
MATH 421 DYNAMICS

Week 5 Lecture 2 Notes

Recurrence and more complicated behavior

So far, we have explored many systems and contexts where dynamical systems have ex-
hibited simple behavior, or fairly simple behavior. We will now begin to explore more
complicated behavior than before. However, to start, we will stay with maps of the type you
have already played with. But we will change the place on which they are acting. This, in
and of itself, changes the nature of the orbits. It turns out that when the space is Euclidean,
orbits can converge to something or wander away toward the edge of the space. However
when a space is compact, roughly that its edges are not infinitely far away, and the edges
are in fact in the space, then an orbit that does not converge to any particular thing must go
somewhere within the space. How to describe where it goes will take us to behavior which
is more complicated than what we have already seen. To begin, consider the definition:

Definition 1. For f ∶ X → X a continuous map on the metric space X, a point x ∈ X is
called (positively) recurrent with respect to f if there exist a sequence of natural numbers
nk Ð→∞ where fnk(x)Ð→ x.

In the simple dynamical systems we studies so far, the only recurrent points were fixed and
periodic points (this makes sense, right?). However, non-periodic points an also be recurrent.
This chapter begins a study of relatively simple maps that exhibit much more complicated
behavior. And this behavior is captured in this notion of recurrence.

Rotations of the circle

Again, think of S1 either as the set of unit modulus numbers of the complex plane

S1 = {z ∈ C∣ z = e2πiθ, θ ∈ R} ,

or as the quotient space of the real line modulo the integers, S1 = R/Z. Recall, for x, y ∈ R,
denote x, y their respective points in S1 under the exponential map ρ ∶ R→ S1, ρ(θ) = e2πiθ.

● Here x = y iff x − y ∈ Z, or x ≡ y( mod 1).
● x, y are the equivalence classes of points in R under the equivalence relations imposed
on R by the map ρ.

In this last interpretation, one can imagine S1 to be the unit interval [0,1] in R where one
agrees to identify the endpoints (hence the notation I sometimes use in class that 0 = 1).

One can define a metric on S1 by simply inheriting the one it has as it sits in C (or if you
will, R2). This is essentially the Euclidean metric and measures the straight line distance in
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the plane between two points. Really, this is the length of the chord, or secant line, joining
the points. See the figure. But also, we can define a distance between points by the arc
length between them. In some ways, this is preferable, since in the abstract, S1 doesn’t
really sit anywhere. There is no interior and exterior of S1, unless you call the actual points
in the curved line making the circle the interior points. The problem with using arc length
to determine the distance between points is that there are two distinct paths going from
one point to another. There must be a determination as to which one to choose. Choosing
the minimal path is a nice choice, but how does one do this mathematically. The answer
lies within the view that S1 really is the real line R infinitely coiled up like a slinky by the
exponential map ρ above, and length in R is easy to describe, and passes through this map,
at least locally:

Define

d (x, y) =min{∣x − y∣∣x, y ∈ R, x ∈ x, y ∈ y} .

The figure below shows the equivalence classes of the points x = 1
3 and y = 3

4 . Choosing
arbitrary representatives x and y and calculating their distance in R will lead to many
different results. However, the minimum distance between representatives of these two classes
is well-defined and in this case, d (x, y) = 5

12 . Notice that really, the closest two distinct
distances between two equivalence classes in R correspond precisely to the arc lengths in S1

along the two distinct paths joining x and y.

Lemma 2. These two metrics are equivalent.

Proof. This is a really good exercise. �

Denote by Rα the rotation of S1 by the angle α. We have parameterized S1 as the unit
interval in R, with 0 = 1. So even though α technically can be any real number, rotating
by α and rotating by α + n, where n ∈ Z amounts to the same thing. (Note that this would
definitely not be the case for a continuous dynamical system given by ẋ = αx, x ∈ S1. Can
you see why?) Here Rα(x) = x + α. In complex notation, we view rotations as linear maps,
with multiplication by the factor zα = e2πiα, so that Rα(z) = zαz. In each case, then

Rα ∶ S1 → S1, with either Rn
α(x) = x + nα or Rn

α(z) = znαz.

Q. What can we say about the dynamics of a circle rotation?
Q. What if α ∈ Q?
Q. What if α /∈ Q?

The quick answers are that, when α is rational, all orbits are periodic, and all of the same
period. When α is not rational, then there are no periodic orbits at all. I ask you to show
this in the exercises, and the trick really is to understand well what Rn

α looks like for each
n, and what it means for a point to be periodic in the circle.
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Exercise 1. Let Rα ∶ S1 → S1, be the rotation rα(x) = x + α. Show that every orbit is
periodic when α ∈ Q, and no orbit is periodic when α /∈ Q.

The latter exercise creates a deeper concern: Without fixed or periodic points in S1 for
what I will call an irrational rotation, the question is, where do the orbits go? They cannot
converge to a point in the circle, since in many cases (and really in general), if they converged
to a point in S1, then that point would have to be a fixed point (if orbits converge, they
must converge to another orbit). The answer is that they go everywhere. And that tells one
a lot about the dynamics.

Remark 3. The above notion of an irrational rotation was based on the parameterization of
S1 given by the interval [0,1). There, the rotation Rα was irrational as a rotation when α
isn’t rational as a number. However, the parameterization is critical here, and the rationality
IS of the rotation really with respect to the integer 1, the maximum value of the parameter.
To see this, suppose instead we parameterized S1 via the interval [0,2π), another rather
common parameterization given by the map ρ ∶ R → S1, where ρ(x) = eix. Here, a rotation
half way around the circle is given by Rπ, where α = π is irrational (as a number!) Thus the
rotation Rπ is not irrational at all, as every point is 2-periodic. However, the rotation by 1,
R1 would have NO periodic orbits (show this!). The correct conclusion to draw here is that
the rationality of the rotation Rα depends on the parameterization. We offer a definition to
be clear.

Definition 4. A rotation Rα ∶ S1 → S1, where S1 is parameterized by the interval [0, T ) for
T > 0, is called irrational if α

T /∈ Q. Otherwise, the rotation is called rational.

Proposition 5. For Rα an irrational rotation of S1, all orbits are dense in S1.

(idea of proof). Really, the idea is the following:

● Show the forward orbit of any x is not periodic (you will do this in the exercises).
● Show that ∀ϵ > 0, ∃N ∈ N, such that d(RN

α (x,x) < ϵ.
● Show that this is true for all x.

�

Note: All rotations are invertible, right? Really, they are all homeomorphisms. So define
R−1α (x) = R−α(x). To show density, we have to show that the orbit of x will visit any size
open neighborhood of x. Here is a nice technique for showing this:

Continued Fraction Representation. The continued fraction representation (CFR) of a
real number is a representation of real numbers as a sequence of integers in a way which
essentially determines the rationality of the number. This is very much like the standard
decimal representations of real numbers, in that it also (our usual base-10 version is a good
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example) provides a ready way to represent all real numbers. However, the sequence of
integers which represent a real number in a base-10 decimal expansion represent some rational
numbers as finite-length sequences (think 11

8 = 1.375), and others as infinite length sequences
(think 4

9 = 0.44444⋯). The CFR instead is a base-free representation in which all and only
rational number representations are the finite length sequences. Plus, the CFR is another
nice way to approximate a real number by either truncating its sequence or simply not
calculating the entire sequence.

Indeed, in the CFR, Any real number in (0,1) can be written as 1
s , where s ∈ (1,∞). More

generally, then, any real number r can be written as an integer and a real number in (0,1);
as

r = n + 1

s
, where n ∈ Z, and s ∈ (1,∞).

If s ∈ N, then this expression is considered the CFR of r (it is sometimes written then
r = [m; s]; For example, 5

2 = [2 ∶ 2].

Now suppose s /∈ N. Then since s ∈ (1,∞), s =m + 1
t , for m ∈ N, and t ∈ (1,∞). Thus,

r = n + 1
1

m+ 1
t

, where n ∈ Z, m ∈ N, and t ∈ (1,∞).

Again, if t ∈ N, then we stop and r = [n;m, t] is the CFR of r. If it is not, we again let
t = p + 1

u , for p ∈ N and u ∈ (1,∞) so

r = n + 1
1

m+ 1

p+ 1
u

, where n ∈ Z, m, p ∈ N, and u ∈ (1,∞).

Again, if u ∈ N, we stop and the CFR of r is [n ∶m,p, u]. If not, then we continue indefinitely.
The CFR is a finite sequence iff r ∈ Q.

Exercise 2. Compute the CFR of −33
13 .

Exercise 3. Calculate the fraction whose CFR is [0 ∶ 3,5,7].

Example 6. So let Rα be a rotation of S1 for α = 1
3+ 1

5+ 1
c

, where c > 1, and c /∈ Q. Then it

turns out that α /∈ Q.

0

R (0) = α
α

R (0) = 2α
α

2

R (0) = 3α
α

3

R (0) = 4α 
α

4

δ = 1 - 3α

β = 4α - 1 

To see this, let’s start the construction which would establish
the middle bullet point in the above proof idea. To start, it
should be obvious that 1

4 < α <
1
3 (why?). In the figure, we can

graph Rα(0), R2
α(0), R3

α(0), and R4
α(0). One of the latter two

winds up being the early, closest approach to 0 of the orbit O+0 .
But which is smaller, δ = 1 − 3α, or β = 4α − 1?
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Visually, the closest approach to 0 is R3
α(0) = 3α, but without

the benefit of knowing what the choice of c is in general, it is
not clear a priori whether δ = 1 − 3α is actually smaller than
β = 4α − 1. Even without knowing c, we can still perform the
comparison via the CFR:

δ = 1 − 3α = 1 − 3

3 + 1
5+ 1

c

=
3 + 1

5+ 1
c

− 3

3 + 1
5+ 1

c

=
1

5+ 1
c

3 + 1
5+ 1

c

= 1

16 + 3
c

.

Exercise 4. Calculate β = 4α − 1 in the same way as above, and show that it is larger than
δ for any choice of c > 1.

Hence, the third iterate is the first closest return of O+0 to 0.

Q. Will the orbit ever get closer to 0?
Q. If it will, then which iterate?

These questions will help us to show the orbit will eventually get arbitrarily close to 0.

We could simply hunt for the next return. Or we can be clever and calculate it. Here is
the idea: it took three steps to get within δ of the initial point 0. (We could say it took three
steps to get δ-close to 0). If we now create an open δ-neighborhood of 0, Nδ(0), when will
the first iterate occur when we will enter this neighborhood and thus get closer than δ to 0?

0

R (0) = α
α

R (0) = 2α
α

2

R (0) = 3α
α

3

R (0) = 4α 
α

4

δ

U (0)
δ

δ

R (0) = 7α 
α

7

δ R  (0) = 10α 
α

10

One way to ensure this is to look at the first step after our
previous close approach. This is the fourth element of O0 and
is R4

α(0) = 4α. Here 4α = α+3α = α+(1−δ), so that 4α−1 = β =
α− δ. One conclusion to draw from this is that R3α takes α to
4α which is α−δ (see figure). So R3α(α) = α−δ, R2

3α(α) = α−2δ,
and Rn

3α(α) = α − nδ. So for which n would we satisfy

0 < α − nδ < δ ?
Note that for some choice of n, the iterate will have to lie on the positive side of 0 in Nδ(0)
(why?). Of course, this simplifies to nδ < α < (n + 1)δ, which is solved by simply taking
the integer part of the fraction α

δ . Denote the greatest integer function by ⌊⋅⌋, so that, for
example, ⌊π⌋ = 3. Then, the iterate n we are looking for is

n = ⌊α
δ
⌋ =

⎢⎢⎢⎢⎢⎢⎢⎣

1
3+ 1

5+ 1
c

1
16+ 3

c

⎥⎥⎥⎥⎥⎥⎥⎦

= ⌊5 + 1

c
⌋ = 5.

Hence we can say that R5
3α(α) = R15

α (α) = R16
α (0) is within δ of 0 (See figure at right

below). We could then use the actual distance between 0 and R16
α (0) as our new δ, and
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look for iterates of R16
α to find our next closest approach. Continuing this way, we create a

subsequence of O0 which consists of exponentially increasing powers of the original Rα and
this subsequence converges to 0. This is the basic approach to proving the second bullet
point in the above proof idea.

On the real line, we see that our rotations by α is simply a translation by α. Approaching
and getting closer to 0, means that our orbit will at some point come close to an integer
value (ANY integer will do, as they all represent 0 in the circle!). See the figure here.

3

< δδ

  0

1 - R  (0) = δ α

3

  1   2 4 5 6

16R   (0) - 5 < δ α

There is really a better way to understand this notion of visiting neighborhoods of points in
S1 under irrational rotations. This other way is by understanding the frequency with which
an orbit visits a small open set under a rotation. This is called the dynamical frequency, and
is a measure of how often an orbit visits a small open interval in S1 relative to how much
time it is outside of the interval.

Fix ∆ ⊂ S1 an arc. Then for x ∈ S1 and n ∈ N, define
F∆(x,n) =#{k ∈ Z∣0 ≤ k < n,Rk

α(x) ∈∆} .
Here, the number sign # denotes the cardinality of the set. For example, in the above figure
with our choice of α, and ∆ = Nδ(0), we have

F∆(0,18) = FNδ(0)(0,18) =#{0,16} = 2.

Note that for ∆ small, then for any x ∈ S1, F∆ will be small. And for ∆ large, F∆ will be
bigger, but always less than n. So we can say that 0 ≤ F∆(x,n) ≤ n, for every x and ∆. And
for any choice of x and ∆, as n grows, F∆ is monotonically increasing.

However, it is also true that for α /∈ Q, lim
n→∞

F∆(x,n) = ∞. (Can you show this?) Hence

instead of studying the frequency with which the orbit of a point visits an arc, we study the
relative frequency of visits as n gets large, or the quantity

F∆(x,n)
n

.

Suppose on the orbit segment of a point x under the irrational rotation by α given by
{Ri

α(x)}
m
i=0, we found that given the arc ∆, that Rk1

α (x),Rk2
α (x),Rk3

α (x) ⊂∆ and these were
the only three. Then we know that the frequency F∆(x,m) = 3, and the relative frequency
F∆(x,m)

m = 3
m . In our example from above in the figures, the relative frequency of hits on the
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interval Nδ(0) on the orbit segment {Ri
α(x)}

18
i=0 is

FNδ(0)(0,18)
18 = 2

18 =
1
9 . The goal is to study

the relative frequency of a rotation on any arc of any length and be able to say something
meaningful about how often, on average, the entire orbit visits the arc.

Some notes:

● Define ℓ(∆) = length of ∆ (under some metric).
● The relative frequency really does not depend on whether ∆ is open, closed or neither
(why not?).
● The convention is to take representatives for arcs to be of the “half-closed” form [⋅, ⋅).
Then it is easy to see whether unions of arcs are connected or not.
● We study the overall relative frequency of entire orbits: This translates to a study of

lim
n→∞

F∆(x,n)
n

.

However, It is yet not entirely clear that this limit actually exists. We first address
this point.

Consider the function f ∶ N → R defined by f(n) = (1 + 1
n
) sinn. A priori, we do not

know whether limn→∞ f(n) exists or not (Really, though, think of the continuous version of
this function in calculus. There isn’t a horizontal asymptote for f). So we first define the
limit inferior (respectively superior) for f . This type of limit either always exists or is −∞
(resp. ∞). It is the largest (resp. smallest) number where no more than a finite number of
terms in the sequence are smaller (resp. larger) than it on the entire sequence. Think of the
envelope of a sequence being defined to allow some terms to be outside the envelope, but
only a finite number of them. In the case of f(n) = sinn, the lim infn→∞ f(n) = −1. This
makes sense, since if we try to “cut” the function at anything above −1, that small interval
of values (think [−1,−1+ϵ)) will be visited an infinite number of times eventually by f . Also,
lim supn→∞ f(n) = 1. It should be obvious that while these quantities may not be easy to
calculate, not only should they exist (for the minute, think of an infinite limit as existing
in the sense that the sequence is going somewhere), but it must be the case that for any
sequence {xn}n∈N,

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

And should they be equal, then limn→∞ xn in fact exists and is equal to the two limit bounds.

In our case, let A be a disjoint union of arcs. Then define

fx(A) = lim sup
n→∞

FA(x,n)
n

, f
x
(A) = lim inf

n→∞

FA(x,n)
n

.

It turns out that these two quantities not only exist. They also are equal:
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Proposition 7. For any arc ∆ ⊂ S1, and every x ∈ S1, and any irrational rotation Rα, α /∈ Q
on S1, we have

f(δ) ∶= lim
n→∞

F∆(x,n)
n

= ℓ(∆).

idea. The proof relies on finding bounds for the quantities fx(∆) and f
x
(∆), and showing

that it is always the case that fx(∆) ≤ ℓ(∆) and f
x
(∆) ≥ ℓ(∆). This can only be the case

if the limits superior and inferior are in fact equal, and equal to ℓ(∆). �

Notes: Let Rα ∶ S1 → S1 be an irrational rotation. Then for x ∈ S1,

● the orbit Ox, as a sequence {Rn
αx}n∈N, is called a uniform distribution or an equidis-

tribution on S1.
● the orbit Ox in a sense “fills” every arc in S1.

Hence, we say that any orbit of an irrational rotation of S1 is uniformly distributed on S1.
This is our notion of a set being dense in another set, and for these orbits, one can actually
“see” the notion of recurrence. To further understand this new type of dynamical behavior,
we will do an application next time. But first, we will start the next lecture with a little
more nomenclature.


