1

x2

x  + ω2 2

x  + ω1 1

t = 0

t = 1

slope = γ =
ω 

2

ω 1

However, each of these uncoupled ODEs also
can be considered as a flow on S1, and hence the
system can be considered a flow on S1 × S1 = T.
Suppose, for example, that 1 < ω1 < 2, while
0 < ω2 < 1. The flow from time t = 0 to time t = 1
would take the origin on one circle to the point
1−ω1, and the flow line would start at x1 = 0 and
travel once around the circle before stopping to
ω1. The flow on the other circle would take x2 = 0 partway around the circle
to ω2. Viewed via the two periodic coordinates of T, we have the flow line in
the picture:

x
1

x
2

Another way to see this is to go back to the plane
and consider the equivalence relation given by the
exponential map on each coordinate. The set of
equivalence classes are given by the unit square in
the plane, under the idea that the left side of the
square (the side on the x1 = 0 line) and the right

side (the x1 = 1 side) are considered the same points (this is the 0 = 1 idea
of the circle identification). Similarly, the top and bottom of the square are
to be identified. Then the flow line at the origin under the ODE system is
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a straight line of slope γ emanating from the origin and meeting the right
edge of the unit square at the point (1, γ). But by the identification, we can
restart the graph of the line at the same height on the left side of the square
(at the point (0, γ). Continuing to do this, we will eventually reach the top
of the square. But by the identification again, we will drop to the bottom
point and continue the line as before. In essence, we are graphing the flow
line as it would appear on the unit square. When we pull this square out of
the plane and bend it to create our torus T, the flow line will come with it.
Suppose γ /∈ Q. What can we say about the positive flow line?

x1

x2

1

slope = γ =
ω 

2

ω 1

1 x1

x2

1

1

Next class, we will continue this discussion with a few conclusions about
this flow.


