MATH 421 DYNAMICS

Week 3 Lecture 1 Notes

We begin today’s lecture with a restatement of our last assertion from last class:

Proposition 1. Let the C°-map f: [, B] = [«, 5] be non-decreasing, and suppose there are
no fized points on («, 3). Then either

e czactly one end point is fized and Vz € [«, 8], O, converges to the fized end point, or
e Both end points are fixed, one is an attractor and the other is a repeller.

And if in the second case above, f is also invertible (f increasing is enough for this to be
the case), then forallz € (a, ), O, is forward asymptotic to one end point, and backward
asymptotic to the other.

And using the notation for the forwards and backwards orbits I introduced from the last
class, we can close in on a property of nondecreasing interval maps. First, we can now say
definitively that

e In the first case, Vz € [«, 8], either O — a or O — . Here, f will certainly look
like a contraction. Must it be? Keep in mind that the definition of a contraction is
very precise, and maps that behave like contractions may not actually be contractions.
Think f(z) = 22 on the closed interval [0,.6]. What is Lip(f) here?

e For f in the second case, and with f invertible, then Vz € («, 3), either O — «
and O, — f, or Of — [ and O, — a.

Let’s elaborate on this forward/backward orbit thing. Suppose now that f: X - X is a
CY%map on some subset of R, and suppose Jz € X, where

O, — a and O, — b.

Definition 2. x is said to be heteroclinic to a and b if a # b, and homoclinic to a if a = b.

You have certainly seen heteroclinic and ho-
moclinic orbits before. Think of the phase
plane of the undamped pendulum. It is the
famous picture at left. Here the separatri-
ces are heteroclinic orbits from the unstable
equilibrium solution at (2nm,0), n € Z, and
(2(n = 1)7,0). Although, in reality, there is

i a much more accurate picture of the phase

space of the undamped pendulum. The ver-

tical variable (representing the instantaneous velocity of the pendulum ball, actually) takes
values in R, while the horizontal variable (representing the angular position of the pendulum
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ball with respect to downward vertical position) is in reality 27-periodic. Truly, it takes
values in the circle S':

S = unit circle in R? = {ew eC

06[0,1)}.

Thus, the phase space is really a cylinder, and really only has two equilib-
rium solutions; one at (0,0), and the other at (7,0). In this view, which /\
we will elaborate on later, there are only two separatrices (both in red \/
at right), and both are homoclinic to the unstable equilibrium at (7,0).

Also, it becomes clear once the picture is understood that ALL orbits of

the undamped pendulum, except for the separatrices, are periodic. How- V
ever, the period of these orbits is certainly not all the same. And there >

is NO bound to how long a period may actually be. See if you can fully é
grasp this. ———

Exercise 1. Show that there cannot exist homoclinic points for f a non- *
decreasing map on a closed, bounded interval. ST

Exercise 2. Construct an example (with an explicit expression) of a \y
continuous C%-map of St that contains a homoclinic point. Now construct

a Cl-map on S! with this property. (Hint: In class we already have

an example of an interval map that, when modified, will satisfy the C°

construction.

It turns out, forcing a map of an interval to be nondecreasing and forcing the interval to
be closed really restricts the types of dynamics that can happen. We have:

Proposition 3. Let [ :[a, ] = [«, 8] be C° and nondecreasing. Then Yz € [a, 3], either
x is fized, or asymptotic to a fized point. And if f is increasing (and thus invertible), then
Ve [a, ], either x is fixed or heteroclinic to adjacent fized points.

Clearly, the dynamics, although more complicated than for contraction maps, are nonethe-
less rather simple for nondecreasing interval maps (and even more so for invertible interval
maps). Thus goes the second stop in our exploration of dynamical systems from simple to
complex.

Before moving on, here are a few other things to think about: First, in the case of non-
decreasing maps, the orbits of points in between fixed points are trapped in the interval
bounded by the fixed points (draw some pictures to see this). This has enormous implica-
tions, and severely restricts what orbits can do (we say it restricts the “orbit structure” of
the map). It makes the above proposition at the beginning of the lecture much more im-
portant and consequential, since any nondecreasing interval map is now simply a collection
of disjoint interval maps, each of one of the types in the proposition. And also, it helps to
establish the types of fixed points one can have for an interval map.
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Exercise 3. Let f be a nondecreasing map on a closed interval. Show if zy # yo are two
fixed points of f, then Y € (xg,y0), OFf c (x0,y0)-

Exercise 4. Let f be a C? nondecreasing map on a closed interval. Show that for every n € N,
Per,(f) = Fiz(f). That is, there are no non nontrivial periodic points of nondecreasing
interval maps.

Example 4. For f(z)=vz—-1+3 on [ =[1,00), determine the set Per(f).

We can address this question in a number of ways.
First, notice that f is a strictly increasing function since ¢
f'(x) = ﬁ >0 on all of I. Hence, every orbit is mono-

tonic (not necessarily strictly, though. Why is this true?)
Hence, as a generalization of the conditions of Proposi-
tion 3, every point is either fixed or has an orbit asymp-
totic to a fixed point, OR is unbounded (the consequence
of an unbounded domain). At this point, you can con-
clude that there are no non-trivial periodic points, like in
the above exercise. Now since the derivative is a strictly
decreasing function, if there is a fixed point at all, it will % 5 i 5 5 n
be unique (think about this also). There is a fixed point

of this map. To see this, consider the related differentiable function g(x) = f(x) — 2. Here,
g(1) =2 >0, while g(10) = -4 < 0, so by the Intermediate Value Theorem, there exists a
pt zg € (1,10), where g(xzg) = 0, or where xy = f(x9). Also, since f(z) >z on [1,x), and

f(z) <z on (xg,00), the fixed point g is an attractor. Hence Per(f) = {zo} = {5+ @},

solving f(x) = x algebraically.

Perhaps an easier way: f(z) is certainly NOT a contraction, as for all = € [1,2], the
distance between images is actually greater than the original distances (verify this!). How-
ever, consider that the image of I, f(I) = [3,00), and restricted to f(I), f is actually a
A-contraction, with A = 3++/2. Hence, one could simply start iterating after the first iterate,
knowing that the long-term behavior of orbits, fixed and periodic points, convergent orbits
and stability, will all be the same. Thus, the map f : f(I) - f(I) is a contraction, and
hence will have a unique fixed point and no other periodic points. Hence the zy found above
is precisely all of Per(f).

Remark 5. Tt would be tempting to call the map f above map eventually contracting, since
it is a contraction on a forward iterate of the domain. However, this is not the case here.
As we will see in soon enough, there is a technical condition that makes a map an eventual
contraction, and there is a pathology at x = 1 here (pay attention to the derivative as
one approaches 1 from numbers larger than 1). Suffice it to say that the language is not
completely settled here.



Now take an increasing interval map f and vary it slightly. Usually, the dynamical behavior
of the “perturbed” map stays the same (the number and type of fixed points does not change,
even thought their position may very a bit). This may not be the case for a non-decreasing
map: A slightly perturbed increasing map will remain increasing, while a slightly perturbed
map with a flat interval may not remain nondecreasing. Think about that.

FIGURE 1. A bifurcation in an interval map.

And sometimes, a small change in an increasing map may lead to a big change is the
number and type of fixed points (i.e., a big dynamical change!). Consider the three graphs
below. Do you recognize this behavior? Have you ever seen a bifurcation in a mechanical
system with a parameter?

1. FIRST RETURN MAPS

We will skip the sections on phase lines and 1-dimensional ODEs due to their full coverage
in the prerequisite course for this one: 110.302 Differential Equations. Instead, we will jump
directly to Section 2.4.3 in the book.

. Recall that the time-1 map of an ordinary differen-
J tial equation defines a discrete dynamical system on the
phase space. Indeed, for x € R”, the system % = f(x)
defines the map

\\ bR SR, x(0) o x(1)

\A ] I which is a transformation of R”. Really, ¢t = 1 is only one
B such example, and any ¢ will work, so long as the system
solutions are defined (and unique, for the most part).

X(0) = (x,(0), x,(0)) '\

There is another kind of discrete dynamical system
that comes from a continuous one: the First Return Map.  r@=1is the only (nontrivial)
One can view the first return map as a local version (only  periodic solution

AR
>< J r0-plane

r(t)=0is the only
equilibrium solution




defined near interesting orbits) of the more globally de-
fined time-t map (defined over all of phase space). Let’s
start with a 2-dimensional version. Consider the system
on polar coordinates:

1) AL

Without solving this system (although this is not difficult
as the equations are uncoupled), we can say a lot about how solutions behave:

e The system is autonomous, so when you start does not matter, and the vector field
is constant over time,

e The only equilibrium solution is at the origin. The second equation in the system
really states that no point is fixed when 6 is uniquely defined (on [0, 27), that is) for
a choice of point in the plane. But the origin is special in polar coordinates.

e (1) = 1is a periodic solution (the only one?) and called a cycle. What is the period?

e (1) = 1 is asymptotically stable as a cycle, and is called a limit cycle. Can you see
why?

Now define
1= { [a, B] c vertical axis [0<a<1,5> 1}.

/N | |
For each = € I, Call r,(t) the solution of Equation 1

passing through x at t = 0, so that x = r,(0). Let y, be
the point in I which corresponds to the earliest positive
time that the resulting r,(¢) again crosses /. (1) It must
cross again (why?), and (2), really y, = 7,(27). Then the
map ¢ : x ~ y, defines a discrete dynamical system on I.

r(t)=1, the periodic solution

/
/
/
1

r(1)=0, the equilibrium solution

Some properties of this discrete dynamical system
should be clear: B

K=12m) b x = r.(0)
e The dynamics are simple on I: There is a unique f( 7 I=[o,B]
fixed point at x = 1 corresponding to the limit // a
cycle crossing. This fixed point is asymptotically
stable so that Yx € I, O, — 1. Thus this discrete kJ
dynamical system behaves like a contraction on I.
e The same can be said for the system

(2) 2 - g(1r>=r(%—r)<r_1)(§—r)’

but only if I is chosen more carefully: Here I = { [, B] € vertical axis |5 <a<1<f< %} )



e You should draw pictures to verify this. In this
last system, what happens near the cycles r(t) =
5 and r(t) = 37 Is there some kind of discrete
dynamical system in the form of a first return

map near there also?



