
MATH 421 DYNAMICS

Week 5 Lecture 1 Notes

Linear Maps of R2 (cont’d.)

Last class we discussed the basic types of dynamic behavior that a linear map of R2 can
exhibit. There were three basic cases. But notice that in Case I above, we missed a type.
Today, we will explore this neglected type in detail.

Suppose A is a 2 × 2 matrix with eigenvalues 0 < ∣μ∣ < 1 < ∣λ∣. Then A
conj≅ B = [ λ 0

0 μ
]

like the other examples in Case I, but the orbit lines are different. In fact, writing out the
nth term in Ov for a choice of v ∈ R2, we see that there are four types:

(1) O+v �→ [ 0
0

] and O−v �→ ∞,

(2) O+v �→ ∞ and O−v �→ ∞,

(3) O+v �→ ∞ and O−v �→ [ 0
0
], and

(4) O+v �→ [ 0
0

] and O−v �→ [ 0
0
].

With B as our matrix, the eigenvectors vλ = [ 1
0
] and vμ = [ 0

1
] lie on the coordinate axes,

and for a choice of v ∈ R2, the nth term is agian Bnv = [ λnv1
μnv2

] . Can you envision the orbit

lines and motion along them? Do you recognize the phase portrait? Can you classify the
type and stability of the origin?

Consider now the hyperbolic matrix A = [ 0 1
1 1

]. Here the characteristic equation is

r2 − r − 1 = 0, which is solved by r = 1±√5
2 , giving us the eigenvalues

λ = 1 +√
5

2
> 1, and μ = 1 −√

5

2
∈ (−1,0).

The eigenspace of λ is the line y = 1+√5
2 x = λx, and for an eigenvector, we choose vλ = [ 1

λ
].
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Now let f ∶ R2 → R2, be the linear map f(v) = Av = [ 0 1
1 1

]v. Then, for v = [ 1
1

], we
get

O = {[ 1
1

] , [ 1
2
] , [ 2

3
] , [ 3

5
] , [ 5

8
] , [ 8

13
] , . . .} .

Do you see the patterns? Call vn = [ xn

yn
] = [ xn

xn+1
] and the sequences {xn}n∈N and {yn}n∈N

are Fibonacci with yn = xn+1. Notice that the sequence of ratios

{yn
xn

}
n∈N

= {xn+1
xn

}
n∈N

has a limit, and limn→∞ yn
xn

= 1+√5
2 = λ.

Recall how to find this limit: Use the second-order recursion inherent in the Fibonacci
sequence, namely an+1 = an + an−1, and the ratio to calculate a first-order recursion. This
first-order recursion will correspond to a map, which one can study dynamically. Indeed,
Let rn+1 = xn+1

xn
, Then

rn+1 = xn+1
xn

= xn + xn−1
xn

= 1 + 1
xn

xn−1

= 1 + 1

rn
.

So rn+1 = f(rn), where f(x) = 1− 1
x . The only non-negative fixed point of this map is the sole

solution to x = f(x) = 1− 1
x , or x

2−x−1 = 0, which is x = 1+√5
2 . Note that really there are two

solutions and the other one is indeed μ. However, since we are talking about populations,
the negative root doesn’t really apply to the problem.

Example 1. Recall the Lemmings problem, with its second-order recursion an+1 = 2an +
2an−1. Here the sequence of ratios of successive terms {an+1

an
}
n∈N has the limit 1 +√

3.

Here are two rhetorical questions:

(1) What is the meaning of these limits?
(2) How does the hyperbolic matrix in the above Fibonacci sequence example help in

determining the limit?

To answer these, let’s start with the sequence

{bn} = {1,1,2,3,5,8,13,21, . . .} .
As before, we see

vn+1 = [ bn+1
bn+2

] = [ bn+1
bn+1 + bn

] = [ 0 1
1 1

] [ bn
bn+1

] = A[ bn
bn+1

] = Avn,
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where A = [ 0 1
1 1

]. This is precisely the matrix that (1) moves the second entry into the

first entry slot, and (2) creates a new entry two by summing the two entries.

Here, we have associated to the second-order recursion bn+2 = bn+1 + bn the matrix A =
[ 0 1
1 1

] and the first-order vector recursion vn+1 = Avn.

Remark 2. This is basically a reduction of order technique, mush like the manner with which
one would reduce a second-order ODE into a system of 2 first-order ODES, written as a single
vector ODE.

This is actually used to construct a function which gives the nth term of a Fibonacci
sequence in terms of n (rather than only in terms of the (n − 1)st term):

Proposition 3.1.11. Given the second order recursion bn+2 = bn+1 + bn with the initial data
b0 = b1 = 1, we have

bn = λn+1 − μn+1

λ − μ
,

where λ = 1+√5
2 and μ = 1−√5

2 .

We showed that λ and μ were the eigenvalues of a matrix A = [ 0 1
1 1

], and that the linear

map on R2 given by A, vn+1 = Avn, is in fact the first-order vector recursion for the second-

order recursion in the proposition under the assignment vn = [ bn
bn+1

]. This reduction-of-

order technique for the study of recursions is quite similar to (and is the discrete version
of) the technique of studying the solutions of a single, second-order, homogeneous, ODE
with constant coefficients by instead studying the system of two first-order, linear, constant-
coefficient, homogeneous ODEs. In fact, this analogy is much more robust, which we will
see in a minute.

First, a couple of notes:

● For very large n,

bn = λn+1 − μn+1

λ − μ
∼Kλn+1.

Thus the growth rate of terms in the Fibonacci sequence are not exponential. They
do, however, tend to look more and more exponential as n gets large. In fact, we
can say the Fibonacci sequence displays asymptotic exponential growth, or that the
sequence grows asymptotically exponentially.
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● Start with the initial data v0 = [ 1
1

], and plot Ov0 in the plane. What you will find

is that the iterates of O+v will live on two curves of motion (there will be flipping here
across the y = λx eigenline. Why does this happen?) and tend toward the λ-eigenline
as they grow off of the page (see the figure below). Getting closer to the λ-eigenline
means that the growth rate is getting closer to the growth rate ON the λ-eigenline.
But on this line, growth is purely exponential!. With growth factor λ > 1.

Exercise 1. If we neglect the applcation of a rabbit population, the discrete dynam-
ical system we constructed above is invertible. Calculate the first few pre-images of

the vector v = [ 1
1
], and plot them on the figure below. Then calculate the orbit

line equations for the orbit line on which the sequence lives. Hint: you may need to
solve the original second-order ODE to do this.

● Every other point v0 = [ x0

y0
] is really just another set of initial data for the second-

order recursion (or the first-order vector version). Start taking iterates and plot and
you will see that these orbits will also live on either one or will flip between two
curves of motion and the phase diagram in the figure will tell you the ultimate fate
of the orbits. Doing this, you should ask yourself the following questions:
Q. Can you find starting data which lead to a sequence which does NOT tend to

run off of the page as n goes to infinity?
Q. If you can do the first, then can you do so in which the starting data are BOTH

integers? Why or why not?

2 1 1 2 3 4 5

2

2

4

6

8

In general, let an+2 = pan + qan+1 (careful of the order
of the terms in this expression). Then we can construct
a first-order vector recursion

vn+1 = [ an+1
an+2

] = [ 0 1
p q

][ an
an+1

] = Avn, for A = [ 0 1
p q

] .
The characteristic equation of A is r2 − qr − p = 0, with

solutions r = q±√q2+4p
2 .

Proposition 3.1.13. If [ 0 1
p q

] has two distinct eigen-

values λ ≠ μ, then every solution to the second-order re-
cursion an+2 = pan + qan+1 is of the form

an = xλn + yμn
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where x = αv1 and y = βw1, v = [ v1
v2

] and w = [ w1

w2
] are respective eigenvectors of λ and

μ, and α and β satisfy the vector equation

[ a0
a1

] = αv + βw.

Remark 3. Hence the general second-order recursion and the first-order vector recursion carry
the same information, and the latter provides all of the information necessary to completely
understand the former. The method of solution is quickly discernable: Given a second-
order recursion, calculate the data from the matrix A in the corresponding first-order vector
recursion, including the eigenvalues and a pair of respective eigenvectors. Use this matrix
data along with the initial data given with the original recursion to calculate the parameters
in the functional expression for an.

Here is an example going back to our Fibonacci Rabbits Problem. Is essence, we use
Proposition 3.1.13 to essentially prove Proposition 3.1.11.

Example 4. Go back to the original Fibonacci recursion an+2 = an+1 + an, with initial data

a0 = a1 = 1. The matrix A = [ 0 1
1 1

] has λ = 1+√5
2 and μ = 1−√5

2 (as before) and using the

notation of Proposition 3.1.13, one can calculate representative eigenvectors as v = [ 1
λ

]
and w = [ 1

μ
]. Thus v1 = w1 = 1. To calculate α and β, we have to solve the vector equation

[ a0
a1

] = αv + βw

[ 1
1
] = α [ 1

λ
] + β [ 1

μ
]

This is solved by α = 1−μ
λ−μ and β = λ−1

λ−μ (verify this calculation!). Hence we have x = αv1 = 1−μ
λ−μ

and y = βw1 = λ−1
λ−μ , and our formula for the nth term of the sequence is

an = (1 − μ)λn + (λ − 1)μn

λ − μ
.

This does not look like the form in Proposition 3.1.11, however. But consider that the term

(1 − μ) = 2

2
− 1 −√

5

2
= 1 +√

5

2
= λ,

and similarly (λ − 1) = −μ, we wind up with

an = (1 − μ)λn + (λ − 1)μn

λ − μ
= λ ⋅ λn + (−μ) ⋅ μn

λ − μ
= λn+1 − μn+1

λ − μ
,
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and we recover Proposition 3.1.11 precisely.

Exercise 2. Perform this calculation for the second-order recursion in the Lemmings Prob-
lem, and use it to calculate the population of lemmings today, given that the initial popula-
tion was given in 1980.

Section 3.2 in the text is a very nice discussion of the relationship between the matrices
found in first-order, 2-dimensional homogeneous linear systems (with constant coefficients)
of ODEs and the corresponding matrices of the discrete, time-1 maps of those systems. This
is good reading, and truly exposes a fact that is commonly confusing among new students to
this discipline: Namely, why is it that for a ODE system with coefficient matrix A, the sign
of the eigenvalues determines the stability of the equilibrium solution at the origin. But for
a linear map of Rn, it is the size of the absolute values of the eigenvalues that determine
the stability of the fixed point at the origin. The matrix of the time-1 of an ODE system is
NOT the same matrix as the coefficient matrix of the system. The two matrices are certainly
related, but they are not identical. Furthermore, ANY ODE system has a time-1 map. But
only certain types of linear maps correspond to the time-1 maps of ODE systems. It is really
all about the exponential map. We will not develop this section in the class, but here are
some facts. Let’s start with an example:

Example 5. Calculate the time-1 map of the ODE system

ẋ = [ 2 0
0 −1 ]x, x(0) = x0 = [ x0

1

x0
2
] .

This system is uncoupled and straightforward to solve. Using linear system theory, the

eigenvalues of the matrix A = [ 2 0
0 −1 ] are λ = 2 and μ = −1, and, since A is diagonal, we

can choose the vectors vλ = [ 1
0
] and vμ = [ 0

1
]. Hence the general solution is

x(t) = c1 [ 1
0
] e2t + c2 [ 0

1
] e−t,

or x1(t) = c1e2t and x2(t) = c2e−t. For the choice of any initial data, the particular solution
is x1(t) = x0

1e
2t and x2(t) = x0

2e
−t, and the evolution of this continuous dynamical system is

ϕ(x, t) = x1 [ 1
0
] e2t + x2 [ 0

1
] e−t = [ e2t 0

0 e−t ] [ x1

x2
] = [ e2t 0

0 e−t ]x.
The time-1 map is then ϕ(x,1) = ϕ1(x) ∶ x(0) �→ x(1), or the linear map

ϕ1 ∶ R2 → R
2, ϕ1(x) = Bx,

where B = [ e2 0
0 e−1 ] is the matrix associated to the linear map.
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I  = [0,  ∞)I  = (∞ ,0)1 2

f( I  ) = (0, 1)1

f( I  )= [1,  ∞)2

f(x)= ex

Do you see the relationship between the ODE matrix A and
the time-1 linear map matrix B. The type and stability of the
equilibrium solution at the origin of this linear system given
by A is that of a saddle, and unstable. The time-1 map must
also be a saddle, as the orbit lines of the time-1 map coincide
precisely to the solution curves of the ODE system. It is the
sign of the eigenvalues (non-zero entries of A in this case) that
determine the type and stability of the origin of the ODE system. However, it is the “size”
(modulus) of the eigenvalues of B which determine the type and stability of the fixed point
at the origin in the linear map given by B. Some notes:

● Notice that the exponential map, exp ∶ x ↦ ex takes R to R+ (see the figure above)
and maps all non-negative numbers, 0 and R+, to the interval [1,∞) and all negative
numbers to (0,1). This is no accident, and exposes a much deeper meaning of the
exponential map, which we will not go into here.● One might conclude that there could not be a time-1 map of a linear, constant
coefficient, homogeneous ODE system with negative eigenvalues. And you would be
correct in this hyperbolic case. In general?● One might also conclude that for any 2 × 2-matrix A, the associated time-1 map
B would simply be the exponentials of each of the entries of A. Here, you must
definitely be much more careful, as we shall see.

Exercise 3. Let f ∶ R2 → R2 be the linear map f(x) = Bx, where B = [ a 0
0 b

] and both

a > 0 and b > 0. Determine a linear, 2-dimensional ODE system that has f as its time-1
map. For a > 0, show that B cannot correspond to a time-1 map of an ODE system if b ≤ 0.
Can B correspond to a time-1 map of an ODE system if both a < 0 and b < 0? Hint: The
answer is yes.

For a moment, recall the 1-dimensional linear, homogeneous, constant coefficient ODE
ẋ = ax, for a ∈ R a constant. The evolution is x(t) = x0eat, the ODE is solved by an
exponential function involving a. For the nth order linear, homogeneous, constant coefficient
case, one creates an equivalent system ẋ = Ax, a single vector ODE whose solution also seems
exponential in nature (exponentials have the appeal that the derivative is proportional to
the original function). That is, it is tempting to write the evolution as x(t) = x0eAt, since if
it is the case that d

dt [x0eAt] = Ax0eAt, then this expression solves the ODE. However, it is
not yet clear what it means to take the exponential of a matrix.

Definition 6. For an n × n matrix A, define eA = ∞∑
n=0

An

n!
.

This definition obviously comes directly from the standard definition of the exponential ex

via its Maclauren Series. Also, it seems to make sense in that one can certainly sum matrices,



8

take them to positive integer powers, and divide them by scalars. The question of whether
this converges or not is unclear, though. It really is a question of whether each entry, written
as a series will converge. While this is basically a calculus question, we will not elaborate
here but will state without proof the following: The definition above is well-defined and the
series converges absolutely for all n × n matrices A.

Proposition 7.
d

dt
[x0eAt] = Ax0eAt.

Proof. Really, this is just the definition of a derivative:

d

dt
eAt = lim

h→0

eA(t+h) − eAt

h
== lim

h→0

eAteAh − eAt

h
= eAt lim

h→0

eAh − 1

h

= eAt lim
h→0

1

h
( ∞∑
n=0

(Ah)n
n!

− I) = eAt lim
h→0

1

h

∞∑
n=1

(Ah)n
n!

= eAt lim
h→0

∞∑
n=1

Anhn−1

n!
= eAt lim

h→0
A
∞∑
n=1

An−1hn−1

n!

= AeAt lim
h→0

( I

1!
+ Ah

2!
+ A2h2

3!
+ A3h3

4!
+ . . .) .

At this point, every term in the remaining series has an h in it except for the n = 1 term,
which is I. So

d

dt
eAt = eAt lim

h→0
A
∞∑
n=1

An−1hn−1

n!
= AeAt.

�

Hence the expression eAt behaves a lot like the exponential of a scalar and in fact does solve
the vector ODE ẋ = Ax, with initial condition x(0) = x0. However, contrary to Example 5,
it is not in general true that the exponential of a matrix is simply the matrix of exponentials
of the entries.

Example 8. Find the evolution for ẋ = [ 4 −2
3 −3 ]x.

Here, the characteristic equation is r2 − r − 6 = 0, with solutions giving eigenvalues of λ = 3

and μ = −2. Calculating eigenvectors, we choose vλ = [ 2
1
] and vμ = [ 1

3
]. Thus the general

solution is

(1) x(t) = c1 [ 2
1
] e3t + c2 [ 1

3
] e−2t = [ 2e3t e−2t

e3t 3e−2t ] [ c1
c2

] .
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Writing this in terms of x0 (in essence, finding the evolution), we get the linear system

[ x0
1

x0
2
] = [ 2c1 + c2

c1 + 3c2
] = [ 2 1

1 3
] [ c1

c2
] .

Solving for c1 and c2 in terms of the initial conditions involves inverting the matrix, and

[ 2 1
1 3

]
−1

= 1
5 [ 3 −1−1 2

]. Hence the evolution is

x(t) = [ 2e3t e−2t
e3t 3e−2t ] [ c1

c2
]

= [ 2e3t e−2t
e3t 3e−2t ] [ 3

5 −1
5−1

5
2
5

] [ x0
1

x0
2
]

= [ 6
5e

3t − 1
5e
−2t −2

5e
3t + 2

5e
−2t

3
5e

3t − 3
5e
−2t −1

5e
3t + 6

5e
−2t ] [ x0

1

x0
2
] .

Hence we can also say now that

eAt = [ 6
5e

3t − 1
5e
−2t −2

5e
3t + 2

5e
−2t

3
5e

3t − 3
5e
−2t −1

5e
3t + 6

5e
−2t ] , for A = [ 4 −2

3 −3 ]
and that the time-1 map of this ODE is the linear map given by

eA = [ 6
5e

3 − 1
5e
−2 −2

5e
3 + 2

5e
−2

3
5e

3 − 3
5e
−2 −1

5e
3 + 6

5e
−2 ] .

SO how does one square these calculations into a general understanding of eA? Via the
properties of of a matrix exponential:

Proposition 9. Let An×n be diagonalizeable. Then A = SBS−1, where

● Bn×n is diagonal, and● the columns of Sn×n form an eigenbasis of A.

Proposition 10. If An×n is diagonalizeable, then eA = SeBS−1, where both B and eB are
diagonal.

Proof. Note that since

eA = ∞∑
n=1

An

n!
and (SAS−1)n = SAnS−1,

we have

SeBS−1 = S ( ∞∑
n=1

Bn

n!
)S−1 = ∞∑

n=1
SBnS−1

n!
= ∞∑

n=1
(SBS−1)n

n!
= ∞∑

n=1
An

n!
= eA.

�
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Example 11. Back to the previous system, with ẋ = Ax, and A = [ 4 −2
3 −3 ]. The general

solution, written in Equation 1 was

x(t) = [ 2e3t e−2t
e3t 3e−2t ] [ c1

c2
]

= [ 2e3t e−2t
e3t 3e−2t ] [ 3

5 −1
5−1

5
2
5

] [ x0
1

x0
2
]

= [ 6
5e

3t − 1
5e
−2t −2

5e
3t + 2

5e
−2t

3
5e

3t − 3
5e
−2t −1

5e
3t + 6

5e
−2t ] [ x0

1

x0
2
] = eAtx0.

But the middle equal sign in the last grouping can easily be written

x(t) = [ 2e3t e−2t
e3t 3e−2t ] [ 3

5 −1
5−1

5
2
5

][ x0
1

x0
2
]

= [ 2 1
1 3

] [ e3t 0
0 e−2t ] [ 3

5 −1
5−1

5
2
5

][ x0
1

x0
2
] = SeBtS−1x0,

where S is the matrix whose columns form an eigenbasis of A, and eBt is the exponential of
the diagonal matrix B. Hence, as in the proposition, eAt = SeBtS−1.

Exercise 4. Show that the time-1 map of the ODE system ẋ = [ λ 1
0 λ

]x is given by the

linear map f(x) = B1x, where B1 = [ eλ eλ

0 eλ
], but the time-t map in general is NOT given

by the linear map Bt = [ eλt eλt

0 eλt
].

Exercise 5. Find the time-1 map of the IVP ẋ = [ 0 α−α 0
]x, and use it to construct a

form for the exponential of a matrix with purely imaginary eigenvalues.


