MATH 421 DYNAMICS

Week 4 Lecture 1 Notes

THE Logistic MAP: Low PARAMETER VALUES

We begin today with a look at the quadratic interval map called the logistic map: f :
[0,1] = [0,1] given by f(x) = Az(1 -=x). Last class, we showed that

Proposition 1. For A€ [0,1], Yz €[0,1], O, — 0.
Today, we begin with the following:

Proposition 2. For Ae[1,3], Yz € (0,1), O, — 1 - 1.

Remark 3. if this is true, then A =1 is a bifurcation value for the family of maps f,, since

e for A\ € [0, 1], the fixed point x =0 is an attractor, and
e for X € [1,3], the fixed point = =0 is a repeller (do you see this?).

The idea of the proof is that on this range of values for |,
A, the graph of f, intersects the line y = x at two places,
and these places are the two roots of x = Az(1 - x) (see ol
proof of Proposition 1 from last class.) At right are the
graphs for three typical logistic maps, for A = 1.5, A =2, oo
and . It turns out that showing the fixed point x =
1 - & is attractive is straightforward (this is an exercise).
However, showing that almost every orbit converges to
x) is somewhat more involved. I won’t do the proof in
class, as it is in the book. You should work through
it to understand it well, since it raises some interesting
questions. Like:
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(1) What generates the need for the two cases they describe in the book?

(2) For what value(s) of A is the attracting fixed point super-attracting?

(3) The endpoints of the interval A € [1,3] are special and related in a very precise and
interesting way. The property they share indicates a central property of attractive
fixed an periodic points of C'-maps of the interval. Can you see this?

Once we surpass the value X\ = 3 for A € [0,4], things get trickier. We will suspend our
discussion of interval maps here for a bit and develop some more machinery first.
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MORE GENERAL METRIC SPACES

There are easy-to-describe-and-visualize dynamical systems that occur on subsets of Fu-
clidean space which are not Euclidean. As long as we have a metric on the space, it remains
easy to discuss how points move around by their relative distances from each other. So let’s
generalize a bit and talk about metric spaces without regard to how they sit in a Euclidean
space. To this end, let X be a metric space.

Definition 4. An e-ball about a point x € X is the set
o (open) Bc(z) = {y € X|d(z,y) <€}, and
e (closed) B.(z) ={y € X|d(x,y) <€}.

Definition 5. A sequence {z;};, ¢ X is said to converge to z¢ € X, if Ve >0, IN € N such
that Vi > N, d(z;,z0) <e.

Definition 6. A sequence is Cauchy if Ve >0, 3N € N such that Vi,j > N, d(z;,x;) <e.
Remark 7. A metric space X is called complete if every Cauchy sequence converges.

Definition 8. A map f: X — X on a metric space X is called an isometry if
Vo,ye X, d(f(x), f(y)) =d(z,y).

We can generalize this last definition to maps where the domain and the range are two
different spaces: f: X — Y, where both X and Y are metric spaces:

Definition 9. A map f: X - Y between two metric spaces X, with metric dx, and Y, with
metric dy, is called an isometry if

Ve, xae X, dy (f(x1), f(x2)) = dx (21, 22).

Definition 10. A map f: X — Y between two metric spaces is called continuous at r € X
if Ve >0, 30 > 0, such that if Yy € X where dx(x,y) <9, then dy (f(z), f(y)) <e.

This gives us an easy way to define what makes a function continuous at a point when the
spaces are not Buclidean. We will need this as we talk about common spaces in dynamical
systems that are not like R™ but still allow metrics on them. That a map on any space is
continuous is a vital property to possess if we are to be able to really talk at all about how
orbits behave under iteration of the map. For now, though, more definitions:
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Definition 11. A continuous bijection (remember that a bijection is a continuous map which
is also an injection, or one-to-one map, as well as a surjection, or onto map) f: X - Y with
a continuous inverse is called a homeomorphism.

Example 12. For any metric space (or any topological space in general!) X, the identity
map on X (f: X - X, f(x) = z) is a homeomorphism. It is obviously continuous (for any
€ >0, choose § =€), one-to-one and onto, and it is its own inverse.

Example 13. Recall that linear maps f: R - R, f(x) = ax + b are, of course, invertible, as
long as a # 0. However, be careful of the domain: Let f(z) =4z + 3 on I =[0,1]. Here, f is
certainly injective (it is non-decreasing, and a contraction!). But it cannot have an inverse,
since it is NOT onto [. In fact, the range of f is [%, 1]. So think about the following: For
f:I — I to be a homeomorphism on a bounded I = [a,b], it must be both one-to-one and
onto. What does that imply about the images of the endpoints? Can you prove that there

are only two possibilities for one, and once chosen, only one possibility for the other?

Remark 14. When a homeomorphism exists between two spaces, the two spaces are called
homeomorphic and mathematically they are considered equivalent, or the same space. Any-
thing defined on a space or with it can be defined or used on any other space that is
homeomorphic to it. It is the chief way for mathematicians to classify spaces according to
their properties.

=1

Typically, on a metric space X, there are many metrics that one can define. However,
like the above notion of homeomorphism, many of them are basically the same, and can be
treated a equivalent. Others, maybe not. To understand this better,

Definition 15. Let d; and dy be two metrics on a metric space X. Then we say d; and ds
are isometric if Yo,y € X, di(z,y) = do(z,y).

Definition 16. Two metrics d; and dy on a metric space X are called (uniformly) equivalent
if the identity map and its inverse are both Lipschitz continuous.

To elaborate on this last definition, we consider f : X — X, f(x) = x, to be the map
that takes points in X using the metric d; to points in x using the other metric dy. This
is like considering X as two different metric spaces, one with d; and the other with ds. In
essence, then the definition says that 3C, K > 0 such that Vz,y € X, both 1) da (f(x), f(y)) <
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Cdy(x,y) and 2) dy (f1(x), f1(y)) < Kda(x,y) hold. This simplifies using the identity map
to 1) dy (x,y) < Cdy(x,y) and 2) d; (z,y) < Kds(z,y) everywhere. Of course, what this really
only means is that there are global bounds (over the space X, that is) on how the two metrics
differ. We will see the utility of this later.

One last definition:

Definition 17. A map f: X - Y is called eventually contracting if 3C > 0, such that if
Vo,ye X and Vn e N,

d(f"(x), f*(y)) < CX"d(z,y)
for some 0 < A < 1.

There are many maps that are definitely not contractions, yet ultimately behave like one.
Here is one:

Example 18. Let fo(x) = 22(1-x) be the A = 2-logistic map, restricted to the open interval
(0,1) (this cuts out the repelling fixed point at 0). This is the one with the super-attracting
fixed point at x = % Here f; is definitely NOT a contraction. You can see this visually by
inspecting the graph: Should the graph of a function have a piece which is sloping up or
down at a grade more than perfectly diagonal, the function will stretch intervals there See
the graph. To see this analytically, let = = § and y = 1. Then fg(x) = and fo(y) = =
Then 7

d(fa(x), fo(y)) = 3—2—3—2‘ 35 < 03—2—0 —C

only when C' is some number greater than 1. However, eventually, every orbit gets close to
the only fixed point at z = % where the derivative is very flat. The function fs, restricted
to the interval [8, 8] is a 2-contraction (Can you show this? Use the derivative!). And one
can also show that fy is 2-Lipschitz on all of (0,1). Thus, one can conclude here that fs is

eventually contracting on (0,1), and Vx,y € (0,1),

(@) 1) <4(3) dp).

Exercise 1. Go back to the example f(x) = vz —1+ 3 on the interval I = [1,00). Show
that f is NOT an eventual contraction (Hint: Try to find a value for C' in Definition 17
that works in a neighborhood of = 1.) Now show that f IS an eventual contraction on any

closed interval [b,c0), for 1<b< 1+ 3.

=Cd(z,y)

Here are some of the more common non-Euclidean metric spaces encountered in dynamical
systems:

(1) The n-dimensional sphere

Sn — {X ERn+1

=1}



(2) The unit circle. Really this is the 1-dimensional sphere

Il = 1}.

However, we also can use the interpretation of the plane as the 1-dimensional complex
numbers
-1},

= {eie € (C‘ e [0,27)},
and also in a more abstract sense as

Sl={I€R xe[O,l]whereO:l}.

Slz{xe]R2

St = {ZEC

This last definition requires a bit of explanation. From Set Theory, the concept of a
partition of a set is a collection of exhaustive, mutually exclusive subsets. And since
any space is really a set of its points with some additional structure, we have the
following:

Definition 19. Given a set X, an equivalence relation R on X is a partition, where
each element of the partition is called an equivalence class, and any two elements of
each equivalence class are said to be equivalent or the same.

The notation for such an equivalence relation is the following: If x,y € X are in the
same equivalence class, then we say x ~g y (or simply = ~y when R is either obvious
or implied), and for z € X, we denote its equivalence class [x]. Thus, we can define
the equivalence class of x € X as

[x]z{yeX‘ny}.

Furthermore, the set of all partition elements form a new set, called the quotient set
of the equivalence relation. It is a deeper question exactly when the quotient set of
an equivalence relation on a space is still a space. But for now, we say that the for
X a set with an equivalence relation R, the quotient set is denoted Y = X/R.

Example 20. Any function f: X — R defines an equivalence relation on X. Each
element of the partition is simply the collection of all point that map to the same
point in the range of X:

w1={ye x| 1) - 1}

Recall in Calculus, we defined the inverse image of a point in the range of a function
as

f‘l(c)z{xeX‘f(x):c}.



Hence we can say that here that the equivalence class of a point x € X given by the
function f: X — R is simply the inverse image of the image of z, or [x] = f~1 (f(x)).
This is well-defined regardless of whether f even has an inverse, since the inverse
image of a function is only defined as a set. Think about this.

Using this last example, we have one more definition of S*. namely, let r : R - S*
be a function r(z) = e?™®. Then r(z) = r(y) iff z—y € Z (work this out). In this case,
each point on the circle has as its inverse image under r all of the points in the real
line that are the same distance from the next highest integer (see the pic). Thus the
map r looks like the real line R infinitely coiled around the circle. In this way, we
commonly say that

St =R/Z.

An interesting consequence of this idea? Let f: R — R be any function which is
T-periodic (thus it satisfies f(z +T) = f(z), Vo € R). Then f induces a function
g:St—>TRon St given by g(t) = f(tT). Conversely, any function defined on S' may
be viewed as a periodic function on R, a tool that will prove very useful later on.

(3) The cylinder: C' = S! x I, where I c R is some interval. Here I can be closed, open
or half-closed, and can be bounded or all of R. In fact, by the above discussion,
any function f : R? - R? which is T period in one of its variables, may be viewed
as a function on a cylinder (think of the phase space of the undamped pendulum).
Sometimes we call a cylinder whose linear variable is all of R the infinite cylinder.

(4) The 2-torus T? (or just the torus 7" when there is no confusion) T = St x St. Like
before, any function f :R? — R? which is periodic in each of its variables, may be
viewed as a function on a torus. Conversely, a function on the torus may be studied
instead as a doubly periodic function on R2?. We will use this also laster.

We will continue next time with a brief look at Canter sets and their properties.



