
MATH 421 DYNAMICS

Week 2 Lecture 2 Notes

The Contraction Principle proved last class is a facet of some dynamical systems which
display what is called “simple dynamics”: With very little information about the system
(map or ODE), one can say just about everything there is to say about the system. Another
way to put this is to say, that in a contraction, all orbits do exactly the same thing. Which
is, they all converge to the same fixed point (equilibrium solution in the case of a continuous
dynamical system.)

We can build on this idea by now beginning a study of a relatively simple family of discrete
dynamical systems that display slightly more complicated behavior.

1. Interval Maps

f(x)

y = x

1

10

Let f ∶ I → I be continuous map, where I = [0,1] (we will say f is
a C0-map on I, or f ∈ C0(I, I)). The graph of f sits inside the unit
circle [0,1]2 = [0,1] × [0,1] ⊂ R2.

This graph intersects the line y = x at precisely the points where
y = f(x) = x, or the fixed points of the dynamical system given by
f on I. Recall that the dynamical system is formed by iterating f
on I, and

Ox0 = {x0, x1 = f(x0), x2 = f(x1) = f 2(x0), . . .} .

One can track Ox0 in I (and in [0,1]2) visually via the notion of cobwebbing. We will use
the example of f(x) = x2 on I to illustrate:
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Choose a starting value x0 ∈ I. Under f , the next
term in the orbit is x1 = f(x0). Vertically, it is the
height of the graph of f over x0. Making it the new
input value to f means finding its corresponding place
on the horizontal axis. This is easy to see visually. The
vertical line x = x0 cross the graph of f at the height
x1 = f(x0). The horizontal line y = x1 = f(x0) crosses
the diagonal y = x precisely at the point (x1, x1). The
vertical line through this point will again intersect the
graph of f at one point (why only one?). That point
will be at the height x2 = f(x1) and constitutes the

second value of the sequence Ox0 . Continue zig-zagging this way and the orbit of the point
x0 visually appears. There is a nice Java applet under the title ”Emergence of Chaos” on the
website www.cut-the-knot.org (you will have to sort through a lot of other very interesting
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Java applets) which uses cobwebs to display orbits of a certain kind of interval map. Check
it out.

Specific to our example f(x) = x2 on I, we have two fixed points: x = 0 and x = 1. And
if x0 is chosen to be strictly less than 1, then we can easily conclude via the cobweb that
Ox0 Ð→ 0. Visually, it makes sense. Analytically, it is also intuitive; squaring a number
between 0 and 1 always makes it smaller. However, can you prove that every orbit goes to
0 except for the orbit? We will do something like this shortly.

First we will need some definitions which will allow us to talk about the nature of fixed
points in terms of what happens around them. This language is a lot like the way we classified
equilibrium solutions in the ODEs class. For the moment, think of X as an interval in R.
However, in these definitions, you can readily allow X to be ANY metric space, and the
absolute-value signs are simply metric distances.

Definition 1. Let x0 be a fixed point of the C0-map f ∶X →X. Then x0 is said to be

● Poisson stable if ∀ϵ > 0, ∃δ > 0 such that ∀x ∈ I, if ∣x − x0∣ < δ, then ∀N ∈ N
∣fn(x) − x0∣ < ϵ.
● asymptotically stable, or an attractor if ∃ϵ > 0 such that ∀x ∈ I, if ∣x − x0∣ < ϵ, then
Ox Ð→ x0.
● a repeller, if ∃ϵ > 0 such that ∀x ∈ I, if 0 < ∣x − x0∣ < ϵ, then ∃N ∈ N such that ∀n > N ,
∣fn(x) − x0∣ > ϵ.

Remark 2. Asymptotically stable basically means that there is a neighborhood of the fixed
point where f restricted to that neighborhood is a contraction with x0 as the sole fixed point.
Poisson stable means that given any small neighborhood of the fixed point, I can choose a
smaller neighborhood where if I start in the smaller neighborhood, the forward orbit never
leaves the larger neighborhood. Asymptotically stable points are always Poisson stable, but
not necessarily vice versa. And a fixed point is a repeller if in a small neighborhood of the
fixed point, all points that are not the fixed point itself have forward orbit that leave the
neighborhood and never return.

Remark 3. In the classification of 2 × 2, first-order, homogeneous, linear ODE systems,
one can classify the type of the equilibrium solution at the origin via a knowledge of the
eigenvalues of the coefficient matrix. In this classification, the sink (negative eigenvalues)
was the asymptotically stable equilibrium, the source was the repeller, and the center (recall
where the two eigenvalues were purely imaginary complex conjugates) was the Poisson stable
equilibrium,

Remark 4. Back to the example of f(x) = x2 on [0,1]. This dynamical system has two
fixed points. One can see visually (via cobwebbing or via an analysis of the properties of
the orbits) that x = 0 is asymptotically stable. Whereas x = 1 is unstable and a repeller.
Can you show that these two points satisfy the respective definitions? Can you analytically
prove that one is an attractor and the other is a repeller?
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In this class, we will spend a fair amount of time on the
maps f ∶ [0,1] → [0,1]. There are basically two reasons
for this: 1) They have applications beyond simple interval
maps, and 2) maps of the unit interval are really all one
need study when studying intervals. To see the second
point, let f ∶ R → R, but suppose that there exists a
closed interval [a, b], b > a (a single point is considered a
closed interval, so the condition that b > a means that I
want something with an interior), where

f ∣[a,b] ∶ [a, b]→ [a, b].

● Dynamically speaking, what happens to f(x) under iteration on [a, b] is no different
from what happens to g(y) on [0,1] under the linear transformation of coordinates
y = x−a

b−a .
● It is usually an f(x) from above that appears in applications, and mathematically
we usually only study maps like g(y). For an example, let’s go back to the Newton
Raphson Method for root location. First, a quick definition:

Definition 5. A fixed point x0 for f ∶ I → I where f ∈ C1 is called superattracting if
f ′(x0) = 0. (Why? See the picture.)

an attractor
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a super-attractor

Proposition 6. Let f ∶ R → R be C3 with a root r. If ∃δ > 0, M > 0 such that ∣f ′(x)∣ > δ
and ∣f ′′(x)∣ <M on a neighborhood of r, then r is a superattracting fixed point of

F (x) = x − f(x)
f ′(x)

.

Proof. As we have already calculated, F ′(r) = f(r)f ′′(r)
[f ′(r)]2

= 0. �
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We can go further, and I will state this part without proof: Since f is C3, then F is C1.
Calculating F ′(x) and knowing that it is both continuous and 0 at x = r, there will be a
small, closed interval [a, b], b > a with r in the interior, where ∣F ′(x)∣ < 1. One can show
that, restricted to this interval,

F ∣[a,b] ∶ [a, b]→ [a, b]

is a λ-contraction, with a superattracting fixed point at r. In this case, all orbits of F
converge exponentially to r by λ2, even thought F is simply a λ-contraction.

Interval maps are quite general, and display tons of diverse and interesting behavior. To
begin exploring this behavior, we will need to specify some types of interval maps. The first
type designation is as follows:

Definition 7. A map f ∶ [α,β]→ [α,β] be C0. We say f is

● increasing if for x > y, we have f(x) > f(y),
● nondecreasing if for x > y, we have f(x) ≥ f(y),
● non-increasing if for x > y, we have f(x) ≤ f(y),
● decreasing if for x > y, we have f(x) < f(y).

It is easy and intuitive to see how these definitions work. You should draw some examples
to differentiate these types. You should also work to understand how these different types
affect the dynamics a lot. For example, increasing and non-decreasing map can have many
fixed points (actually, the map f(x) = x has ALL points fixed!). While all non-increasing
maps (hence all decreasing maps also) can have only one fixed point each. Further, increasing
maps cannot have points of period two (why not?), while there does exist a decreasing map
with ALL points of period two (can you find it?). We will explore these in time. For now,
we will start with a fact shared by ALL interval maps:

Proposition 8. For the C0 map f ∶ [α,β]→ [α,β], f must have a fixed point.

Remark 9. Visually, this should make sense. But can you prove it? Try to draw the graph
of a continuous function in the unit square in a way that it does NOT intersect the diagonal.
When you get tired of trying, read on.

Proof. Suppose for now that f has no fixed point on (α,β) (this seems plausible, since our
example above f(x) = x2 on [0,1] satisfies this criterion). Then, it must be the case that for
all x ∈ (α,β), either (a) f(x) > x, or b) f(x) < x. This means that the entire graph of f lies
above the diagonal, or below it, respectively (See Figure 1).

If we are in situation (a), then for any choice of x ∈ (α,β), Ox will be an increasing
sequence in [α,β]. It is also bounded above by β since the entire sequence lives in [α,β].
Recall from Calculus the Monotone Sequence Theorem: Every bounded, monotone infinite
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sequence converges. By definition, monotone means either (strictly) increasing or decreasing.
For case (b), the orbit is strictly decreasing, and will be bounded below since the entire
sequence live in the closed interval [α,β]. Thus we can say that Ox Ð→ x0, for some
x0 ∈ [α,β] (we can also say lim

n→∞
fn(x) = x0).

What can this point x0 look like? Well, for starters, it must be a fixed point! To see this,

f(x0) = f ( lim
n→∞

fn(x)) = lim
n→∞

fn+1(x) = lim
n→∞

fn(x) = x0.

Since there are no fixed points in (α,β) by assumption, it must be the case that either x0 = β
(case (a)), or x0 = α (case (b)). �

α

β

f(x) < x

f(x) > x

βα

Figure 1. An in-
terval map on
[α,β]

This last proof immediately tells us the following:

Proposition 10. Let the C0-map f ∶ [α,β] → [α,β] be
non-decreasing, and suppose there are no fixed points on
(α,β). Then either

● exactly one end point is fixed and ∀x ∈ [α,β], Ox

converges to the fixed end point, or
● Both end points are fixed, one is an attractor and
the other is a repeller.

And if in the second case above, f is also invertible (f
increasing is enough for this to be the case), then ∀x ∈
(α,β), Ox is forward asymptotic to one end point, and
backward asymptotic to the other.

For the first case, think of the map f(x) =
√
x on the

closed interval [1,∞). For the second case, think g(x) = x2 on [0,1]. We can make the above
proposition a bit clearer by adding to our definitions of orbits:

Definition 11. Let f ∶ [α,β] → [α,β] be C0 and invertible (it has continuous inverse
f−1(x)). Then

● Ox ∶= {y ∈ [α,β]∣ y = fn(x), n ∈ Z}

● O+x ∶= {y ∈ [α,β]∣ y = fn(x), n ∈ N}

● O−x ∶= {y ∈ [α,β]∣ y = f−n(x), n ∈ N} .

Next lecture, we will continue this thread to make some conclusive statement of the dy-
namics of nondecreasing interval maps.


